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Differential cross sections for He-n scattering were measured in the energy range up to 3 MeV.
These data together with other available experimental results for He +n and H +n scattering were
analyzed in the framework of the optical model using double-folded potentials. The optical potentials
obtained were used to calculate the astrophysical S factors of the capture reactions He(o. , p) Be
and H(o. , p) Li, and the branching ratios for the transitions into the two final Be and Li bound
states, respectively. For He(n, p) "Beexcellent agreement between calculated and experimental data
is obtained. For H(o, p) Li an S(0) value has been found which is a factor of about 1.5 larger than
the adopted value. For both capture reactions a similar branching ratio of R = o(pi)/cr(po) 0.43
has been obtained.
PACS number(s): 25.55.Ci, 25.70.Jj, 21.60.Gx

I. INTRODUCTION

The reaction He(n, p) Be determines together with
other reactions the branching ratio between the ppI
and (ppII + ppIII) chain in hydrogen burning of main-
sequence stars. The magnitude of the cross section of
this capture reaction is of special interest for the solar
neutrino problem [1]. The mirror reaction sH(o. , p)7Li is
the main source for Li production in primordial nucle-
osynthesis [2].

Experimental data for the sHe(n, p)7Be cross section
at sub-Coulomb energies have erst been obtained by
Parker and Kavanagh [3]. Further experiments observ-
ing the capture p rays have been performed by Nagatani,
Dwarakanath, and Ashery [4], Krawinkel et al. [5], Os-
borne et at. [6], Alexander et al. [7], and Hilgemeier et at.
[8]. Capture cross sections observing the decay of the 7Be
residual nucleus have been measured by Osborne et al.
[6], Robertson et al. [9], Volk et al. [10], and Hilgemeier
et al. [8]. Theoretically, Tombrello and Parker [11] have
erst succeeded in describing the energy dependence of the
astrophysical S factor very well in a direct-capture model.
Further calculations in the framework of the potential
model have been carried out by Kim, Izumoto, and Na-
gatani [12] and Buck, Baldock, and Rubio [13]. Analyses
using microscopic theories based on the resonating group
method have been performed by Walliser, Kanada, and
Tang [14], Kajino and Arima [15], Mertelmeier and Hof-
mann [16], Langanke [17], Kajino [18], and Liu, Kanada,
and Tang [19]. The adopted value for the astrophysical
S factor chosen by Bahcall [1] to calculate the expected
solar neutrino flux is S(0) = (0.54 + 0.03) keV b.

In the case of the sH(n, p) Li reaction three sets of
experimental data at sub-Coulomb energies are published

by Griffith et aL [20], Schroder et al. [21], and Burzynski
et al. [22]. Several microscopic calculations have been
performed in order to analyze this reaction [15—].8, 23, 24].
The presently adopted 8-factor value used in standard
hot big bang model studies is given by S(0) = 0.064
keVb [25].

In this work we analyze the experimental data of both
capture reactions, He(n, p) Be and H(n, p) Li, for en-
ergies E, ( 1.4 MeV and 0.6 MeV, respectively. The
calculations were performed in the framework of the
direct-capture model. The most important ingredients
in this model are the optical potentials for the bound
and scattering states. These potentials are determined
using the folding procedure. The strengths of these po-
tentials are adjusted to the experimental scattering data.
Therefore, we measured the differential cross sections for

He- He elastic scattering in the range Ei b ( He) ( 3
MeV.

In the next section we describe the direct capture
model and the folding procedure for the optical and
bound state potentials. In Sec. III we present the He-

He and H- He cluster potentials derived from elastic
scattering measurements. Finally, in Sec. IV the results
for the astrophysical S factors of the capture reactions
are given and compared with the experimental data. A
summary is given in Sec. V.

II. DIRECT- CAP TURK MODEL
AND FOLDING PROCEDURE

Potential models are based on the description of the
dynamics of nuclear processes by a Schrodinger equation
with local potentials in the entrance and exit channels.
Such models are the optical model (OM) for elastic scat-
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The variable 8 in the NN interaction term is given by

s = ~R+ r2 —r&~ (2)

with R being the separation of the centers of mass of
the two colliding nuclei. The normalization factor A ac-
counts for Pauli repulsion efFects and dispersive parts in
the potential V(R) which are not included in the fold-
ing potential V~(B). This parameter can be adjusted
to elastic scattering data and/or to bound and resonant
state energies of nuclear cluster states. At the low ener-
gies considered in the nucleosynthesis often the imaginary
term in the potential can be neglected. Therefore, in the
potential model combined with the folding procedure for
the potential the reaction cross sections can be calculated
in many cases without any free parameter.

The DC cross section is given by [30]

tering, the distorted-wave Born approximation (DWBA)
for transfer and the direct capture model (DC) for direct
capture Ieactlons.

The most important ingredients in the potential mod-
els are the wave functions for the scattering and bound
states in the entrance and exit channels. In calculations
performed by our group the potentials are determined by
using the folding procedure. In this approach the num-
ber of open parameters is reduced considerably compared
to more phenomenological potentials (e.g. , Saxon —Woods
potentials). The nuclear densities are derived &om nu-
clear charge distributions [26] and folded with an energy-
and density-dependent nucleon —nucleon (IVN) interac-
tion v,s [27—29]:

V(R) = AVr(R) = A ff p (&t)pA(&a)

x v ~(E,p, )()~, 8)dl y dry

(Z
C(E1) =i@

~ mg)

vi& 4
' ~)

we can write for the transition matrices for the electric
dipole (EZ = El) or quadrupole (EZ = E2) transition

do.DC
DC

dO
r'e ) i'Ii, c2) /k~) 1 1

), hc) ), hc) gA: ) 2I~+1 2S +1
x ) iT (3)

MgM Mga
The quantities Ig, Ig, and S (Mg, Mg, and M ) are the
spins (magnetic quantum numbers) of the target nucleus
A, residual nucleus B, and projectile a, respectively. The
reduced mass in the entrance channel is given by p. The
polarization 0. of the electromagnetic radiation can be
+1. The wave number in the entrance channel and for
the emitted radiation is given by k and k~, respectively.

The multipole expansion of the transition matri-
ces TM„M M~ including electric dipole (El) and
quadrupole (E2) transitions as well as magnetic dipole
(Ml) transitions is given by

TM~M Ma, n TM~M Mrr, ~ her(0)

+TM~M M~, cr h&r( )

+TM„'M M d~ (0)

The rotation matrices depend on the angle between k
and k~, which is denoted by 0, where b = M~+M —M~.

DeBnlng
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I
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In the above expressions Z, Z~ and m, m~ are the charge and mass numbers of the projectile a and target nucleus
A, respectively. The quantum numbers for the channel spin in the entrance channel and for the transferred angular
momentum are denoted by j and jg, respectively.

For magnetic dipole transitions (MZ = Ml) we obtain
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where W is the Racah coeKcient, the p; are the magnetic
moments, and m& is the mass of the proton.

The overlap integrals in Eqs. (7) and (8) are given as

IEC . = dr u~l, g(r) 0 (r) yi, (r)lpga Ia, l0 g0

for the electric dipole (EZ = El) or quadrupole (EZ =
E2) transition, and by

IMl d ( ) ~Ml(
lpga Ig,.l0g0 (io)

for the magnetic dipole transition (M = ).l. = M1, .
The radial part of the bound state wave function in the

exit channel and the scattering wave function in the en-
trance channel is given by uNL, J~,~ ~

~~r~ and . (r, respec-
tively. The radial parts of the electromagnetic multipole
operators are [31]

10 (r) = —[sin p+ pcos p]
2p

G (r) = —(p —2) sin p+ 2pcos p r
p3

(r) = —(5p —12) sin p + (12 —p )p cos p] r15,-
2

p5

(i3)

(14)
(i5)
(i6)

In the long wavelength approximation pp
~ ~ a licable in

= k (( 1 these quantities reduce toour case, since p = ~r

~M1(
& '()=
~E2( )

2

ell known [32—36]. In order to obtain cross section

tering processes at 20 energies in the range from 1 to 3.3

circulating gas targe sys eml t t ystem RHINOCEROS installed at
the Stuttgart Dynamitron accelerator [37]. In our exper-
iment we used the jet configuration in which a supersonic
jet pro uce yd d by a laval nozzle serves as a nearly point i e
target zone with high density [38]. The small and fixed
size of this zone allows a good determination of angular
distributions.

chamber. The detector system consisted of ten surface-
He-beambarrier detectors mounted at fixed positions. e-

normalize the data (assuming that the He-2oNe scat-
tering is dominated in this energy range by Rutherford
interaction), a small quantity o e gNe as was admixed
to the He gas in the jet.

s for the HeThe experimental differential cross sections for the He
He scattering are shown together wit older data of

Barnard, Jones, and Phillips [32] and Chuang [34 in
Fi . 1. The results of different phase-shift ana yses [
35, 36] for projectile energies Ei b He )He ) 3 MeV are pre-
sented in Fig. 2.

We have calculated the differential cross sections and
phase shifts in the framework of the OM. For the calcula-
tion of the real part of the optical He — He potential we
used the folding procedure as described in Sec. II. T e
folding potentials [Eq. (1)] were determined using the
computei' code DFOLD [39]. The imaginary part was ne-
glected because the flux into other channels is very small.
Together with the spin-orbit term, the optical potentia
is given byIII. He - He AND H - 4He CLUSTER

POTENTIALS

( H ~
~= 3 —10 MeV differ-At incident energies E~~b~ He&~3—

ential cross sections for the elastic HHe — He scattering

1 dVF(R)
V(R) = A VF (R) + A. , o.— L s

with a spin-orbit normalization factor
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FIG. 1. Experimental diK-
erential cross section for
the elastic He- He scattering
for projectile energies between
E~ b( He) = 1.2 and 3.0 MeV
together with data of Barnard,
Jones, and Phillips [32] and
Chuang [34]. The solid lines are
the result of the present OM
calculation, the dashed lines
give Rutherford scattering.



48 ALPHA SCATTERING AND CAPTURE REACTIONS IN THE. . . 1423

0-
0-C3

II

-60

W.R. Boykin et al., 1972
R.J. Spiger and T.A. Tombrello, 1967
D.M. Hardy et al., 1972
this calculation 65/2+

63/2+
~~ ~A AAA

61/2+

He( He, He) He
I

I
I I I

I
I I

0 0
—60

He( H, ~H) He
I

I
I I

I

R.J. Spiger and T.A. Tombrello, 1967
this calculation

65/2+

63/2+

61/2+

180
K3

120-
180-

C3

90-

63/2
~B

61/2

6V/2
~CO~M c4.Q)3I

ii 180-
120-
180-

D

90-
II

63/2

61/2

67/2

65/2

0-
5
Eiob (MeV)

0- I I I I I

E„b (MeV

FIG. 2. Phase shifts deduced from experimental He- He
scattering data given by Spiger and Tombrello (A, [33 ),
Boykin, Baker, Hardy (o, [35]) and Hardy et al. (Cl, [36]).
The solid lines are the result of the present OM calculation.

FIG. 3. Phase shifts deduced from experimental H- He
scattering data given by Spiger and Tombrello [33]. The solid
lines are the result of the present OM calculations.

As result of a Gt to the experimental data given in
Figs. 1 and 2 we obtain a parity-dependent potential.
The normalization factors A together with the volume
integrals per nucleon pair JR are listed in the upper part
of Table I. The spin-orbit normalization factor A,
—0.162 fm has been determined from the splitting of
the phase shifts for the L = 3 doublet. The agreement
between the experimental data and the results of the OM
calculation is excellent in the whole energy range up to
14 MeV as can be seen in Figs. 1 and 2.

For the H — He system phase-shift analyses of exper-
imental cross section data have been performed in the
energy range Ei b( H) = 3 —10 MeV [33]. We have
calculated these phase-shifts in the OM. The optical po-
tential is again determined using the folding procedure.
The result of our OM fit to the phase —shift data is shown
in Fig. 3. The normalization factors A together with the
volume integrals per nucleon pair J~ are presented in the

TABLE I. Normalization factors A and volume integrals
per nucleon JR of the optical potentials.

lower part of Table I. For the spin-orbit normalization
factor A, now we obtain A, o = —0.136 fm . Again the
agreement between the experimental and calculated data
is satisfactory (see Fig. 3).

The volume integrals of the parity-dependent poten-
tials for a scattering on the mirror nuclei He and H
only differ by about 0.5' and 3'%%uo for the even and odd
partial waves, respectively. The values of the volume in-
tegrals for the even partial waves in He — o. and H — 0,

scattering is comparable with the value J~ ——445.7 MeV
fm obtained in the analysis of n —o. scattering using the
folding procedure [40]. Furthermore, the values of JR
for He - o. scattering are compatible with the results of
a systematic analysis of He scattering on several nuclei
[41, 42].

In a next step we used the double-folded potential as
a suitable cluster-cluster potential and calculated bound
states and single-particle (single-cluster) resonances. The
wave function u~l. g(r), which describes the relative mo-
tion of the respective He — o. and H — o. system is char-
acterized by the node number N and the orbital angular
momentum L. The % and I values are related to the
corresponding quantum numbers n; and li of the three
nucleons forming the He and H clusters, respectively:

He-n

Partial wave

Even (s, d)
Odd (p, f)

1.452
1.844

JR (MeVifm )

469.0
595.6

3 3

Q=2N+L=) 2n;+l, =) q;=3 (18)

H-n Even (s, d)
Odd (p, f)

1.525
1.890

466.8
578.5

Thus for both systems Be = He ts o. and Li = H
n one expects two cluster states with L = 1 (N = 1)

and L = 3 (N = 0). Both states split into doublets with
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FIG. 5. Schematic presentation of the level scheme for the
reactions He(n, p) Be and H(n, p) Li.

FIG. 4. Comparison of the experimental charge distribu-
tion of Li [26] (dashed line) with the distribution calculated
in the potential model (solid line).

DC cross section o Dc, given in Eq. (3), as sum over both
final states i = 1, 2 by

th ) ~2S Dc (19)

J = L + 1/2 because of the spin-orbit potential resulting
from the motion of the A = 3 particle with spin 1/2 in
the field of the o. particle.

In the calculations of the cluster states the centroid
energies of both the bound (L = 1:J = 3/2, 1/2 )
and quasibound (L = 3: J = 7/2, 5/2 ) states for
Be and ~Li (see Fig. 5) are reproduced by the central

parts of the He — o; and H — o. odd potentials, respec-
tively. The splitting of the energies of the quasibound
state doublets (L = 3) in Be and Li is reproduced by
the spin-orbit potential as determined by the OM calcu-
lation. However, for the bound-state doublets (L = 1) in
Be and Li smaller spin-orbit potentials are necessary.

For the energy splitting of the bound-state doublets a
spin-orbit normalization factor A, = —0.07 fm has to
be used for both nuclei "Be and Li.

As a further test of our folding potential we calcu-
lated the charge distribution of the Li nucleus (in its
ground state) by folding the experimental charge distri-
bution of H and He, which we have already used in our
double-folding procedure, with the radial wave function
ll~ —g I,—$ J—3/I'2 and by assuming a spherical shape for
the folded distribution. The result of this calculation is
shown in Fig. 4 together with the experimental charge
distribution, as measured by electron scattering on Li.
It can be seen that the calculation overestimates the ex-
perimental density in the nuclear interior, whereas in the
surface region, near r = 2.5 fm, the experimental values
are slightly underestimated. But the rms radii of both
distributions are almost identical: (r2) ~~2 —2.40 fm.

IV. CAPTURE REACTIONS

In Fig. 5 a schematic presentation of the direct cap-
ture processes sHe(n, p) Be and H(n, p) Li is given. In
the low-energy range capture transitions can only occur
into the ground and first excited states of Be and Li,
respectively.

The theoretical cross section o " is obtained from the

The computation of the cross section o " was performed
using the computer code TEDCA [43]. As input three
data sets are necessary: (i) isospin Clebsch-Gordan co-
efficients, (ii) spectroscopic factors S;, which specify the
cluster probability of the final states Be = He o. and
~Li = sH n, respectively, and (iii) optical potentials
for the calculation of the wave functions in the entrance
and exit channel. In our case the Clebsch-Gordan coeK-
cients are C; = 1. The spectroscopic factors S, have been
taken from the work of Kurath and Millener [44]. The
numerical values are given as Sq ——1.174 and S2 ——1.175.
In order to calculate the bound state wave function in
the exit channel and the scattering wave function in the
entrance channel [Eqs. (9) and (10)], the folded poten-
tials are used, which have already been determined in
Secs. II and III. That means that all the necessary infor-
mation for the calculation of the DC reaction is known
and no parameter has to be adjusted to the experimental
capture reaction data.

In Fig. 6 the experimental values of the astrophysi-
cal S factor for the reactions He(n, p) Be [5, 6, 8] and
sH(n, p) Li [20, 21] are shown together with the results
of DC calculations using parity-dependent folding poten-
tials. The experimental data of Krawinkel et al. [5] are
renormalized by a factor of 1.4 as suggested by Hilgemeier
et al. [8].

For the He(n, p) Be reaction the agreement between
the experimental and calculated data is excellent. A lin-
ear extrapolation for E ~ 0 gives S(0) = 0.516 keVb
and S(0) = —3.67 x 10 b (E in keV). The values
of S(0) agree excellently with the experimentally deter-
mined S(0) factor, for which [8] gives a weighted average
of S(0) = (0.51 + 0.02) keV b, and with the adopted
value [1] of S(0) = (0.54 + 0.03) keVb. The calculated
branching ratio R for the transitions to the first excited
state and the ground state has the value B = 0.43. This
value was found to be nearly energy independent in the
energy range 0 —1.4 MeV and agrees well with both the
experimental data [5, 6, 8] and the results of microscopic
calculations [24].
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FIG. 6. Calculated astrophysical S factor using the po-
tential model compared with the experimental data for
He(n, p) Be (upper part: closed circles [5], open circles [6],

triangles [8]), and H(a. , p) Li (lower part: open circles [20],
closed circles [21], triangles [22]).

The two presently available measurements of the low-
energy H(o. , p) Li reaction differ from each other by
roughly 30% in total magnitude as well as in their de-
termination of the branching ratios for the transitions
into the two final bound states. The calculation within
the potential model gives results for the absolute mag-

nitude of the S factor which favor rather the older ex-
perimental data of Griffith et al. [20]. The calculated
branching ratio is again nearly energy independent and
has likewise a value of B = 0.43. This branching ratio,
however, is noticeably larger than the experimentally ob-
served value R = 0.32 + 0.01 [21]. Our value agrees with
the data of [20], which give an energy-independent av-
erage of R = 0.43 [24]. The above considerations are
comparable with the results of microscopic resonating
group method (RGM) calculations [24]. A linear ex-
trapolation for E + 0 gives S(0) = 0.100 keVb and
S(0) = —1.02 x 10 b (E in keV). The values of S(0)
are nearly twice as large as the adopted value of 0.064 keV
b [25], obtained from an energy-independent extrapola-
tion, and somewhat smaller than the extrapolated value
0.14 keV b extracted from the data of Schroder et al. [21].
However, it is in excellent agreement with the results of
difFerent RGM calculations [16—18, 23, 24] giving a value
of S(0) = 0.1 keVb.

In Fig. 7 the multipole contributions for both capture
reactions are shown. The main contribution is the El
transition. Because of the missing centrifugal barrier,
the DC transitions from the 8 wave in the entrance chan-
nel to the final I = 1 states are dominating. For the
H(o. , p) Li reaction the contributions of the higher par-

tial waves for the total S factor can even be neglected.
As can be seen on the right-hand side of Fig. 7 the curve
of the total S factor is almost identical to the s-wave con-
tribution. The Coulomb barrier is lower for H(n, p) Li
than for the mirror reaction. Therefore, the inHuence of
the centrifugal barrier is more pronounced.

As already discussed in Sec. III, a parity-dependent
optical potential is necessary to describe the experimen-
tal scattering data. We calculated the astrophysical S
factor with a parity-independent potential using the A

parameter for the dominating even partial waves given in
Table I. As shown in Fig. 8, it is impossible to reproduce
the experimental data with such a parity-independent
potential. The enhancement for energies E & 0.7 MeV is
due to the Ml contribution of the p wave.

We also tested the sensitivity of the astrophysical S
factor by changing the strength of the optical potentials
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FIG. 7. Multipole contributions to
the astrophysical S factors for the re-
action He(n, p) Be (left-hand side) and
sH(o, p)7Li (right-hand side). The experi-
mental data are the same as in Fig. 6.
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FIG. 8. S factor for He(o, p) Be calculated with a parity-
independent potential in the entrance channel. The experi-
mental data are the same as in Fig. 6.

V. SUMMARY

Differential cross sections for the elastic scattering of
He particles on He and phase shifts of both He — He

and H — He scattering have been analyzed up to energies
of about 10 MeV in the framework of the optical model.
The potential was deduced by a double-folding proce-
dure using a density-dependent effective nucleon-nucleon
interaction. The experimental data are described satis-
factorily by this optical-model calculation.

Using the double-folded He-o. and H-o. potentials as

in the entrance channel. A variation of the potential
depth of +1% leads to an energy-independent change of
the S factor of +2%. The S factor increases with growing
potential depth. The reason for this behavior is that with
growing nuclear potential depth the Coulomb barrier be-
comes smaller and therefore the penetration probability
is enhanced.

cluster-cluster potentials, we calculate the bound and
quasibound doublet states in Be and Li, respectively.
The excitation energies of these states as well as the
charge distribution of Li are well reproduced in this po-
tential model.

The optical potentials obtained from the fit to the elas-
tic scattering data have been used to calculate the astro-
physical S factors of He(n, p) Be and H(o. , p) Li within
the direct capture model. Using this method no parame-
ter has to be adjusted to the experimental reaction data.

In the case of the reaction sHe(n, p)7Be we obtain
S(0) = 0.516 keVb. This value is in excellent agree-
ment with both the average of the experimental data [8]
and the adopted value [1]. The branching ratio for the
transitions to the first excited state and the ground-state
results in B = 0.43, likewise in very good agreement with
the known experimental and theoretical data.

For the reaction H(a, p)rLi the three presently avail-
able measurements difFer from each other by roughly 30%
in total magnitude as well as in their determination of
the branching ratio for the transitions into the two final
Li bound states. In agreement with calculations, which

have been done in the framework of the resonating group
method or on the basis of a microscopic potential model,
our calculations predict the S factor to increase with de-
creasing energy resulting in S(0) = 0.10 keVb. This
value is a factor of about 1.5 larger than the adopted
value [25]. For the branching ratio we obtain R = 0.43.
This value is in good agreement with some theoretical re-
sults, but is not compatible with the recently measured
value of B = 0.32 + 0.01 [21].
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