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Atomic parity nonconservation and neutron radii in cesium isotopes
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The interpretation of future precise experiments on atomic parity violation in terms of parameters
of the standard model could be hampered by uncertainties in the atomic and nuclear structure.
While the former can be overcome by measurement in a series of isotopes, the nuclear structure
requires knowledge of the neutron density. We use the nuclear Hartree-Fock method, which includes
deformation efFects, to calculate the proton and neutron densities in Cs— Cs. We argue that
the good agreement with the experimental charge radii, binding energies, and ground-state spins

signifies that the phenomenological nuclear force and the method of calculation that we use is

adequate. Based on this agreement, and on calculations involving difFerent efFective interactions,
we estimate the uncertainties in the differences of the neutron radii h(r )~ ~l and conclude that
they cause uncertainties in the ratio of weak charges, the quantities determined in the atomic parity
nonconservation experiments, of less than 10 . Such an uncertainty, although to some extent model
dependent, is safely smaller than the anticipated experimental error.

PACS number(s): 21.10.Gv, 21.60.Jz, 12.15.Ji

I. INTR.ODUCTIGN

Precision studies of electroweak phenomena provide
very important tests of the SU(2)L, xU(1) standard elec-
troweak model. The measurement of the parity noncon-
serving (PNC) components of the atomic transitions be-
longs to this class. It ofFers a unique opportunity for
testing the electroweak radiative corrections at the one
loop level and, possibly, to search for new physics beyond
the standard model [1,2].

The PNC effects in atoms are caused by p, Z inter-
ference in the electron-nucleus interaction. The domi-
nant contribution comes from the coupling of the axial
electronic current to the vector nuclear current. (The
interaction of the electronic vector current with the nu-
clear axial current is weaker in heavy atoms, and can be
eliminated by summing over the PNC effects in the re-
solved hyperfine components of the atomic transitions.
The hyperfine-dependent effect, which also includes the
nuclear anapole moment, is of interest in its own right
[3,4], but is not considered hereafter. ) Since the vector
current is conserved, atomic PNC essentially measures
the electroweak coupling of the elementary quarks.

At the present time, PNC measurements in stable
Cs atoms have +2% experimental uncertainty [5]. (An

earlier experiment in Cs was performed by Bouchiat et
al. [6]; the studies of PNC effects in atoms have been
reviewed by Commins [7] and Telegdi [8).) However, im-
provement by an order of magnitude in the experimental
accuracy is anticipated and a possibility of measuring
PNC efFects in unstable cesium and francium isotopes
has been discussed [9]. At this level, two issues must
be resolved before an interpretation of the PNC data in
terms of the fundamental electroweak couplings is possi-

ble. The atomic theory, even in its presently most sophis-
ticated form [10,11], introduces about +1% uncertainty.
Moreover, the small but non-negligible effects of nuclear
size [12,13) must be addressed. This latter problem is the
main topic of the present work.

Atomic PNC is governed by the effective bound
electron-nucleus interaction (when taking only the part
that remains after averaging over the hyperfine compo-
nents) of the form

Gp
IIPNc = [

—Kp„(r) + Z(1 —4 sin Og )pp(r)]

xgtps@, d r,

Cq~ = 2Cq„+ Cqq =
2 (1 —4 sin 0~), (2)

+1 = +ld + 2+1 — ~ (3)

The electron part in Eq. (1) can be parametrized as
[12,13]

ps (r) —= Qt p, g, = C(Z) A'(Z, R)f(r),
where C(Z) contains all atomic-structure effects for a
point nucleus, A' is a precisely calculable normahzation
factor, and f(r) describes the spatial variation [normal-
ized such that f(0) = 1]. It is the integrals

q„„= f(r)p„„(r)d r (5)

where the proton and neutron densities p„„(r) are nor-
malized to unity, and we have assumed the standard
model nucleon couplings
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that determine the effect of the proton and neutron dis-
tributions on the PNC observables.

The form factors f(r) can be calculated to the order
(Zn)2 for a sharp nuclear surface of radius R, and ne-
glecting the electron mass in comparison with the nuclear
Coulomb potential [12,13],

For accurate calculations numerical evaluation of f(r) is
necessary (see below). However, the coefEcients at (r )
and (r ) remain numerically of the order (Za)2 and de-
pend only weakly on the exact shape of p„(r). In addi-
tion, since the electric potential near the nucleus is very
strong, one can safely neglect atomic binding energies in
the evaluation of f(r) (but not the electron mass). Be-
low we will separate the effects of the finite nuclear size
(i.e., effects related to the deviations of q „from unity);
these terms will be represented by a nuclear-structure
correction to the weak charge.

Taking the matrix element of Hp~c, one obtains

(il~p&cl j) = +(Z)N[Qg (N, Z) + Qw"'(N, Z)]
2 2

(7)

where Q~(N, Z), the quantity of primary interest from
the point of view of testing the standard model, is the
"weak charge. " In the standard model, with couplings
(2) and (3), the weak charge is

Q~ = N+ Z(1 ——4sin Ogr) .

The nuclear-structure correction Qg'(N, Z) describes
the part of the PNC effect that is caused by the finite
nuclear size. In the same approximation as Eq. (8) above,

QP' = N(q —1) +—Z(1 —4sin 0~)(q„—1), (9)

where q „are the integrals of f(r) defined above. (Nu-
clear structure also affects the normalization factor JV,
which is, however, determined by the known nuclear
charge distribution [12,13].)

In a measurement that involves several isotopes of the
same element, ratios of the PNC effects depend essen-
tially only on the ratio of the weak charges and the
corresponding nuclear-structure corrections Q~ (N, Z) +
Qv7'(N, Z). (The dependence JV on the neutron num-
ber N will not be considered here. ) The ratios of the
nuclear-structure-corrected weak charges, in turn, de-
pend, to a good approximation, only on the differences
Lq of the neutron distributions in the corresponding
isotopes. The uncertainties in these quantities, or equiv-
alently, in the differences of the neutron mean square
radii h(A(r )~ ~ ), then ultimately limit the accuracy
with which the fundamental parameters, such as sin 0~,
can be determined.

It is the purpose of this work to evaluate quantities q
for a number of cesium isotopes which might be used in
future high-precision PNC experiments [9]. Moreover, we
estimate the uncertainty in these quantities, respectively,
in their differences, since they represent the ultimate lim-

itations for the interpretation of the PNC measurements.
In Sec. II we describe the nuclear Hartree-Fock cal-

culations that we performed. In Sec. III we compare
the calculated binding energies, ground state spins, and
charge radii with the experiment. There we also discuss
how corrections for the zero-point vibrational motion can
be estimated and added. From the spread between the
results obtained with two different successful effective
Skyrme forces, and from the pattern of deviations be-
tween the calculated and measured isotope shifts in the
charge radii, we then estimate the uncertainties in the
corresponding differences of the neutron radii. Finally,
in Sec. IV, we calculate the nuclear-structure corrections
to the weak charges, Qg'(Z = 55, N =72—84), and their
uncertainties and discuss the corresponding limiting un-
certainties in the determination of the fundamental pa-
rameters of the standard model. [Our notation follows
that of Ref. [13]. Others, e.g. , Ref. [10],do not explicitly
separate the nuclear-structure-dependent effects. We be-
lieve that such a separation is very useful, since, as stated
above, f(r) in Eq. (6) and hence also q „, Eq. (5), are
essentially independent of atomic structure. ]

II. NUCLEAR HARTREE-POCK CALCULATION

As demonstrated by numerous calculations, the micro-
scopic description of nuclear ground state properties by
means of the Hartree-Fock (HF) method with an effec-
tive Skyrme-like force interaction has been remarkably
successful [14,15]. The few adjustable parameters in the
Skyrme force are chosen to fit the various bulk properties
(energy per nucleon, compressibility modulus, symmetry
energy, etc.), and properties of several doubly magic nu-
clei (binding energies, charge radii, etc.) [16]. The two
most popular sets of Skyrme parameters, namely, Skyrme
III and SkyrmeM* have been successfully employed to
describe the properties of nuclei in several regions of the
periodic table [17,18]. Below we show only a few formu-
las essential to a basic understanding of the numerical
calculation that we performed. ; details can be found in
the quoted references.

The generalized Skyrme force (including all possible
spin-exchange terms and zero-range density-dependent
interaction) can be written as

V~: tp(1 + TpP~)b + &ty (1 + x] P~) (k h + hk )
+t, (1+x,)P k . hk'

+stsp h + iW(o, + cr, ) . k x hk', (10)
where tz 3, xo 2, and R" are the adjustable parameters,
and h = h(r —r').

Because we are dealing with odd-A nuclei, the unpaired
nucleon introduces terms that break time-reversal sym-
metry in the HF functional. When the spin degrees of
freedom are taken into account, the breaking of time-
reversal symmetry leads to a rather complicated func-
tional [19,20]. The total energy E, which is minimized in
the HF method, can be written as a space integral of a
local energy density,

E = 'R(r)d r,
with
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2m
7 + Bip + B2(p„+p ) + B3(p7 —j ) + B4(p„7„—j„+p„r„—j„)

+Bsp+p + B6(pn+prl + pp+Pp) + B7P + BSP (P + Pp)
+B9(PV' J+j V x p+ P„V'.J„+j„V'x p„+ P„V'.J„+j„Vx p„)
+Bipp' + B» (p„' + p„') + Bi2p p' + B13p (p~ + pp) + @c (12)

For complete expressions of the Coulomb energy E~ and
the coeKcients B;(i = 1, . . . , 13), see Ref. [20], where the
dependence on Skyrme force parameters in Eq. (10) is
given. The mass densities p, kinetic density v, current
density j, spin-orbit density V'.J, and vector density p
(r = n, p) in Eq. (12) can, in turn, be expressed in terms
of the single-particle wave functions 4'k. The variation of
E with respect to 4'&(r, o') defines the one-body Hartree-
Fock Hamiltonian 6 [20].

In the following we will use the mass densities p, which
can be expressed as

(13)

Here 4y(r, o.) denotes the component of the kth single-
nucleon wave function with spin 20 (a = +1) along the
z direction, and v& are the BCS occupation factors (see
below). The expressions for the other densities are again
given in Ref. [20].

The mean square proton and neutron radii are given
by the usual formulas

I

contribute to the pairing energy, we introduce blocking
in our code to prevent these two orbitals from participat-
ing in pairing and force their BCS occupation numbers
to be 1 and 0, respectively.

In the following calculations, the proton and neu-
tron BCS pairing strengths are chosen to be 17.5/(11 +
Z) MeV and 16.5/(11+ K) MeV, respectively. Although
the pairing strengths do acct the binding energies, they
have little infIuence on the neutron or proton radii.

As some of the cesium isotopes considered here are
deformed, it is very important to take the deformation
degrees of freedom into account. The method of solv-
ing the HF+BCS equations by discretization of the wave
functions on a rectangular mesh allows any type of even
multipole deformation. The deformation energy curves
are obtained by a constraint on the mass quadrupole ten-
sor Q;~. = (3x,x~ —r b,~). The two discrete symmetries
of the wave functions Ck ensure that the principal axes
of inertia lie along the coordinate axes. The quadrupole
tensor is, therefore, diagonal and its principal values Q,
can be expressed in terms of two quantities Q6 and p as

Q, = Qocos(p+ i-7r), i = 1, 2, 3, (15)
r = r p (r)dr. (14)

In this work, two discrete symmetries, namely, par-
ity and z signature, are imposed on the wave functions
[15,20]. The complete description of a wave function re-
quires four real functions corresponding to the real, imag-
inary, spin-up, and spin-down parts of 41, [20].

The numerical approximation to the HF energy E is
obtained by a discretization of the configuration space
on a three-dimensional rectangular mesh. The mesh size
Ax is the same in the three directions and the abscissas
of the mesh points are —(2n+ 1)Ax. In this work, Ax is
0.8 fm, and the mesh size is 16 x 16 x 16. The numerical
procedure is described in detail in Ref. [15].

Pairing correlations need to be included in a realistic
description of medium and heavy nuclei. We choose to
describe pairing between identical nucleons within the
BCS formalism using a constant strength seniority force
[15]. In the usual BCS scheme, the paired states are as-
sumed to be the two time-reversed orbitals 4I, and 4&.
Although time-reversal symmetry is broken in our calcu-
lations of odd-A nuclei, the time-reversal breaking terms
in the functional generated by the unpaired odd nucleon
are very small compared to the time-reversal conserving
terms so that the time-reversal symmetry is still approx-
imately good. In our calculation we define the pairing
partner 4& of state 4I, to be the eigenstate of h, whose

overlap with TC I, is maximal (T is the time-reversal op-
erator). Because the single-particle orbital occupied by
the unpaired nucleon and its signature partner do not

where Qo and p satisfy the inequalities

QP &0, 0&P& 37r. (16)

The values of the three constraints Q, were computed
from the desired values of Q6 and p and inserted in a
quadratic constraint functional added to the variational
energy, according to the method described in Ref. [21].
In the calculations described below, we constrain the nu-
clear shape to be axially symmetric (p = 0).

III. COMPARISON WITH EXPERIMENT

In Fig. 1 we show the potential energy curves for
Cs— Cs. According to our calculations with

SkyrmeIII (SkmIII) and SkyrmeM* (SkM*) forces the
lighter cesium isotopes N & 76 are deformed. For SkmIII
such an assignment is able to explain the observed ground
state spins of 2 for N = 70—74 and 2 for K = 76. For
SkM* the mean field proton states g7/2 and dz/2 are inter-
changed and therefore the ground state spin assignments
for the deformed cesium isotopes are not correct. (This
turns out not to be a very crucial problem. ) Binding
energies and shifts br„and br„calculated with the
SkM* and SkmIII interactions are shown in Tables I and
II. The binding energies agree in both cases with the ex-
perimental values with largest deviation of 4 MeV out of
about 1000 MeV of total binding energy.

The comparison between the measured and calculated
isotope shifts is illustrated in Figs. 2 and 3 as a series
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FIG. 1. The potential energy curves for
the isotopes ' Cs—' Cs calculated by the
Hartree-Fock method using the SkmIII inter-
action. The notations are shown on the fig-
ure.
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FIG. 2. Calculated and experimental iso-
tope shifts b(r„) in cesium, normalized to the
semimagic "Cs. The SkM* interaction has
been used. The correction for zero-point vi-
brations is described in the text. The follow-
ing notations are used: experimental isotope
shift Q, spherical HF isotope shifts +, HF in-
cluding equilibrium deformation, and cor-
rected for zero-point vibrations x.
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FIG. 3. Calculated and experimental iso-
tope shifts 8(r„) in cesium. The Skmiil in-
teraction has been used. The correction for
zero-point vibrations is described in the text.
The same notations used in Fig. 2 are used
here.
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TABLE I. Results of the Hartree-Fock calculations with the SkM* interactions. The experimental binding energies and
isotope shifts 6(r„) are also listed for comparison. (The binding energies are in MeV, all radial moments in fm. ) The experimental
isotope shifts are from Ref. [32], normalized to the stable isotope Cs.

N
70
72
74
76
78
80
82
84

H
1049.98
1068.25
1085.66
1102.37
1118.52
1134.24
1149.27
1159.57

+HF
1045.82
1064.38
1082.15
1099.36
1117.69
1135.71
1152.18
1164.16

br (expt)
-0.1517
-0.0985
-0.0561
-0.0141
0.0000
0.0250
0.0821
0.3604

br„
-0.0899
-0.0348
-0.0199
0.0090
0.0000
0.1054
0.2531
0.3394

br (sph. )
-0.4445
-0.3285
-0.2161
-0.1070
0.0000
0.1054
0.2531
0.3394

b „
7.987
8.836
6.247
4.306
0.000
4.872
9.658

17.820

br„
-0.6803
-0.4603
-0.2927
-0.1253
0.0000
0.2454
0.5132
0.8866

br (sph. )
-1.0787
-0.7931
-0.5186
-0.2544
0.0000
0.2454
0.5132
0.8866

b „
-31.126
-19.563
-11.931
-4.538
0.000

14.025
28.754
59.902

of successively better approximations. First, the crosses,
connected by dashed lines to guide eyes, show the isotope
shifts for spherical nuclei. The agreement with experi-
ment is not very good even though the spherical calcula-
tion correctly predicts that the slope of the dependence
hr2 (A) is about half of the slope expected from the simple

relation B = r0A ~ . This means that, on average, the
neutron-proton interaction we use has the correct mag-
nitude.

Next, the equilibrium deformation for the lighter ce-
sium isotopes is included (open squares), leading to a
much better agreement. Further improvement is achieved
when the effect of zero-point quadrupole vibrational mo-
tion is taken into account. It is well known that the mean
square radius of a vibrating nucleus is increased by [22]

(17)

We include this effect of the shape fluctuations using the
quantities (P ) extracted from the measured transition
matrix elements B(E2,0+ ~ 2+) and the relation

(P ) = B(E2,0+ —+ 2+) [3ZBo/4vr]

We take the average B(E2) of the corresponding Xe and
Ba isotopes with neutron numbers N = 78—84 and cor-
rect the radii of Cs— Cs accordingly, as shown in
Figs. 2 and 3. Thus, further improvement in the com-
parison with the measured isotope shifts results. [For
2V = 84 the B(E2) values are not known. We use instead
the empirical relation between the energy of the lowest 2+
state and the deformation parameter B(E2) [23].] This
correction results in changes in r of 0.2124 fm in Cs,
0.1325 fm in Cs, 0.0724 fm in Cs, and 0.1263 fm
in "9Cs.

In a fully consistent calculation, one should make a
similar correction for the deformed cesium isotopes as
well. Since the corresponding B(E2) values for the vi-
brational states are not known, and the corrections are
expected to be small and thus do not have to be known
precisely, we assume that the B(E2) values for the p and
P vibrational states give together 10 Weisskopf units, the
same for all deformed cesium isotopes. [With such B(E2)
values the correction happens to be numerically the same
as in the semimagic Cs.] We believe this shortcoming
explains the somewhat poorer agreement in the deformed
cesium isotopes.

Even though the quadrupole 2+ states contribute most
to the mean square radius via Eq. (17), other vibrational
states, e.g. , the octupole 3 and the giant resonances,
contribute as well; however, all such states not only have
smaller collective amplitudes but, even more importantly,
vary more smoothly with the atomic mass (or neutron
number) than the 2+ states, and hence their contribution
to the shifts br should be correspondingly smaller.

Altogether, the error in the shift br„ is at most 0.2 fm,
and appears to be independent of the change in the neu-
tron number AN. Thus, for the following considerations
we assign an uncertainty in the relative value of br„of
0.2 fm . Very little is known experimentally about the
moments r„. Quite conservatively, we assume that the
uncertainty in hr„ is (r„)Ar„5 fm .

In a recent similar HF calculation of the charge radii
of the Pb isotopes using SkM* and SkmIII forces, Tajima
et al [24] showed . that both SkMIII and SkM* failed to
reproduce the experimental charge radii kink across the

Pb shell closure, even though both forces give excellent
agreement with the experimental (r„) on the neutron de-
R.cient side. Such a failure to reproduce the charge radii
kink is also observed in our calculations; however, it is
not a serious problem in our case because there is only

TABLE II. Results of the Hartree-I'ock calculations with the SkmIII interactions. The experimental binding energies and
isotope shifts b (r~) are also listed for comparison. (The binding energies are in MeV, all radial moments in fm. ) The experimental
isotope shifts are from Ref. [32], normalized to the stable isotope Cs.

70
72
74
76
78
80
82
84

1049.98
1068.25
1085.66
1102.37
1118.52
1134.24
1149.27
1159.57

&HF
1047.12
1065.52
1083.44
1100.62
1118.01
1134.75
1153.20
1161.94

br„(expt}
-0.1517
-0.0985
-0.0561
-0.0141
0.0000
0.0250
0.0821
0.3604

br„
-0.1322
-0.1015
-0.0440
-0.0096
0.0000
0.1254
0.2508
0.4120

br„(sph. )
-0.5097
-0.3813
-0.2536
-0.1265
0.0000
0.1254
0.2508
0.4120

br„
?.670
6.023
6.317
3.117
0.000
6.530

13.124
22.346

br
-0.5484
-0.4141
-0.2526
-0.1096
0.0000
0.2392
0.4721
0.8674

b „(sph. )
-1.0265
-0.7592
-0.4991
-0.2461
0.0000
0.2392
0.4721
0.86?4

b „
-24.683
-18.954
-11.388
-5.198
0.000

14.634
29.191
59.984
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one isotope above the N = 82 shell closure in our calcu-
lations. Moreover, the calculations of Ref. [24] confirm
our estimate of the error in the shift br„, even though
the isotope shifts are larger in lead than in cesium.

Before turning our attention to the neutron radii, it
is worthwhile to make a brief comment about the com-
parison with absolute values of (r„) and (r„). Experi-
mentally, muonic x-ray energies for the stable Cs have
been fitted by the Fermi distribution with the halfway
radius c = 5.85 fm, surface thickness t = 1.82 fm [25,26],
and (r„) = 23.04 fm . Such a Fermi distribution gives

(r4) = 673 fm . Our HF calculation corrected for zero-

point vibrational motion with (P ) = 0.024, as described
above, gives (r2)HF = 23.27 fm2 for SkmIII and 22.69 fm2

for SkM* interactions, both quite close to the experi-
mental value. The calculated (r„) moments (not cor-
rected for the zero-point motion) are 671(SkmIII), and
652(SkM*) fm . We see, therefore, that the calculation
is quite successful in the absolute radii (and even sur-
face thicknesses), in particular for the SkmIII interaction
(which also gives the correct ground state spin).

The calculated shifts in the neutron radii br are listed
in Tables I (SkM*) and II (SkmIII), and the quantities
br corrected for the effect of zero-point vibrational mo-
tion are displayed in Fig. 4. Several comments about
these are in order. First, the slope of the dependence
of br (A) for spherical configurations is correspondingly
steeper than the slope following from B = roA ~ . That
is obviously a correct result; the combination of a smaller
slope in the proton radii and a larger slope in the neutron
radii when neutrons are added is necessary to maintain
on average the B = roA ~ relation. Second, the HF
calculations imply that the proton and neutron distribu-
tions have essentially identical deformations. This agrees
with the general conclusion about the isoscalar charac-
ter of low-frequency collective modes in nuclei (see, e.g. ,

Ref. [27]). Thus, we accept this result and do not as-
sign any additional uncertainty to the possible difference
in the deformation of protons and neutrons. To quan-
tify this statement, recall that a typical deformation for

cesium is P = g(P2) —0.2; from Eq. (17) and the
requirement br & 0.2 fm, we find hP/P & 0.3. Our
assumption means, therefore, that the proton and neu-
tron deformations agree to within 30%, a rather mild
restriction. Finally, for the same reason, we use the same
B(E2) values, and the (P ) extracted from them, to cor-
rect the neutron radii using Eq. (17). Assuming all of
the above, we assign identical uncertainties to the neu-
tron shifts br and the proton shifts br„, and similarly
to the fourth moments br„„.

Very little reliable experimental information on the
neutron distribution in nuclei is available. In Ref. [28],
data from pionic atoms are analyzed. The corresponding
best Bt for neutron mean square radii agrees very well
with the HF results quoted there. The nearest nucleus
to cesium in Ref. [28] is Ce. Scaling it with A ~s, one
arrives at (r„) = 24.7 fm for Cs, somewhat larger
than our calculated values 23.7 and 24.0 for SkM* and
SkmIII, respectively. In Ref. [10], the theoretical neu-
tron density of Brack et al. [29] with (r2) = 23.5 fm2 was
used. That value, presumably obtained by interpolation
from the values obtained by the HF method using the
SkM interaction, is, not surprisingly, quite close to our
calculated values. This limited comparison suggests that
the absolute radii (r ) have uncertainties of about 1 fm2.
The uncertainty in the shifts br should be substantially
smaller, and our estimated error of 0.2 fm does not seem
unreasonable.

In Ref. [13] the uncertainty in the integrals q z was es-
timated from the spread of the calculated values with a
wide variety of interactions. Some of the interactions em-
ployed in [13] give better agreement for known quantities
(charge radii, binding energies, etc.) than others. We
chose to use only the two most successful interactions.
The spread in the calculated shifts br„ for these two
interactions is less than our postulated error of 0.2 fm .

In this context it is worthwhile to mention the cal-
culations of Ref. [30]. There, proton and neutron radii
for several nuclei were evaluated using the Hartree-Fock
method with the SkmIII and SkM* interactions, as in the

0.8

0.4

eu 0
6

A

~ -0.4V

FIG. 4. Calculated changes in the neutron
radii h(r ) in cesium. The results, corrected
for zero-point vibrational motion, and calcu-
lated with the SkmIII (Q) and SkM* (+) in-
teractions, are shown.

-0.8

-1.2-
70

I

72
I

74 76 78
Neutron number N

I

80 82 84



1398 B. Q. CHEN AND P. VOGEL 48

present work, but also within the relativistic mean field
approach. The HF results with Skyrme forces seem to
agree somewhat better with the empirical data, particu-
larly for the heavier nuclei, and our estimated uncertainty
of 1 fm for (r ) in a single nucleus agrees with the find-
ings of [30]. (This also supports our choice of the method
and interaction. ) The only pair of isotopes considered in

[30] is Sn and Sn. The calculated hr deviate from
the empirical ones by less than 0.3 fm; i.e. , the error is
somewhat larger than our assumed error. However, when
the experimental uncertainty of about 0.5 fm is taken
into account, that discrepancy loses significance.

Pollock et al, [13].also argue that the isovector surface
term (p„—p„)V' (p„—p„) in the Skyrme Lagrangian
is poorly determined and may affect the neutron skin
significantly, without affecting most bulk nuclear proper-
ties. We tested this claim by modifying simultaneously
the coefIicients B& m B5(1+x) and Bs -+ Bs —2B5x in
Eq. (12). We find that when we vary x (i.e. , the relative
strength of the isovector surface term) from +0.3 to —0.3
the proton radius (r ) changes indeed very little (about
0.06 fm ) and the neutron radius changes somewhat more
(by about 0.1 fm, still far less than our estimated error
for an individual nucleus). The effect on the quantity
br is substantially less. At the same time, the binding
energy changes by about 5 MeV, more than the largest
discrepancy between the theory and experiment. Thus,
even a quite substantial change in the isovector surface
term will affect the neutron radii (and the difference in
neutron radii) by less than our assumed error. At the
same time such a modification would clearly spoil the
agreement with experiment in the binding energies.

We stressed above that there is essentially no model-
independent experimental information on neutron den-
sity distributions. Thus, our calculations, and our esti-
mated uncertainties, cannot be verified directly. Instead,
we assume that there are no effects which would change
the neutron radii substantially, but would not affect the
binding energies, proton radii, or other quantities that
are well described by the HF method. We are not aware
of any such effects, but one has to be aware of this pos-
sibility.

IV. ESTIMATED UNCERTAINTIES IN PNC
EFFECTS

The nuclear-structure effects are governed by the coef-
ficients q „,Eq. (5), which in turn involve integrals of the
form factors f(r), Eq. (6). The function f(r) is slowly
varying over the nuclear volume, and may be accurately
approximated by a power series

and, therefore,

q„„=1+ f2(r„) + f4(r„„) .

For a sharp nuclear surface density distribution, the
only relevant parameter is the nuclear radius A and
(r ) = 3/(2n + 3)R . Using the experimental (r2) =
23.04 fm for Cs [25], we find from Eq. (6)

f(r) 1 —2.10 x 10 r + 1.09 x 10 r (21)

int
q (22)

where (r );„& are the nucleon weak radii, and Q„are the
nucleon weak charges. Neglecting the "strangeness ra-
dius" of the nucleon, and using the fitted two-parameter
Fermi density distribution, we find

q„'" = —0.00290, q'" = —0.QQ102, (23)

very close to the sharp nuclear surface values of Pollock et
al. [13]. The above intrinsic nucleon-structure corrections
are small, but not negligible. More importantly, they are
independent of the nuclear structure, and cancel out in
the differences Lq,z.

The quantities 100(q —1) and 100(q„—1) are listed in
Table III for all cesium isotopes and for the two Skyrme
interactions we consid. er. One can see that they vary by
about 4% for neutrons and are essentially constant for
protons when the neutron number increases from N = 70
to 84. The variation with N is essentially identical for the
two forces, while the small difference between the q z val-
ues calculated with the two forces reflects the difference
in the absolute values of radii for the two interactions.

where the distance is measured in fermis. However, as
pointed out above, the analytic expansion, Eq. (6), is
unsuitable at the intended level of accuracy. So, instead,
we solve numerically the Dirac equation for the szy2 and

pjg2 bound electron states in the field of the finite size
diffuse surface nucleus, we obtain by fitting the coeffi-
cients fq(f4) of —2.31 x 10 (1.21 x 10 ) when we use
the standard surface thickness parameter t = 2.25 fm,
and —2.267 x 10 (1.157 x 10 ) when we use the sur-
face thickness t = 1.82 fm adjusted so that the nuclear
density parametrized by the two-parameter Fermi distri-
bution resembles as closely as possible the Hartree-Fock
charge density in Cs. Also, we make sure that the
expansion, Eq. (19), is accurate over the whole nuclear
volume, and that it is sufFicient to use only the r and r
terms in it.

The expansion coefficients f2, f4 depend, primarily, on
the mean square charge radius. To take this dependence
into account, we use for Cs the f2 and f4 above, and
for the other isotopes, we use the same surface thickness
parameter (t = 1.82 fm) as determined by the Hartree-
Fock calculation in Cs and adjust the halfway radius
in such a way that the experimental (r2) are correctly
reproduced.

It is easy now to evaluate the uncertainty in the fac-
tors q ~ given the coefficients f2, f4 and our estimates
of the uncertainties in (r ) and (r4). Substituting the
corresponding values, we find that the uncertainty is
bq„„=4.6 x 10, caused almost entirely by the uncer-
tainty in the mean square radii (r „). This uncertainty
represents about 1% of the deviations of q„z values from
unity.

Before evaluating the nuclear-structure corrections
QP'(N, Z) we have to consider the effect of the intrinsic
nucleon structure. Pollowing [13] we use
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TABLE III. The radiatively corrected weak charges Qw(N, Z), nuclear-structure corrections Qw"'(N, Z), and the quantities
q„—1, q„—1 (the factors q„, —1 contain the intrinsic nucleon-structure correction, and are multiplied by 100 for easier display)
calculated with the SkM* and SkmIII interactions, and with the vibrational corrections described in the text.

N
70
72
74
76
78
80
82
84

Qw(N, Z)
-65.312
-67.283
-69.254
-71.226
-73.197
-75.169
-77.140
-79.112

Qw'(N Z)
2.967
3.077
3.184
3.291
3.422
3.528
3.638
3.745

SkM*
g~ —1

-4.55
-4.58
-4.60
-4.62
-4.68
-4.69
-4.71
-4.73

gp
—1

-4.64
-4.64
-4.64
-4.64
-4.68
-4.67
-4.68
-4.66

Qw"'(N, Z)
3.015
3.118
3.225
3.330
3.458
3.564
3.669
3.780

SkmIII
gn. —1

-4.62
-4.64
-4.66
-4.68
-4.73
-4.74
-4.76
-4.78

gp
—1

-4.74
-4.74
-4.75
-4.75
-4.79
-4.79
-4.79
-4.78

The weak charges Qw (N, Z) and the nuclear-structure
corrections Qw"'(N, Z) in Table III are radiatively cor-
rected. Thus, instead of the formulas (8) and (9) we use

Qw(N, Z) = 0 9857[—N + Z(1 —4 012m)]

x (1.0 + 0.00782T), (24)
x = 0.2323 + 0.00365S —0.00261T,

following [2]. Here S is the parameter characterizing
the isospin-conserving "new" quantum loop corrections,
and T characterizes the isospin-breaking corrections [31].
Also,

(, Qw(N', Z) + Qw"'(N', Z)
Qw(N, Z) + Qw"'(N, Z)

(26)

with some relative uncertainty bR/R. To a (reasonable)
erst approximation

Qw"'(N, Z) = 0.9857
x [ N(q„—1)—+ Z(1 —4.012x)(q„—1)] .

(25)

These quantities, evaluated for S = T = 0, are shown in
Table III. The assumed uncertainty in the shifts of the
mean square radii, and consequently in the changes in
factors q „, results in the relative uncertainty bQw/Qw
of 5 x 10 . That uncertainty, therefore, represents
within the nuclear model we use the "ultimate" nuclear-
structure limitation on the tests of the standard model in
the atomic PNC experiments involving several isotopes.

In the atomic PNC experiments involving a single iso-
tope, the uncertainty in the neutron mean square ra-
dius is larger, and 1 fm appears to be a reasonable
choice. Thus, from nuclear structure alone, the weak
charge in a single isotope has relative uncertainty of
about 2.5 x 10, perhaps comparable to the best envi-
sioned measurements, but considerably smaller than the
present uncertainty associated with the atomic structure.
(The 5 times larger uncertainty 2.5 x 10 for a single
isotope, as opposed to the uncertainty 5 x 10 in the
previous paragraph for a series of isotopes, is a conse-
quence of the 5 times larger absolute uncertainty in (r2)
as opposed to the uncertainty in the shift pr2. )

Suppose now that, in an experiment involving several
cesium isotopes, one is able to determine the ratio

N' Z
R(N', N) = ' [1+q„(N') —q„(N)] . (27)

w

Thus, we see that nuclear structure contributes to the un-
certainty of R at the level of roughly 7 x 10,where we
added the individual errors in quadrature. This uncer-
tainty is much smaller than the anticipated experimental
error.

In such a measurement, therefore, the uncertainty in x
will be

ba NN'
x B ZAN B

(see also [2,13]), where the last factor is evaluated for
N', N = 70, 84. The above equation illustrates the obvi-
ous advantage of using isotopes with large AN. Also, by
performing the measurement with several isotope pairs,
one can further decrease the uncertainty bx.

When considering restrictions (or determination) of
the parameters S and T [31] one has to distinguish the
PNC experiments involving a single isotope or several
isotopes. In a single isotope the contributions involving
T largely cancel, and one is left with sensitivity to S only.
On the other hand, for several isotopes, and taking ra-
tios, both S and T contribute. The uncertainty in the
parameters S and T is determined to good approxima-
tion from the relation bx = 0.00365bS —0.00261bT, and
thus

bB NN' bB NN'
R 0.014ZAN ' R 0.010ZAN

In conclusion, we have evaluated the nuclear-structure
corrections to the weak charges for a series of cesium
isotopes, and estimated their uncertainties. Within
the model we used (i.e. , the Hartree-Fock method with
Skyrme interaction with deformation and zero-point mo-
tion corrections added as described above), we concluded
that the imperfect knowledge of the neutron distribution
in cesium isotopes does not represent in the foreseeable
future a limitation on the accuracy with which the stan-
dard model could be tested in the atomic PNC experi-
ments.
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