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Studies of the closed core response to a perturbation in the Dirac Hamiltonian (due to an out-of-core
baryon) are extended to particle-hole states in nuclear matter. Both isoscalar nucleon-particle —nucleon-
hole states and A-particle —nucleon-hole hypernuclear states are considered. Core-response effects on the
nuclear baryon current and the vector and scalar densities are studied, using both a perturbative treat-
ment and linear response theory. While no essentially new physical insight is encountered by consider-
ing particle-hole states, there are many new and interesting applications. In particular, we mention ap-
plications to hypernuclei, meson-nucleus (especially K ) interactions, meson photoproduction on nuclei,
nuclear reactions, and nuclear transitions in inelastic scattering and weak interactions in nuclei. We
point out interest in core-response effects related to nuclear transitions, where new physical insight is ex-
pected.

PACS number(s): 21.65.+f, 21.80.+a, 21.60.Jz, 21.10.Ky

I. INTRODUCTION

There has recently been increasing interest in relativis-
tic effects arising in models of the nucleus based on the
Dirac equation with strong scalar and vector potentials
[1,2]. In particular, attention has been focused on areas
for which relativistic predictions differ significantly from
those obtained in the traditional framework of nonrela-
tivistic nucleons [3]. However, an unambiguous experi-
mental signature of the large potentials and other aspects
of relativistic dynamics has been difficult to find.

The reduced nucleon effective mass, M& =M&+5,
where 5 is the scalar potential, yields enhanced single-
particle currents in the nuclear medium. At first glance
this would appear to have immediate consequences on ex-
perimental observables related to probes that couple to
the nuclear convection current. Nuclear magnetic mo-
ments (especially for nuclei with one nucleon or hole
away from a closed shell) provide a well-known example
[1]: the enhanced relativistic single-particle convection
currents result in large deviations from the Schmidt
values for closed shell +1 nuclei. (This result is based on
using the simplest single-particle picture, where the
closed-shell core remains spherical and does not respond
to the valence nucleon. The magnetic moment of the nu-
cleus is then determined by the valence nucleon. ) Experi-
mentally, however, one finds isoscalar magnetic moments
in reasonable agreement with the Schmidt values, and
clearly not enhanced by as much as 100% according to
the predictions of these naive relativistic considerations.
A careful analysis has, indeed, shown that such enhance-
ments disappear when a full and consistent treatment of
the nuclear system as a whole is carried out [at low mo-
menta (Q)] [4,5]. As a result, an interesting insight into
the nature of the relativistic mean field theory has been
gained.

This effect is a result of the response of the nuclear
core to the valence nucleon outside of this core. The sim-
ple single-particle picture, discussed above, is inadequate

to describe the ground-state current of closed shell +1
nuclei in the self-consistent mean field approximation
(MFT). In particular, the current due to the valence par-
ticle only is a poor approximation to the full (isoscalar)
baryon current for a core-plus-valence-nucleon system.
The valence nucleon is a source of additional meson
fields, to which the core responds. The dynamical
modification of the closed-core states must be included,
and the subsequent core contribution is of the same mag-
nitude as the (extreme single-particle) valence nucleon
contribution. For the nuclear vector currents, the per-
tinent core response effect arises (in the language of the
MFT) from a nonvanishing three-vector (space com-
ponents) co field. (It is worthy of note that the core
response can also be realized through the 0. field, for ex-
ample, in the case of the scalar density p, . This case will
be discussed later in this paper. ) In nuclear matter,
where the unperturbed (inert core) system is a filled Fer-
mi sphere of nucleons, the static core response to a
valence nucleon involves only the mixing of positive- and
negative-energy (unperturbed) wave functions; it is stud-
ied using linear response theory. This is a static response
that does not occur in a nonrelatiuistic theory. The net re-
sult is that relativistic nuclear convection currents, in
contrast with the single-particle currents, are not
enhanced by the factor of approximately M/M*.
Indeed, nuclear convection currents are found to be in-
sensitive to the value of M' at low momentum transfer
Q, and no significant difference occurs between relativis-
tic and nonrelativistic predictions (e.g. , for magnetic mo-
ments) [6]. (Currently, only the isoscalar nuclear
currents can be treated satisfactorily in the context of the
relativistic cr co model [5].)-

It is worthy of note that the core response is not a
correction to the fully self-consistent MFT (Hartree)'

In general, we use the terms "Hartree" and "MFT" inter-
changeably here, as has become customary in recent years
[2,5,7]; they will, however, differ somewhat in Sec. II C.
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solution for the complete (core-plus-extra-particle) sys-
tern. It only provides a correction to the current ob-
tained in the extreme single-particle picture, based on a
spherically symmetric core plus an independent valence
nucleon. (The latter is not a self-consistent approach. It
is, therefore, the lack of self-consistency in this
oversimplified extreme independent-particle picture that
must be corrected. ) The core response features will be
automatically incorporated in a fully self-consistent treat-
ment of the entire system; in this case one has to generate
self-consistently the MFT Dirac spinors for the complete
(core-plus-valence) system. Using this new set of wave
functions, all MFT calculations can again be carried out
without explicit reference to negative-energy states. (Of
course, the exact self-consistent states can each be ex-
panded in terms of the complete set of closed-core spi-
nors, requiring both positive and negative energy solutions
of the latter; this is just an immediate consequence of
completeness. ) The exact core-plus-valence problem is
difficult to solve since spherical symmetry is lost. Such
solutions have been provided for regular nuclei [8]. How-
ever, we feel that there is considerable physical insight to
be gained from the alternative perturbative and linear-
response approaches which we shall follow here. This ap-
proach is also particularly convenient and suitable for ap-
plications to hypernuclei, which are discussed in this
work.

The alternative approach to the full self-consistent
solution, which we adopt in this work, uses the single-
particle nucleon wave functions of the closed-core system
as a starting point for describing the nonspherically sym-
metric system. Self-consistency now implies that the
valence particle (hole) cannot be treated independently of
the inert core, and the closed-core Dirac spinors will get
modified. This approach, based on linear response
theory, incorporates self-consistency approximately; the
valence nucleon is treated as an external source of meson
mean fields, and the core response does not act back on
it. The differences between the linear response and the
fully self-consistent calculations are of order 1/A, and
the two approaches are therefore equivalent in nuclear
matter. Furthermore, the linear response approach is in-
teresting because the pertinent physical effects are clearly
identified. Although relativistic and nonrelativistic mod-
els yield similar results for the isoscalar nuclear currents
at low Q, there is a fundamental difFerence between these
two approaches. In the relativistic picture, the isoscalar
Schmidt values are obtained after a strong cancellation
between the valence convection current and the contribu-
tion from the modified core (this cancellation is not ac-
cidental and has its roots in the basic feature of the mod-
el: two large potentials of opposite sign, almost balancing
each other to yield the small binding energies of nucleons
in nuclei [6]), while they arise directly from the valence
current alone in the nonrelativistic shell model [isoscalar
(nonrelativistic) core polarization and other many-body
corrections are small].

Consequently, one has to look elsewhere for experi-
mental signatures of the relativistic nuclear model.
Cohen and Furnstahl [7] have pointed out that the above
distinction between relativistic and nonrelativistic dy-

namics leads to two distinct predictions for hypernuclear
magnetic moments. Unlike the purely nuclear case,
core-response corrections to a A-hyperon result in a net
effect on the hypernuclear current because the A is an
isoscalar particle. (The A couplings to the meson fields
are different from those of the nucleon. ) Thus, the effect
of the strong fields in relativistic models might be ob-
served by introducing a strange particle into the system.

In this paper we describe the corresponding situation
for particle-hole (p-h) states in nuclear matter and A hy-
pernuclei, extending the formalism of Refs. [5,7] for such
cases. (It has been shown in several works that a finite
nucleus treatment does not appreciably change the Fermi
gas results, especially when a local-density approximation
is used; see, e.g. , Furnstahl [5] and Ichii et al. [4].) We
study the total nuclear baryon current and the vector and
scalar nuclear densities (the vector density is frequently
referred to as the baryon density, and is just the conven-
tional density discussed in nonrelativistic nuclear phys-
ics). As we shall see, no new insight into the pertinent
underlying dynamics is gained by considering p-h states
instead of one particle outside a closed core. However,
the p-h treatment has some practical significance and will
be important for a number of problems discussed in Sec.
III, such as E+-nucleus scattering, meson photoproduc-
tion, weak neutral currents in nuclei, or nuclear excita-
tions by means of inelastic scattering of various probes.
We shall also point out that core-response effects in nu-
clear transitions are an interesting subject of further
study. Furthermore, when Ref. [7] was published we em-
phasized [7] that our calculations were performed for a
closed-shell nuclear core plus an extra A hyperon. Here
we show that similar effects will, in principle, occur for a
closed-shell core with a nucleon hole plus a A particle (we
shall refer to such a state as a A-h excitation); however,
practical considerations in carrying out hypernuclear ex-
periments favor a measurement performed for the origi-
nal system (A hyperon outside a closed shell) considered
in our original calculation, Ref. [7] (even this measure-
ment is a very difficult one). We therefore view this paper
as a follow-up on past publications, extending previous
treatments and clearing some relevant issues which have
been left incomplete in earlier discussions in the litera-
ture.

Recent interest has focused on the large co-A phenome-
nological tensor coupling; see [18—22]. While pertaining
more to finite nuclear systems than to a nuclear matter
limit, this seems to be an important enough issue to merit
a discussion in this paper. The large tensor component in
the coAA vertex appears naturally in a quark model for
the A hyperon; the same model also yields a small coNN
tensor vertex coupling, in agreement with the nuclear
o.-~ MFT Lagrangian. The large co-A tensor coupling is
important for resolving the problem of the small spin-
orbit interaction in A hypernuclei within the Dirac ap-
proach, a central issue in hypernuclear structure studies.
It also has important implications on magnetic moment
calculations for hypernuclei.

We start this work with a discussion based on pertur-
bation theory (Sec. II 8). We then show that the same re-
sults can be obtained within the linear response theory
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and demonstrate that the first-order perturbation theory
treatment is equivalent to one-ring random phase approx-
imation (RPA). Summing rings to all orders we obtain
the full RPA nuclear response effect (Sec. II C). Some of
the more formal comments necessary for a rigorous
derivation of our results are grouped together and
presented in a special section (II D), which may be

skipped by most readers without loss of clarity. A11 the
formalism is generalized to include applications to hyper-
nuclei and we study the linear core-response effects on
the nuclear currents and densities. Useful and interesting
applications of our results to a number of nuclear prob-
lems are discussed and suggested in Sec. III, which also
contains a summary of our formal results and a further
discussion of some physical aspects of the linear core
response.

II. FORMALISM AND APPLICATIONS

A. The cr ra Lagran-gian in the mean field approximation (MFT)

We work along the formal lines of Furnstahl and Serot
[5], who deal with the case of one nucleon outside a
closed shell. Here we consider adding a particle (N or A)
and a nucleon hole to the filled Fermi sea sphere of nu-
cleons as a model, e.g., of the ground state of a hypernu-
cleus. (The formal development presented here for the A
is, indeed, valid for any other exotic spin- —, baryon 8 em-

bedded in the nucleus. ) Our starting point is, therefore,
the mean field approximation to the o -co model. The La-
grangian density, minimally extended to include A hype-
rons, is

EMPT 4N[ y (i i) g V ) ( N g 0o) ]IN

+4~[y„( a~ g,'V—~) (M,—g,'y,—)]y,
—

—,'m, $0+ —,'m, Vq V~+REM,

where we have included both nucleons and A in the pres-
ence of a scalar field Po and a vector field V"=( Vo, V)
(note that the maintaining the three-vector component of
V is crucial in our discussion). In Eq. (1), m, and m, are
masses of the scalar and vector mesons and XE~ is the
electromagnetic Lagrangian [2]. The meson-baryon cou-
pling constants in Eq. (1) difFer for nucleons and hyperons

I

B. Particle-hole state: Perturbative treatment

We consider a particle-hole state in nuclear matter in a
large volume A. We start with a discussion based on per-
turbation theory, in order to clarify the more formal
treatment. Our unperturbed (inert core) system is a Fer-
mi sphere of nucleons for which a solution is given in the
Hartree approximation (with V=O) [2].

The closed nuclear core (cc) gives the zeroth-order
fields.

gP(')"'= — g u~(A„k)u~(k, k),

N k

Vo"' =— g utv(A, , k)y u~(X, k),

1 gvV'"'= — g u~(A, , k)yu~(k, k)=0 .
~U k, X

(2)

(4)

Upon adding a particle (momentum p) and a hole
(momentum q), the mean fields are changed by

[7]. The MFT equations of motion for the baryons and
mesons are obtained following the usual procedures [2].
Positive and negative energy spinor solutions to the
baryon equations, u (A., k) and U(l, ,k), are readily con-
structed for nuclear matter in momentum space. The La-
grangian of Eq. (1) does not include the phenomenologi-
cal co-A tensor coupling which has recently been shown
to be important. We delay the discussion of this issue to
Sec. III.

(It is true that the relativistic nuclear theory does not
always match the precision of the older, well-established
nonrelativistic theory. There are many-body effects that
require further study, and at times the agreement be-
tween theory and experiment calls for further improve-
ments. However, the properties dealt with in much detail
in this paper, namely, densities and electromagnetic prop-
erties, are accounted for to a rather impressive precision
in the regular nuclear Dirac theory, especially when ap-
plied to isoscalar properties. Moreover, our formalism is
expected to provide a basis for further studies along these
lines, and the special appeal of such formalism is indicat-
ed in the following. )

, [g, tta(~, p)isa(~ p) —g, t ~(~', q)tt&(~', q)]=-
& m,'

g

6Vo= — [g„u~(A., p)y uii(A, , p) —g„u~(A, ', q)y u~(A, ', q)]=— (g, —g, ),0 m,' Q pyz
2 (6)

5V=V= — [g, u~(A, ,p)yu~(A, ,p) —g, u~(A, ', q)yu~(A, ', q)]=— g, „—g~
mU

q

(7)

where the baryon B can be N (a nucleon) or A,
Mz =Mii —g, $0, and E& =[k +Mt']'~ . Note that the
u (A, , k)'s are the spinor solutions for the state (A, , k) of the
unperturbed Dirac equation. It is evident from Eq. (6)
that a p-h state does not change Vo for a nucleon-hole

I

state (B =N), but produces a change proportional to
g, —g„ in Vo for BAN; this is consistent with the role of
Vo as a level of reference (shifting the zero of the energy)
for measuring single-particle energies. It is also worthy
of note that the A, which is not Pauli blocked [9], can oc-
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cupy (unlike the nucleon) any single-particle state, includ-
ing p=O.

In the present treatment, the closed-core nucleons will
be affected by the new fields 5$O, 5VO, and 5V [Eqs.
(5)—(7)], but the appropriate changes in the core do not
act back on the p-h states. (Likewise, the core occupa-
tion numbers are left unchanged when the p-h states are
added. ) This approximates the fully self-consistent treat-
ment to order I/2 [5]. The two treatments are therefore
equivalent for nuclear matter, as already noted above.

The perturbation in the single-particle mean-field
Dirac Hamiltonian due to the new fields for a nucleon or
A, denoted here as B', is

+u~(&, p)yu&(&, p) —u~(A, ', q)yu~(A, ', q)

It is related to V in the MFT through

(10)

j' '= j'"'+j h, which has a core and a p-h contribution.
We examine it first and then look at the scalar and vector
densities.

The current density j is given by

Pj=— g u~(A, , k)yu~(A, , k)
k, A.

5h = —yo(g, 5$O) +g, 5 Vo —a (g, 5V)

M B'
gs g B ~ N 0 gu g N

gs 4 gs gc Y 2 gU gv
m, E& E&

P q
m,

m v V(Cc)+

j(CC )
gv

mv

mv mv
~ 5V~(p) —

~ 5V~(q),
gv gv

, jg(p) —,j~(q),
mv mv

g, B p g
x qv

m E& E&v p

where a =y y. The complete Hamiltonian is
H =Ho+5h, where Ho represents the closed-core, unper-
turbed Hamiltonian. We note that 5h separates into two
parts, one for the particle and the other one for the hole.
To avoid possible confusion we note, for example, that
the change in a nucleonic Dirac Hamiltonian as a result
of a A-hole excitation is obtained for B'=X, B =A.

For nuclear matter the perturbations are static (time
independent) and uniform (independent of x), and their
Fourier transforms thus have only k=O components.
Matrix elements of 5h vanish between unperturbed wave
functions with different momenta, and the perturbing
Hamiltonian cannot connect p-h states to the core
ground state. Nonzero positive energy matrix elements
of 5h are diagonal, and will not contribute to any
modification of the wave functions in first-order perturba-
tion theory [10]. However, 5h has nonvanishing matrix
elements between a positive energy state u (A, , k) and a
negative energy state u (A., —k).

The first-order correction to the core single-particle
spinor wave functions uz(A, , k) due to the perturbation 5h
is, therefore, given by

v~t(A, ', —k)5hu~(k, ,k)
5u~(A, , k) =g . . . ,

Un. (A, ', —k), (9)

where the energy denominator is equal to 2Ek (the un-

perturbed energies appear here; Ek is the same for posi-
tive and negative energy states).

There will consequently be changes in nuclear quanti-
ties such as the total baryon current density

using Eqs. (4) and (7); 5V and j„h have been separated
into their particle and hole components, using a self-
evident notation.

The combined results in Eqs. (4) and (7) represent the
so-called zeroth order con-tribution (using core basis
states) to the total baryon current, which is the enhanced
single-particle current. Self-consistency requires, howev-
er, that we do not stop at the zeroth order. [Indeed, the
zeroth-order contribution is based on spinor wave func-
tions calculated self consistentl-y for the closed core system,
not for the new, perturbed system. We should certainly
look for the contribution of the co meson, which is absent
from Eqs. (4) and (7). In addition, we should expect a
dependence on (g, —g„)Vo, since the particle 8' is mea-
sured relative to a background of nucleons. ] Going now
to the first-order correction in the perturbation series we
find

k

g'"= —g[5u~(A, , k)yu~(A, ,k)+u~(A, , k)y5u~(A, ,k)],
Qk~

(12)

with 5u~ given by Eq. (9). This change is of the same or-
der in I/O ( I/2) as the zeroth-order contribution from
the valence particle and hole, because every core particle
contributes coherently.

Substituting Eq. (9) into (12), the total change in the
baryon current density to first order can be evaluated us-
ing the explicit expressions for the spinors (all of the posi-
tive and negative energy spinors are unperturbed). It is
more elegant and fruitful, however, to follow Furnstahl
and Serot's [5] use of projection operators for the core
particles. Spin sums can be converted to traces and we
find that

j(o)+ j(&) & p
0 EB* EN*

q

1 y 6h——QTr . [A ( —k)yA+(k)+A+(k)yA ( —k)]
2E~

In Eq. (13) the projection operators A+ for a particle of positive or negative energy are analogous to the standard free-
particle Dirac case and are given by
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E y —k.y+M*
A+(k)=g u~(A, , k)u~(i, , k)=

with a corresponding expression for the negative energy counterpart:

—Ek y +k.y+MN
A (k) = —g v~(A, , k)u~(A. , k) =

2EN

We have written Eq. (13) explicitly in order to demonstrate that, in the present treatment, the first-order correction is
also divided (similarly to j' ') into separate particle and hole contributions. This follows from Eq. (8) and shows what
characteristic features we can expect from the full core response: the corrections affect the enhanced single-body parti-
cle and hole current separately and independently. (Recall that this result is derived for nuclear matter. ) Their indivi-
dual effects are similar to the corresponding one for an extra particle outside a closed core [4,5].

Equation (13) is evaluated using standard trace theorems [11]. The contribution to the sum over the core states
kF 0 N 2(gi,r ) from the term of y 5h proportional to g, /m, vanishes, since it amounts to gzr k=0. The term originating from

5V0 vanishes by orthogonality. Therefore, the perturbative change in the baryon current density is solely a result of the
three-vector part of the co field. Thus,

(0)+ .(&) —l P
Q EB EN

q

kF

Q2 2ENmv EI
gB P gN q

q

p N q
k v B4 v

E.
N B

p l
gv gv Pv

m
P kF

q
EN

q
mv ENkF

(14)

(note that B'=N). In Eq. (14) isospin degeneracy is in-
cluded for the core, so that a spin-isospin degeneracy
coefficient i) ( =4 for symmetric nuclear matter) has been
introduced into the core contribution. The last expres-
sion on the right-hand side of Eq. (14) has been obtained
by transforming from a sum over k to an integral; we

have used the notation E& =(kF+Miv )' for the Fer-

mi energy and p„=(il/6ir )k~ for the nucleon (vector)
density. (As we shall momentarily see, p„ is not modified

by the core response. ) The enhanced particle and hole
currents are separately corrected by the core response
(similar individual corrections have been found for the
case of one particle outside a closed core; see Ref. [5] for
the nucleon case, and Ref. [7] for the A).

Using the finite Hartree parameters [2] we find for the
N 2nucleon (B =X) (g, /m, )p, /E& =0.62, thus

1

EN
kF

N
gv pv

m EN
kF

0.65
EN

kF

or

1

MN

N
gv pv

mv EN
kF

0.70
MN

Results for B.=A depend on the value of g, which will
be discussed in detail later (see Sec. III B 1); it is typically
around 0.3g, to 0.7g, , so the pertinent hypernuclear
correction is also large. Note that in a consistent first or-
der calculation, the first order perturbation theory
correction and the effective mass enhancement ( I/Mii or
1/E& ) cancel each other to a high degree if the lowest

order only is considered for both the vector and scalar

1
PV

'kF

g u~(k, k)y u~(A, , k)
k, k

+u~(X, p)y uii(A, , p) —u~(A, ', q)y uz(A, ', q)

=—(A +1—1)=1

0 0 (15)

which is obviously the correct and final answer. (Isospin

I

fields (i.e., in Mii and in the core response). This result is
also true in the more traditional "nonrelativistic" sense
using the concept of meson exchange pair currents, as
discussed in Sec. III A, and stems from gauge invariance.
The important point is that the single-particle enhance-
ment is no longer present. However, the factor of 0.65
(0.70) in the above estimate (where we used M~ to all or-
ders in p„but only the lowest order in p, ) is not our final
answer: Since the first order correction is large we can-
not be satisfied with the lowest order result. In the next
section we study higher orders of the core response, again
following Furnstahl and Serot [5].

In discussing the effects of the core response on charac-
teristic nuclear quantities it is also necessary to examine
the pertinent consequences for the scalar and vector nu-
clear densities [2,12]. These densities are related to the
MFT fields $0 and Vo, respectively, via relations similar
to Eq. (11) (with obvious modifications). It is important
to note that not all nuclear observables are affected by the
core response. We have shown in [10] that, to order
1/0, the single-particle energies are correctly described
by the closed-core Hartree-MFT solutions. Calculating
p„ the timelike component of the total baryon current,
we find that
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degeneracy is again included for the core. ) Calculating
the first order perturbative correction explicitly along the
lines of Eqs. (12), (9), and (13) we indeed find that this
correction vanishes identically (and not just in the limit
Q~ ~ as for the single-particle energy case discussed in
[10]).

Unlike the case of the vector density, core response
corrections do affect the scalar density p, . The zeroth-
order contribution (using core basis states) to the total
baryon current, including the p-h state, is

kF

p,' '= — g uN(A, , k)uN(A. , k)

+uB(A, , P)uB(A, , P) —uN(A, ', q)uN(A, ', q)

"F M' M*
N + B

EN EB
MN

q

(16)

Equation (16) (for p, ) differs from Eq. (15) (for p„): the
p-h state makes a contribution to p, ', furthermore, core
response corrections are of the same order in 1/A as the
p-h contribution, because every core particle contributes.
The first order perturbation correction to p„along the
lines of Eqs. (12), (9), and (13), is

N )Jc

()) 'g gs B B N N
I g ~2 2 g$ g g$0 m& EB EN

1

F g2

EN*3
Ek

(17)

where the spin-isospin degeneracy coefficient has been in-
troduced again as in Eq. (14).

It is important to note that the core-response correc-
tion for p„ is realized through the cr field [and not via the
co field as in Eq. (14)]. Rigorously this is not unexpected,
as our subsequent discussion will prove (see Secs. II C and
IID). In the MFT, the response to a perturbation is
mediated by a meson of the same quantum numbers as
the probe; moreover, at Q =0 no scalar-vector mixing
occurs. We believe that this is an intuitive demonstration
of how closely the scalar density is related to the scalar
meson field, while the vector current is associated with
the vector meson field. Here this is formally a result of
the Lorentz-scalar structure of this quantity, along with a
vanishing mixed scalar-vector correction. But the
scalar-vector correction does not vanish in general (name-
ly, for a nonzero momentum transfer, QWO, or for a
finite system). These remarks will be better and more
precisely understood following our discussion in Sec.
II C, where we provide an extension of the present results
to all orders, using linear response theory.

For nuclear matter, the sums in Eqs. (16) and (17) can
be replaced by integrals [as in Eq. (14)]. These integrals
can be done analytically and the final result is

(O)+ (1) MN kF+Ek
kFEk —MN ln

F M*
MB+

Q B )fc

MN

EN

g, MB MN

Q 2~2 M2 B ' N*
s E E

M*2k
EN++ N F

2 F k~
——M ln42

N

kF +EN'

MN
(18)

where the major (core) contribution appears on the first
line, and the p-h and core-response corrections are of or-
der 0 (1/0). The fundamental difference between the re-
sults of Eqs. (18) and (14) is a consequence of the vanish-
ing (nonvanishing) core contribution to the current densi-
ty j (the scalar density p, ); the lowest nonvanishing con-
tribution to j is of order 0 ' (or A ').

Using finite hartree parameters [2], the first line of Eq.
(18) is 0.93p„. For nucleons we write the second plus
third line as

MN

0
P

MN
(1—g),

EN
q

and we find that /=0. 11 for symmetric nuclear matter
(g=4). This core-response correction factor of the p-h
contribution to p, is much smaller than the correspond-
ing effect in Eq. (14). It is an approximately 10%
modification to the O(l/A) valence correction, and is
not expected to have any significance in nuclear physics

calculations. We shall discuss this subject in more detail
in Secs. II C and III.

C. Particle-hole state: Linear response theory

1. General introduction

Since the effects of the modified core can be large, it is
necessary to go beyond the first-order result in perturba-
tion theory. This is efficiently achieved using Green's
function methods. In this approach, the MFT (Hartree)
result corresponds to the self-consistent summation of
tadpole contributions to the baryon self-energy. Calcu-
lating the Hartree-MFT propagator directly and exactly
for the core plus p-h system can be difficult; alternatively
one can start with the MFT-Hartree solution for the
closed core alone, and then modify this system (in Refs.
[5,7] an extra particle is added; here we add a particle
and hole to this system). Assuming an inert core with a
superimposed p-h state we find the enhanced current j
of Eq. (14). However, the fields produced by the particle
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and the hole modify the propagator of the core. The to-
tal core linear response is determined by the polarization
insertion (the RPA-type ring at zero energy) computed
with the nucleon Hartree-MFT propagator. In the
present discussion for nuclear matter, where the pertur-
bations are static and uniform, we need the response
functions at zero four-momentum transfer.

We shall demonstrate that our previous perturbation
theory result can be identified with the lowest order ring
contribution (II) to the linear response function II at
zero momentum transfer. To first order in the ring sum-
mation we indeed recover Eq. (14). Summing the rings to
all orders, we obtain the full linear response. This for-
malisrn provides, therefore, an efficient tool for extending
the perturbation-theory results of Sec. II 8 to all orders
once the Green's functions are known.

The treatment presented here is again based on Ref.

[5], applied to a p-h state and extended to include the
possibility of a hypernuclear production as in the previ-
ous section.

2. The relativistic nuclear Hartree propagators
and self ene-rgies

In order to better motivate our treatment we first out-
line the exact formalism for the system of interest. (Our
actual work will, however, be carried out within the
linear response scheme, as explained above. ) For the pur-
pose of this brief, explanatory discussion, we first assume
a system of nucleons only. In the Green's function ap-
proach, the Hartree approximation in nuclear matter is
obtained by the self-consistent summation of the self-
energy tadpoles in the baryon propagator. In a general,
deformed system, the analytic form of the Hartree propa-
gator in nuclear matter is, for nucleons,

HG (k)=(y„w~+MN) +2mi5(szx MN—)8(s )n,
1

KgK M~ +l5

=
H GF (k)+ H GD (k)

A+(x)=(1 n,)—'
~P —E". +is

A+(a) A ( —a)
+n K pv —E„—i5 ~ +E, —i5p N

=HG (k)+HGh (k)+HG, (k) . (19)

The following notation is used in Eq. (19):

K =k +H~N & ~N ™N+H~N
EN (~2+M+2)1/2 E (k) +EN yv

The Hartree self-energies (H X', H
X") are related to the

mean scalar and vector meson fields by [see also the dis-
cussion following Eq. (22)]

H~N gs

and

yv g1Vyp

so the other familiar expressions for M* and ~" based on
Eq. (1) are obtained. The function n is the occupation
function that defines the Fermi surface. For a Fermi
sphere, n, ~nk 0(kF —~k~). In this ——paper, where we
deal with a p-h excitation of the core, the momentum dis-
tribution is no longer spherical; the Fermi surface can be
determined by minimizing the mean-field energy density
at fixed baryon and momentum densities [5].

We have written the Green's function, Eq. (19), in two
alternative forms [2,13]. In the first line it is shown as a
sum of Feynrnan and density-dependent components.
The first component resembles the free-particle Feynman
propagator (describing the propagation of virtual
positive- and negative-energy baryons, or baryons and an-
tibaryons). This is the only piece that remains as the
baryon density n, ~O (or kF~O). The second term is
density dependent and allows (at a finite density) for the

propagation of holes in the Fermi sea and corrects the
propagation of positive-energy baryons to account for the
Pauli exclusion principle. The density-dependent piece
shifts poles corresponding to occupied positive-energy
states from the lower half of the complex k plane to its
upper half.

We note [13] that the baryons are "dressed, " implying
that their energy, mass, and Dirac spinor wave functions
are modified by the baryon self-energy HXs. [In the free
case, the virtual dressing of the particles is absorbed into
the physical masses and coupling constants. In the
many-body system, the interactions change the free Feyn-
man propagator, as shown by Eq. (19) (e.g. , k ~v,
MN~MN), and the result is an additional many-body
efFect. The nucleon in the medium is regarded as a
"bare" nucleon that gets "dressed" as a result of its in-
teractions with the medium. The self-energy enters the
Dyson equation which relates the bare and dressed nu-
cleon propagators. ]

In the alternative form (third line) of Eq. (19), the ~
dependence is isolated in simple poles. The propagator is
divided into physically motivated pieces according to the
type of each pole: p (particle) for x=E, and an un.oc-
cupied state (a factor 1 n); h (hole) for ~—=EN and an
occupied state (a factor n, ); v (negative energy state or an

antibaryon) for ~ = E, (0. The projection —operators
of Eq. (19) are obtained as before, replacing k by x in the
standard nuclear core expressions [cf. Eq. (13)] [5]. We
note that the expression used for HG is not Lorentz co-
variant, but is suitable and more illuminating for our pur-
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and the baryon current density:

d4k N ikj"= i —f Tr[y" HG (k)]e'" ~

(2~)
(21)

using the formalism of Ref. [2]. The current density j"is
related to the vector self-energy through [see also Eq.
(11)]

jP=—
2~v p

N2H N (22)

Later in this section we present and use Hartree self-
energies for the general case of a baryon B (in this work
we are interested in the cases B =N or B =A, but the for-
malism is valid for any spin- —,

' baryon B; of course, the
isoscalar nature of the underlying many-body theory re-
quires some care regarding isospin).

ik'The e' ~ factors in the integrands above allow the in-
tegration contours to be closed in the upper half plane, el-
iminating contributions from H G to the self-energies
and the baryon current. The other two terms,

H G& +H G, , yield contributions from both occupied
positive-energy states and occupied states in the
negative-energy sea.

A short discussion of the relativistic a.-co MFT is neces-
sary here in order to make the present section more intel-
ligible and self-contained. In the MFT, only density-
dependent contributions to the integrals will be retained,
namely, those terms proportional to n, . For tadpole dia-
grams this implies that only the occupied positive-energy
states contribute (stemming from H G& ). One is actually
integrating over real baryon states within the Fermi sea
only. Thus, all terms arising from integrals over HGz are
dropped, and only contributions from the density-
dependent part of the Green's function, HGD, are con-
sidered. The MFT results can be derived by summing the
tadpole diagrams self-consistently in nuclear matter, re-
taining only the contributions from nucleons in the filled
Fermi sea. Here, the replacement of the full Hartree
Green's function by its density-dependent part defines the
MFT values of the self-energies: X~ = —g, $0 and

XN = —g, V06", where 5" results from rotational in-
variance when the system is spherically symmetric. [We
note that the full relativistic Hartree approximation
(RHA) [2] involves divergent integrals over the occupied
negative-energy sea. Infinities are removed using a renor-
malization procedure. No counterterms are needed to
render HXN finite, and the RHA result for this term is
identical to that of the MFT [2]. Counterterms are neces-
sary, however, to render HXN finite. The result is a tran-

poses here.
The exact Green's function for the system of interest

yields the Hartree self-energies for nucleons:

ys i
~ f T [ Gx(k)] ik (

m, (2m)
(20)

yv~ ~ " f T [ P GN(k)] ik

m„(2m. )

scendental equation [2] for the RHA scalar self-energy
where the first term is similar to the MFT result (and is
proportional to p, ) and the second term is a finite "vacu-
um fluctuation" correction. Such corrections are outside
the scope of our treatment here. ]

In cases where two Hartree propagators appear under
the integral (ring diagrams, for example) there will be con
tributions from the negative energy states even in the MFT.
This can happen when the density-independent part,
H G, , of one propagator multiplies the density-dependent
part of the other. We have already seen that the mixing
of positive- and negative-energy states is crucial in the
present treatment [Eqs. (9), (13), (17)], and the same will
be true in this section.

Using this prescription we can perform the k integra-
tion for the vector and scalar self-energies. We are now
left with three-dimensional integrals, which can be con-
verted into sums by putting the system in a large box.
Writing the projection operator in terms of the single-
particle Dirac spinors we recover the MFT expressions
(the meson ground-state expectation values) [5].

3. Core modifications in linear response theory
with applications to nuclear currents and densities

A+(k) A+(k)
HG (k)=(1 nk)— , +nk

]c —Eq +i5 ~ —Ek —i6

A (k)

v +Ek —g$

c GN( k)+c GN(k)+ c GN(k ) (23)

Note that we have left ~ in the denominators, because
the time component (p=O) of the vector self-energy is
nonzero even for a spherical system (while the space com-
ponents @=1,2, 3 vanish and thus ~~k). The time com-
ponent of the vector self-energy is, however, different in
the two cases represented by Eqs. (19) and (23) since the
latter is calculated for a closed core while the former is
for the nonspherical, core + p-h system. As we shall see,
for a constant time component of the self-energy (or Vo)
the integration over ~ can be shifted to an integration
over k, and the two give equivalent results. The occupa-
tion function for the core is nk =8(kF —

~
k

~ ), as discussed
following Eq. (19).

We now add, as in Sec. II B, a particle (with momen-
tum p) and a hole (with momentum q). Their propaga-
tion will take place through the meson fields. In the ex-
treme (and inappropriate) approximation of an inert core,

The exact expressions, Eqs. (19)—(22), are difficult to
solve, especially when a different kind of baryon (here we
are mainly interested in a A hyperon) is embedded in the
nuclear medium. As explained above we follow the ap-
proach of Sec. II B and start with the simpler (and known
[2]) Hartree solution for the closed core itself. This solu-
tion is then corrected by adding to it the contribution of
the valence particle hole and their effect on the core.

The analytic form of the Hartree propagator for the
core nucleons in the nuclear matter limit is [cf. Eq. (19)]
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the meson fields are fixed and the propagator for the new
system is obtained by merely shifting the pole for the
(previously unoccupied) valence state to the upper half k
plane, while eliminating the corresponding contribution
of the (previously occupied) hole state. This description
of the new occupation status of the valence p-h state is
formally obtained by adding a correction 6HG to the
Green's function of the core.

The additional function needed to shift the pole for a
I

particle (8) of momentum p and a hole (N) of momen-
tum q is obtained from the Green's function [cf. Eq. (19)].
We keep only the density-dependent part (which is the
only one necessary here, as we shall see) and expand the
5((k ) —E* ) function using the standard formula.
Then, with the 0 function and the definition of the projec-
tion operator, and inserting a 5 distribution in the three-
momentum variable, we obtain the following correction
to the core propagator:

[5 G (k)] =""G (k)

=2mi [5(k E—)—,'5 qA+(p) —5(k —
Eq )—,'5q kA+(q)]

=[5HG (k) —5HG (k)]„g

H
="'G (k) —""G (k)H (24)

Here the single-particle spinors are determined by the
core potentials, as was the case in Sec. II B. The valence
particle (hole) is equally distributed over the two possible
values of the spin projection A, .

Note that Eq. (24) implies independent corrections
from the baryon (B) and the hole (N), reflecting their in-
dividual interactions with the core. The baryon and the
hole do not interact with each other in this approxima-
tion; this would be the meaning of a particle-hole state in
the present work. [In order to study the effect of the mu-
tual p-h interaction (as well as the effect of the corrected
core back on the p-h states) it would appear to be neces-
sary to carry out an exact Hartree calculation of the per-
tinent nuclear system. Although the effect is clearly of
order O(1/A), its actual magnitude is unclear at this
point. ]

At this level of an inert core plus valence p-h, the in-
teraction of the valence particle and hole with the core,
through the meson fields, is included to all orders. But
the core response is not included (as discussed in Secs.
IIB and I). We call this our zeroth order (using core
basis states). We can calculate the three-vector current
density, Eq. (21), for this zeroth order using

H G +H'G as the approximate propagator for the
complete system:

j(0)= i f ——QTrIy[HG (k)+H"G (k)]]e'" ~

and the valence particle and hole generate fields that act
on the core nucleons. This is in complete analogy with
the results of Sec. IIB, where Eqs. (5)—(7) show the
modifications in the mean fields due to the particle and
the hole; their effects on the core nucleons [Eqs. (8) and
(9)] and on the nuclear current [Eq. (14)] and densities
[Eqs. (15) and (18)] to first order in perturbation theory
have been derived. In the present approach the addition-
al (p-h) fields modify the core propagator HG (k), Eq.
(23).

In the spirit of the present treatment, the valene parti-
cle and hole will be considered as external sources of
meson fields acting on the core. In nuclear matter these
fields are static and uniform, and the corresponding
changes in the Hartree self-energies are obtained by using
the correction to the Green's function, Eq. (24). Changes
in the self-energies for baryons of type B' due to a
valence baryon B where B',B =N, or A are, for example,

i
' f Tr[H"G (k)]

m, (2~)

for the scalar self-energy, with corresponding expressions
for the vector quantity. In this notation, substituting
B'=X and B =A yields the changes in the nucleonic
Hartree self-energies as a result of a valence A, and so on
[see also Eq. (8) regarding the introduction of 8']. Thus,
the appropriate definitions for the incremental changes in
the self-energies are [cf. Eqs. (20)]:

1 p q
Q EB* ~N

q

(25)

This result is identical to our previous zeroth order,
enhanced single-particle current [see Eqs. (13) and (14)],
as expected. (In a more realistic, finite-nucleus treatment,
the valence particle is subject to lower nuclear-medium
densities than the hole; it would thus have a larger
effective mass, namely, closer to the free mass. Conse-
quently, the relative enhancements will be larger for the
hole than for the particle in this model. )

This picture for the core+ p-h system is not self-
consistent, as already noted, because the core is not inert

and

ys] valys

f T [gBvalG8(k) gNvalGN(k)]. gs d k
(2 )4 s H s H

[5H& ]-i—H&

. U d k
~P ~BvalGB k

m, (2~)
N valGN(k) ) ]

(26)
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(Note that B'=X.) Evaluating the integrals we find

g, 1 MBN )le

gs
M

gs
E

N

(gB N) gNgy
m

(27)

(28)

and

N
B P

m,2 Q gv Be gv N+E E

Ngy (29)

(30)

A rigorous derivation of Eq. (30) is provided in Sec. II D,
where formal comments omitted from the present discus-
sions are provided for the interested reader. In Eq. (30),
the so-called scalar-vector and the vector-vector polariza-
tion insertions are

and

d4kII"(Q)=if Tr[y" HG (k+Q)HG (k)]
(2~)

(31)

d4kII" (Q)=i f Tr[y" HG (k+Q)y HG (k)], (32)
(2m. )

respectively. The two core propagators in Eqs. (31) and
(32) yield an RPA (linear-response) ring, with one o. and
one co meson lines for the scalar-vector polarization inser-
tion, or two co meson lines for the vector-vector one.
Note that due to the vector character of j", only vector
polarization insertions are required. However, the full
polarization insertion has a scalar-scalar piece as well;
this will be discussed later.

We have already explained that in the present work,
where we study static and uniforn1 perturbations, we only
need the Q =0 values of the polarization insertions. To

These results have been obtained by returning to a
discrete set of linear momentum states in a very large box
of volume 0, as done before (see [12] or Eq. (25), for ex-
ample). The results in Eqs. (27)—(29) agree with those
obtained in Sec. II 8, Eqs. (5)—(7).

Next, we look at the modification of the core propaga-
tor using linear response theory. The linear response of
the system is determined by polarization insertions, or
rings, created with the core Green's function HG . In
our case, where the nuclear matter limit implies static
and uniform perturbations, the response functions are re-
quired at a vanishing four-momentum transfer (Q =0)
only.

Prior to calculating the full RPA response, let us first
look at the lowest order case. This will be shown below
to be fully equivalent to the first-order perturbations
corrections obtained in Sec. II B. At this order, the cor-
responding change in the baryon current of the core is

evaluate Eqs. (31) and (32) we just follow exactly the dis-
cussion of Ref. [5], because only the core (nucleons only)
propagator is involved.

Substituting the three terms [see Eq. (23)] for each core
propagator into the integrands in Eqs. (31) and (32), we
find nine terms in each integrand. These may be denoted
by xy, where x,y =p, h or u. At Q =0 the ph and hp
terms vanish before any integration is carried out, since
the factor nk(1 —

nk ) =0. We emphasize again that this is
a result of the pure static and uniform nature of the per-
turbation. We then integrate over k; terms with both
poles in the same half-plane (pp, hh, uv, hu, and vh) do not
contribute. Thus, only two terms, pU and Up, contribute
in our case. As in Sec. II 8 [Eqs. (9), (12), and (17)], only
the mixing of positive- and negative-energy states is in-
volved.

Consistent with the MFT, we must keep only the
density-dependent component of the integrands. This re-
quires the substitution 1 —nk —nk. The integrals now
include only the occupied states, and the omitted terms
are the vacuum fiuctuation corrections [2]. After the k
integration is carried out we are left with three-
dimensional momentum-space integrals over traces iden-
tical to the ones needed in Sec. II 8 [for the evaluation of
Eqs. (13) and (17)]. Evaluating the required traces and in-
tegrals we find

11& (o)=
Pv , 5, =HT6, ,

EN
kF

0, otherwise

p —l, v —j
(33)

q
EN

q

N

1+
m, HT

(34)

Substituting IIT, Eq. (33), into Eq. (34), we recover the re-
sults of Sec. II 8, Eq. (14). The two approaches lead to
identical results, as discussed above. The first-order
perturbation-theory result of Sec. II B can now be
identified with the lowest-order ring contribution to the

(these results are valid only when the core is a filled Fer-
mi sphere). In Eq. (33) p, =(ri/6m )kF, as in Eq. (14); we
have also included in ii the isospin degeneracy factor for
the core. Equation (33) and the discussion of the forego-
ing paragraphs provide a picture whereby the linearized
core response will be obtained through a series of RPA
XX rings with two coXN vertices; such rings as shown in
Fig. 1. This is a type of static response that does not
occur in a nonrelativistic nuclear many-body theory, and
is similar to what we have found in Sec. II 8, Eqs. (13)
and (14). It appears here in a rather transparent way, as
a result of the self-consistency imposed [2] on the theory.

The lowest-order correction to the baryon current can
now be evaluated using Eq. (30) and then be added to the
zeroth order, Eq. (25), to yield the total baryon current at
this level of our calculation:

N B

J 3
~ (O)+ (i) P 1+ v

EB* m'
P v
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valence
baryon

probe

FIG. 1. Typical contribution to the relativistic core-response
correction applied to a valence-baryon current. The rings indi-

cate the mixing of positive (N) and negative (1V) energy core
states. (Only the Pauli-blocked negative energy states are in-

cluded; see Sec. III A). The heavy solid line represents a
valence-baryon wave function calculated with the core mean

meson fields and the dashed line is the co- or o.-meson propaga-
tor, depending on the nature of the probe [see Eqs. (35) and

(42)]. The full linear-response correction is obtained by suni-

ming the rings to all orders. Each valence baryon current is in-

dividually corrected by the core response in our model.

linear response function at a vanishing momentum
transfer. The linear response theory, however, provides a
more efficient means of going beyond the first-order per-
turbation theory result.

As discussed in Sec. IIB, the perturbation of the core
is large, and one cannot stop at the lowest order. Sum-

ming the perturbative contribution to all orders, we ob-
tain the full linear response for the many-body system.
This is practically obtained by a summation to all orders
of the polarization insertions or rings. In nuclear matter
this is obtained simply as a geometric series, yielding the
full RPA response function (the interested reader is again
referred to Sec. II D for a rigorous discussion):

N

II( ) II,+I-I, g II,+
mv

N

=n, &+
mv

IIT

1 —(g, /m, )IIT
(35)

This function describes the full linearized response of the
nuclear core to the static, uniform perturbation of the p-h
state, probed by means of the baryon current. Note that
only vector mesons are included here since the scalar
mesons do not contribute to this linear response
[II"(0)=0 in Eq. (33)]. Furthermore, the vector-meson
propagators assume a very simple form in Eq. (35), be-
cause they do not transfer any finite momentum.

The total baryon current (including the RPA linearized
core response contribution) can now be obtained by re-
placing IIT by II' i in Eq. (34):

N B

3= 1 p &+
gv gv &(T]
m'

U

N
q 1+ II( )

EN m
q U

B
1 p gv1+

Q EB+ gN
U

N
gv

m
U

N

m
U

q
EN

q

p
Q B )fc

gN
1 — II T(g —g )

N

m
(36)

In our model, the particle (B) and hole (nucleon)
currents are individually corrected by the core response,
and each efFect is of the type depicted in Fig. 1. Us-
ing the finite Hartree parameters [2] in Eq. (35) we
find for nucleons —

(y„ /m, )II' '=0. 38 [(g, /m, )IIT
(g„ /m, )p—s /Ek = —0.62]. Thus, II'T' differs

considerably from II&. For this reason we could not stop
our calculation at the first order, but had to yo to high-
er orders. Furthermore, ( 1/Mg )( 1+(g, /m, )II ')
=0.62/MN = 1/MN, so the single-particle 1/M*
enhancement is no longer present. The relativistic RPA
nuclear response restores the nonrelatiuistic value of the

single-particle current when evaluated to a11 orders; this
is not true for the lowest-order perturbative correction, as
discussed in Sec. II B [following Eq. (14)]. A similar con-
clusion also holds for B =A with a reasonable g, /g„ra-
tio (of the order of 0.5, as discussed later): the total RPA
corrected A current is virtually equal to the nonrelativis-
tic value.

The total core correction for the baryon B (embedded
in the nuclear medium) differs, though, by a factor of
g, /g, from the correction found for nucleons only. We
note that the response to the particle (B) results from
both the spacelike part of the co meson and from
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(g, —g, )Vo. The latter does not contribute in the pure
nucleon-only case, so a A hyperon (or any other baryon
which is distinguishable from the nucleon) introduces
new many-body relativistic effects, not present for regular
nuclei. This provides a potentially fruitful way ofprobing
the equi"ects of the strong fteids present in relativistic nuclear
models. Such attitude has been adopted in Refs. [7,14].

As in Sec. II 8 we are also interested in studying the
effects of the core response on the scalar and vector nu-
clear densities [2,12]. [Results up to the first order in per-
turbation theory are presented in Eqs. (15)—(18).]

We obtain the vector density p„as the zeroth corn-
ponent of the baryon current, Eqs. (21) and (22). At the
zeroth-order level (inert core, plus valence contributions,
using the core basis states) we find (including isospin de-
generacy for the core)

d4k
P = —i f Tr[+0(c Giv(/ )+valGBX(k))] ik

I dk+ —g(5 k
—5 k)

kF

(2 ') 0 n „

11"'(0)= 11,

M*k
&k E~*+ ~ F
2 F EkF

kF+Ek——M* lnN
N

(39)

~ 0

Ps '
2 ~ 0(0) ~ g Tr[c GN(k)+valGBN(k) ]eik

1K

H

(40)

where the required integral has already been evaluated in
order to get the perturbation-theory result of Eq. (18),
and isospin degeneracy for the core has been included in
the factor ri [as in Eq. (33)].

We proceed along the lines of the calculation for j";p,
is proportional to the scalar hartree self-energy [cf. Eqs.
(22) and (11)]. At the zeroth-order level (core+valence
contributions) we find

=—(3 +1—1)=1

0 0 (37)

which gives exactly the same result as Eq. (16) of Sec.
II B. We now calculate the lowest-order linear response
correction (one ring) where

The traces needed for evaluating p', ' are identical to
those required for Eq. (28). [Equation (28) and the
valence contributions to Eq. (37) difFer only by constant
multiplicative factors. ] The result, Eq. (37), is identical to
our previous one, Eq. (15), and is obviously the correct
and final answer for p, .

Our last statement will now be formally proven within
the linear response theory used in this section. We look
at the first-order correction first; since II"(0)=0 and
II '(0) =0, it follows from Eq. (30) that p'„"=0. This re-
sult is also valid when the polarization insertions are in-
tegrated to all orders in linear response theory (some
necessary formal details are provided in Sec. II D of the
present work and in Appendix A of Ref. [5], but this re-
sult is also intuitively clear based on our discussion so
far). Thus, there are no core response (RPA) corrections
to p„and this quantity is correctly given by the inert-
core plus valence contributions alone.

We turn now to the scalar density p, . While the vector
polarization insertions [Eqs. (31) and (32)] were required
for studying the current, j", here we need the scalar
quantities. The missing part, namely, the scalar-scalar
polarization insertion, is given in lowest order by

p,'"——11~(0)[5 r„"]...—11"'(0)[6 Xs]„„ (41)

N

II"'=II +rr ' n +gs
S S 2 SI

N

=11, 1+ ' 11'„"(0)
m S

n,
1 —(g, /m, )II,

(42)

[cf. Eq. (30)]. Using the results of Eqs. (39) and (33) for
the scalar-scalar and scalar-vector polarization insertions,
and substituting [5HZ']„, from Eq. (27) we recover the
results of Eqs. (17) and (18), Sec. II B.

Next, we shall obtain the full linear response by sum-

ming the perturbative first-order contribution to all or-
ders. This extension of our first-order result to all orders
is analogous to our previous treatment of the current j in
Eqs. (35) and (36). In nuclear matter it is once again ob-
tained as a geometric series, yielding the full RPA
response function

II' '(Q)=i J Tr[ttG (k+Q)HG (k)], (38)
d4k

(2m )"

yielding an RPA NX ring with two o.XN vertices.
As explained above, only the value of II' ' at Q =0 is

required here. It is evaluated in the same way as done for
Eqs. (31) and (32); we end up with a trace identical to the
one needed for the evaluation of Eq. (17) in Sec. IIB.
Thus,

Equation (42) describes the full linearized response of the
nuclear core to the static, uniform perturbation of the p-h
state, probed by means of the scalar density. Only scalar
mesons are included here: the vector mesons do not con-
tribute in this case as II"(0)=0. There exists a strong
similarity between Eqs. (42) and (35).

The nuclear scalar density for the system, including the
inert core, valence p-h, and RPA linearized core response
contributions, is obtained by [cf. Eq. (36)]
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m
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q

(43)

In our model, the particle (B) and hole (nucleon) contri-
butions to the scalar density are individually corrected by
the core response. Each effect is of the type depicted in
Fig. 1, mediated by the scalar meson and involving the
scalar-scalar polarization insertions summing to all or-
der s.

Using the finite Hartree parameters [2] in Eqs. (39) and
(42) we find for nucleons

N

11'„"(0)=o. lo
m~

N

II, = —0. 11
m~

Thus, II'„'(0) and II, are numerically very close to each
other, II'„'(0)/II, =0.90 [the small first-order correction,
Eqs. (17) and (18), obviously remains small when summed
to all orders within the RPA]. The core-response correc-
tion is only around 10% of the valence contribution,
which is itself a 1/3 correction to the scalar density of
the core. Note the basic difference between the baryon
current density j and the scalar density p„which is a
consequence of the vanishing (nonvanishing) total contri-
bution form the closed core to the former (the latter). Al-
though it is not expected that the core response will have
any non-negligible effect in nuclear physics, the 1/3
valence correction may prove to be important when a
precise comparison between theory and experiment is
called for. One such case we are aware of, namely, %+-
nucleus scattering, will be discussed brieAy in Sec. III.

p-h state with a baryon which may be distinguishable
from the (rest of the) nucleons. The total subsequent
change in the Hartree propagator is

5H G (k) = [5H G (k) ]„)+[5H G (k) ]Rp~ . (44)

N

11'„"(0)=11"'(0)+11"'(0) ', 11'„"(0),
m

(45a)

II"„(0)=0, (45b)

for the scalar-scalar and scalar-vector cases, and

» Eq. (44), [5HG(k)]„,~ describes the new occupied
status of the valence p-h state and is given by Eq. (24),
while [5HG(k)]RPA accounts for the modifications of the
core arising from the p-h state. The main difference be-
tween our discussion here and that of A lies in the
valence part.

The scalar-vector and vector-vector polarization inser-
tions [Eqs. (31) and (32)] have been introduced in the con-
text of the current j~. The scalar-scalar quantity is given
to lowest order in Eqs. (38) and (39). In general we need
the full polarization insertion including all three com-
ponents. Coupled equations for the full polarization in-
sertions to all orders, II' ', H", and II", were given by
Chin [15], and are also presented in A. Under the condi-
tions IIi'(0) =0, II" (0) ~ 5," which apply in this work, one
finds that the full polarization insertions (denoted as
above by the subscript ~) at Q =0 are obtained from

D. The relativistic Hartree propagator and RPA
polarization insertions: Formal comments

N

IP (0)= II"'(0)—II" (0) II (0),
mU

(45c)

In this section we provide the formal discussion neces-
sary for a rigorous derivation of the results of Sec. II as
well as new, additional ones. The material in this section
is required for a complete and exact understanding of our
results, but much more than intuitive insight has already
been provided by our preceding discussions. Consequent-
ly, the reader may skip these formal comments without
loss of clarity.

Our discussion is based on Appendix A of Ref. [5]
(hereinafter referred to as A), extended again to include a

for the vector-vector case. Equations (45c) and (45a) are
identical to Eqs. (35) and (42); the three types of polariza-
tion insertions are decoupled under the above conditions.

Using these relations we now obtain an expression for
[5HG(k)]RPA. As shown in A, this correction to the
Green's function has a contribution from the valence
self-energies, Eqs. (26)—(29), and from the linear response
of the core (expressed in terms of the polarization inser-
tions):
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[5HG(k)]RPA=HG (k)
N N2

1+ ' ll'„"(0)—
m S

y„ll"„(0) [5HX']„,1
m,'

N N
—

) + ' II„(0)— " y„il„(0) [5HX ] 1
HG"(k).

m' m'
(46)

We note that [5HX"]„»are independent of k [cf. Eqs.
(27)—(29)]. The total correction to the core Green's func-
tion within linear response theory can be obtained by sub-
stituting Eqs. (24) and (46) into Eq. (44), and used for cal-
culating corrections to j",M~, etc., as done in the previ-
ous section.

The connection between 5HG and the physical quanti-
ties of interest in this work may become clearer by exam-
ining the resulting changes in the self-energies:

N 4
5HX'=i J Tr[g, 5HG(k)]e'" ~,

m, (2n. )

N 4
5HX' =i f Tr[g, y"5HG(k)]e'" ~,I, (2~)

(47)

N

1+ ', ll'„"(0) [5 x']„.,
m,

N

II"„(0)[5H X„']„,1
m,

(48)

where the generic g, , can be the nucleon (N) or the
baryon (8) coupling constants as necessary [see, e.g. , Eq.
(26)]. The contributions from [5HG(k)]„,1 are given by
Eqs. (26)—(29); with [5H6 (k)]RP~ included as well, we
get the result presented in A:

5HX [5HX ) 1+ [5HX ]RPA

+HGH(k)(5HX' y„5H—X" )HG (k) . (50)

Equation (50) is an integral equation for 5H G (k), because
5HX" are defined through 5HG. Substituting Eq. (50)
into the definitions of the changes in the baryon self-
energies, Eqs. (47), we find

N

5„X'=[5 X']„„+ ', [ll"'(0)5 X'—11~(0)5 X„']
m

and (51)

N

5 X'"=[5„X'"]„., + ', [II~(0)5 X'—IP (O)5„X."] .
mU

These are coupled, transcendental equations for the
changes in the baryon self-energy as a result of adding the
p-h state to the core. The equations decouple when the
core system is a filled Fermi sphere, II"(0)=0 and
11" (0) o-5;J. Then,

N

5„X'=[5 X']„., 1 — ', ll,
m

[cf. Eq. (42)],

(52a)

for [5HG(k)]RP~. Then, using Eq. (44) we obtain for the
total change in the Hartree propagator

5HG (k) = [5HG (k) ]„,

and

5HX [5HX 1 1+ I. 5HX ]RPA

II"„(0)[5HX']„,
mU

and

Uo 0
5HX' =I:5HX' ],.1

N

5HX" =I:5HX' 1.» 1—

(52b)

[cf. Eq. (35)] .

N

+ g" — II"„"(0) [5HX",]„„.
mv

(49)

In deriving Eqs. (48) and (49) one uses the expressions for
the full polarization insertions, Eqs. (45a) and (45c). Note
that, using Eq. (22) as well as (28), (29), and (11), the ex-
pression for 5HX is identical to Eqs. (25), (37), (30), and
(35) (Sec. II C) for the nuclear current and vector densi-
ties; similarly 5HX, Eq. (49), is similar to Eqs. (40)—(43)
for the scalar density.

Substituting the expressions for 5HX" [Eqs. (48) and
(49)] into Eq. (46) we can formally simplify the expression

(52c)

As noted in A, the RPA-corrected propagator
HG (k)+5HG(k) is still only an approximation to the
full Hartree Green's function for the core +p-h system.
The results obtained here are exact in the nuclear matter
limit, while additional contributions [of higher order in
1/0 (I/A)] are expected for finite, small nuclei. Such
calculations have recently been reported for regular nu-
clei [8]; we are unaware of such developments for hyper-
nuclei.

A brief summary of our results so far is given in the
next section, where we also discuss some of their possible
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applications. The importance of the phenomenological
mAA tensor vertex is discussed in Sec. IIIB, where we

apply the theory to hypernuclei.

III. SUMMARY AND DISCUSSION:
APPLICATIONS AND CONCLUSIONS

This section contains a discussion of useful applica-
tions of our results to a number of nuclear problems. In
order to make it somewhat self-contained we also provide
a brief summary here of our formal steps and a further
discussion of some physical aspects of the linear core
response.

A. Introduction and brief summary

Accurate MFT (Hartree) predictions of nuclear prop-
erties for the non-closed-core case (e.g. , one particle out-
side a closed shell, or a p-h state added to the core as con-
sidered in this paper), where spherical symmetry is lost,
require an extension of the closed-core, ground-state Har-
tree calculations to the non-spherically-symmetric cases.
This would imply a direct solution of the corresponding
self-consistent MFT equations for such systems, and
represents the most direct approach to pursue. However,
such self-consistent solutions are technically more
difficult to achieve, since the simplicity of the equations
and wave functions for the closed core is destroyed. This
is a result of the breakdown of spherical symmetry.

The alternative approach, adopted and described in
this paper, uses the single-particle nucleon wave func-
tions of the closed-shell system as a starting point for
describing the modified system. Self-consistency now im-
plies that the valence particle (hole) cannot be treated in-
dependently of the inert core and provide an external per-
turbation to the filled core. The additional meson fields
generated by the p-h are considered as static external
fields acting on the nucleons in the core. Thus, the
closed-core Dirac nucleons get modified. In a perturba-
tive calculation in nuclear matter, it has been shown that
the important effect of the added p-h is to cause a mixing
between the positive-energy core wave functions and
their negative energy counterparts with the same momen-
tum. This correction due to mixing of negative-energy
states can be summed to all orders using linear response
theory (RPA rings). This summation is implicit in the
full, self-consistent Hartree solution for the complete sys-
tem, and is a purely relativistic type of response that does
not occur in a nonrelativistic nuclear theory. Even small
changes in the single-particle Hamiltonian can imply
significant changes in some nuclear properties if all the
core particles contribute coherently. The difFerences be-
tween the linear response and the self-consistent calcula-
tion for the full system are of order 1/3, and the two ap-
proaches are therefore equivalent in nuclear matter. The
special interest in the linear response approach lies in the
clear identification of the pertinent physical effects.

In Sec. II B we have shown, using perturbation theory,
that it is incorrect to use the closed-core solutions in cal-
culating certain properties of the complete core+valence
system. Indeed, the core response to the valence p-h

state leads to important corrections in some nuclear ob-
servables. In the case of the baryon current j, for exam-
ple, these corrections are as large as the zeroth-order
valence result. Consequently, the inclusion of higher or-
ders of the core response is evidently called for. This task
has been carried out, within the linear response theory, in
Sec. II C.

Core-response corrections essentially restore the nonre-
lativistic value of the single-particle current, canceling
the Mii/Mii enhancement in Eqs. (7), (13), and (25). No
core-response corrections exist for the nuc1ear vector
density p„' O(1/A) modifications for the scalar density,
p„arises from the valence p-h contribution and the RPA
response. This difference between p, and j is a conse-
quence of the nonvanishing (vanishing) core contribution
to the former (the latter). It is important to note that the
core RPA response correction to p, is realized through
the scalar field (and not via the vector field as for j).

An interesting point to note is that it is possible to view
the relativistic linearized core response effect as a conse-
quence of Pauli blocking of certain NN rings, namely,
those involving a nucleon in an already occupied
positive-energy state. In this context we recall that the
full relativistic Hartree approximation (RHA) [2] in-
cludes contributions from the filled Dirac sea of
negative-energy states (antinucleons) to the nucleon self-
energy; in the MFT such contributions are neglected.
Thus, RHA linear response would include contributions
involving all possible negative-energy configurations,
which can be divided into a vacuum polarization part
(sometimes called the Feynman part) minus the part of
the vacuum response that is Pauli blocked in the nuclear
medium (the density-dependent part). The latter part
arises from the filled positive-energy states, and involves
the Pauli blocking of NN excitations that could otherwise
put the nucleon into one of these states. The vacuum po-
larization contributions have been neglected in the MFT
linear response, as discussed in Sec. II C. We can there-
fore regard the consistent MFT linear response in nuclear
matter as a Pauli-blocking effect [16]. This interesting in-
terpretation also emerges from Eqs. (31), (32), and (38)
upon substituting Eq. (23) and 1 ni, ~—n„, as in Sec—.
II C 3.

For completeness we note that the linear core response
to valence states is sometimes called "backflow. " This
rubric arises from an interpretation of the core response
as an actual retrograde coherent motion therefrom, or a
screening by the vector interaction that slows the valence
particles down. We have avoided this terminology in the
present work since it is unnecessary and even confusing,
as indicated recently by Noble [4].

It is interesting to note that nonrelativistic magnetic
moment predictions for closed-shell +one nucleon, in-
cluding the o.- and e-meson exchange two-body pair
currents (MEC) corrections, show that the Dirac isoscal-
ar magnetic moments are enhanced by the o. exchange
and reduced by the co exchange. This has been shown
[17] by Blunden, by Ichii et al. , and by Delorme and
Towner to lowest order in perturbation theory by calcu-
lating exchange current corrections using Feynman pair
diagrams, and is a general result of gauge invariance. In
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order to render a comparison with the MFT meaningful,
the scalar and vector exchange currents are assumed to
originate from effective fields, which do not have to cor-
respond uniquely and exactly to the same mesons con-
sidered in free-space physical processes. This is contrary
to the usual procedures in exchange currents calcula-
tions. Thus, neither free co mass and couplings to nu-
cleons nor the parameters derived in the various meson-
exchange potentials are used. One assumes instead, in
the spirit of the MFT, that the sum of the scalar and vec-
tor potentials is very small and negative (binding). Fur-
thermore, the MEC calculations of Blunden do not in-
voke phenomenological short-range correlations between
nucleons, nor hadronic form factors. (These have the
effect of reducing the heavy-meson pair graphs contribu-
tions. ) The large degree of cancellation between the scalar
and vector exchange currents leaves only a small net con-
tribution from these mesons. Here the direct (Hartree)
matrix elements (as opposed to the exchange) yield the
major contributions, while the Fock terms are small in
this case. The nonrelativistic and relativistic nuclear
baryon currents in nuclear matter are equivalent to
lowest order in the mesonic mean fields, differing from
the free convection current (i.e., q/M~ in the case of a
nucleon) by just a small binding energy contribution.
However, the meson exchange pair currents contribu-
tions are of a relativistic origin, and amount to a pertur-
bative addition of relativistic corrections; the term "non-
relativistic" applies to the exchange currents only in the
sense of a nonrelativistic reduction. Since we have com-
pared here a nonrelativistic and a relativistic result, we
note that the latter case does not allow for a model-
independent separation of "orbital" and "spin" contribu-
tions to the magnetic moments.

Moreover, it has been pointed out by Bentz et al. [4]
that no enhancement of the nuclear current due to the re-
duced bound-baryon effective mass is expected, based on
the Ward-Takahashi identity in a general framework (not
restricted to the o.-co model). For isoscalar nuclear
currents in the Hartree approximation to the o.-co model,
the Ward-Takahashi identity results in the RPA core-
response correction discussed in Sec. II C.

B. Applications

Several important and interesting applications of our
results will be discussed and suggested in this section;
some will be looked into in depth, while the rest will be
only brieAy mentioned. They include relativistic studies
of hypernuclei (our main subject of study here), @+-
nucleus interactions, meson (especially pro and K+) pho-
toproduction on nuclei, photonuclear processes: photon-
or electron-induced nucleon knockout (y,p) or (e, e'p)
and proton radiative capture (p, y ), inelastic scattering of
various probes off nuclei, and weak interactions in nuclei.
Since some of these applications comprise the subject
matter of a separate paper, they will only be described
briefly here. We hope to address such issues in detail in
future works. Other applications discussed here, howev-
er, are theoretically attractive but in practice yield very
small effects which cannot be detected experimentally.
These cases will also be discussed and explained.

1. Hypernuclear currents and densities

A A
gs gU

gs gv
(53)

It is interesting to note that this choice of couplings is
also found to be required to correctly account for the hy-
pernuclear binding in the work of Glendenning and
Moszkowski [71]. We are unable to comment on this re-
sult at this time, however, it is possible that a more de-

In this section we consider a hypernuclear system con-
sisting of a closed core of nucleons plus a A
particle —nucleon-hole state (i.e., a A hyperon which has
been produced on a closed-shell nucleus). Possible pro-
duction mechanisms are the strangeness exchange reac-
tion (IC,~ ) or the associated production reactions
(m+, K+), (y, K+), (p, K+). This section therefore in-
volves the application of the cr-co model to hypernuclear
physics, which is an area of great interest in nuclear sci-
ence [23]. A number of authors [7,14,24] have applied
Dirac phenomenology to hypernuclear studies and have
obtained interesting results. In particular, Cohen and
Furnstahl [7] have studied the core-response effect on the
magnetic moments of closed-shell plus A hypernuclei,
and found a difference between relativistic (MFT) and
nonrelativistic (Schmidt) predictions. The difference
arises directly from the core response and provides a use-
ful opportunity for an experimental test of the underlying
dynamical model. Due to its isoscalar nature, the A
hyperon represents a very suitable baryon for studies
within the o.-co model, where only isoscalar currents can
be handled. Furthermore, the large (and poorly known)
isovector many-body corrections are not expected to be
important for the case, and the A contribution to the nu-
clear magnetic moment results only from the anomalous
A magnetic moment pz = —0.613pz. These observations
make A hypernuclei a very attractive tool for studying
the applications of the relativistic o.-co model.

The formalism presented in this work enables us to
deal with closed-core plus A-h hypernuclei. Toward this
end we note that numerical values of the coupling con-
stants of the A hyperon to the o. and co fields are required
in places such as Eq. (36) or Eq. (43). From the phenome-
nology of hypernuclear binding energies and level split-
tings we know that the A couplings to the mean scalar
and vector fields are considerably smaller than the corre-
sponding nuclear values. Thus, one may reasonably con-
clude that g, , /g, , & 1. Furthermore, practitioners of hy-

ernuclear Dirac theory usually assume g, /g, =g, /g
that is, both Dirac scalar and vector potentials for the A
scale by the same factor from the nucleonic ones. Our
qualitative results do not depend on this assumption, and
we could adopt different ratios for the scalar and vector
coupling constants; however, this assumption is not un-
reasonable, since the large degree of cancellation between
scalar and vector potentials in the MFT demands that
they remain close in magnitude.

In order to achieve consistency with the empirics [25],
a possible choice for the coupling constants of the A
hyperon is
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tailed Hartree-Fock calculation could resolve the issue
[72]. These values [Eq. (53)] are based on extending the
pure scalar+vector o.-co MFT to achieve a Dirac theory
of hypernuclei using the Lagrangian of Eq. (1). For regu-
lar nucleons this model adequately describes the bulk
properties of nuclear matter. When applied to finite nu-
clei, the pure scalar+vector model also reproduces the
nonrelativistic standard shell model with a central poten-
tial V, = —53 MeV and a spin orbit V„=17meV. Al-
though finite nuclear theory is, for the most part, outside
the scope of this work, a meaningful discussion of hyper-
nuclei necessitates a digression here; moreover, the main
applications of the theory presented in Sec. II are for
finite nuclear many-body phenomena.

The above values, Eq. (53), for g, „are significantly
smaller than any naive quark model predictions for the
o., co meson-A coupling constants. The simple quark-
counting prediction with the s quark as a spectator is

g =—', g (m =cr or co) .

However with such high couplings the central and spin-
orbit potentials are predicted to be much larger than the
empirical ones, by up to a factor of 4. Most authors felt
compelled to assume the much smaller ratio, Eq. (53), al-
though we know of no theoretical justification for such a
small ratio.

In contrast to the nonrelativistic shell model for ordi-
nary nuclei, the o.-co model explains the large spin-orbit
and shallow central potentials naturally in its nonrela-
tivistic limit. For hypernuclei, on the other hand, the A-
nuclear spin-orbit interaction is small and the nonrela-
tivistic shell model seems to be a perfectly satisfactory

I

g+2( 1 &~ = 3gFD (g )+2 u~(p )u~(p) (54a)

in the bag model (BM), or, in the constituent quark mod-
el (CQM):

starting point. In this case, the pure scalar+ vector
Dirac model yields a much too large spin-orbit interac-
tion. This is a result of the connection between the cen-
tral and spin-orbit potentials in the Dirac approach.
However, recent experiments consistently indicate a very
low limit on the A-hypernuclear spin-orbit potential [26].
It is impossible to accommodate a reasonable central po-
tential, capable of producing a bound A hypernucleus,
along with a very small (perhaps vanishing) spin-orbit po-
tential. A number of papers [18—22] have recently raised
the possibility of a large coAA tensor vertex. When in-
cluded in the MFT o.-co Lagrangian as an additional phe-
nomenological term, this tensor vertex transforms the
complicated A-nuclear single-particle Dirac equation
with scalar, vector, and tensor potentials into a simple
nonrelativistic shell model wave equation with just a shal-
low central potential in the nonrelativistic limit [21].
Predictions for X and:- hypernuclei have also been made
[21].

We now present a brief summary of the approach out-
lined above, in a quark model [19] that goes beyond the
broken SU(3) fiavor symmetry by extrapolating the chiral
invariant vector coupling of the QCD Lagrangian to long
distances starting from a Fierz transformation of its
quark action. The model includes relativistic effects of
the interacting quark in terms of its small Dirac wave
function from some confinement model (in a bag or con-
stituent quark model). For the nucleon, the scalar meson
vertex is given by [19]

g&2(1 & =3g&2 1—
4m

1+
4m

uz(p')uz(p)exp(g /6a) . (54b)

Here g is an overall meson-quark coupling constant, p,p' are nucleon momenta, Q is the four-momentum transfer, and
m is the constituent quark mass. The following overlap integrals will be used here:

R
Eo (Q )=4m f dr r [g (r)+f (v)]jo(gr)

0
(55a)

F&(g )=16m f dr r g(r)f (r)j&(gr),
q 0

(55b)

where R is the bag radius and M the baryon mass of the relevant meson-baryon vertex, and f (r) and g (r) are the lower
and upper components of the Dirac spinor.

The nucleon-vector meson vertex is given by

2

uN(p ) xT+0 + 3 T+1 1
" (~TF. ,'~—T+i ) ~" Q.8M~ 2M~

I
uN(P ) +1Tr + +2T~ Qv (rN ) uw(p)

2M~
(56a)

in the BM, and

2

u~(p ) r» — r, ) (r„2~—„r,)
—' ~~"g. (r)'u„(p),

N 2m~
(56b)
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in the CQM. In Eqs. (56)

xT=3', yT= —2( —', )T,

and

given by

2
' —1

(AIgy" lA ) =2g 1—, Fo+uA(p')

aI OT= 1+
4m

3' 1+ 1+
4m ' 9o'

yielding the ratio

X y"— o" Q uA(p) (62)

X exp 6a (sga) f ~AIg ~A= —1 (63)

r, = 1+
4m

T
5 1 2

exp
3 3m 6a

(58b)

g~»=gF~o(Q =0):3g (BM)

g»=gI'oo(Q'=o)=3g «QM) .

(59a)

(59b)

Also, r (~z) is the quark (nucleon) isospin operator, and
T=O or 1; obviously T=O for the co meson. The co meson
couples via igy" to each of the three valence u or d
quarks, so its coupling to the nucleon is ig(y")~. The
co-nucleon vector coupling constant in this model is given
by

This ratio is independent of a fitting procedure to a par-
ticular set of data, in contrast to the nucleon case, Eqs.
(61). It is indeed, independent of the magnetic moment of
the A, which comes from the o.-matrix element of the s
quark and does not tell us anything about the value Eq.
(63). (See Ref. [21] for more details. )

When applied to hypernuclei, these results bring about
considerable changes compared with the pure
scalar+vector model. The latter come about because of
the ratio f AA Ig AA, Eq. (63), being both large and pre-
cisely equal to —1, relative to the small nucleon value,
Eq. (61b). The strong aiAA tensor coupling adds an extra
term to the MFT Lagrangian,

The co-nucleon tensor coupling is given, respectively, by

f.» =gF»(Q'=0)

fcoAA
4~~ F„.4A (64)

= —3gFo (Q =0)+gF, (Q =0) (BM), (60a)
where F„=B&V —8 V„. Using Eq. (63) and the on shell-
Gordon decomposition in mornenturn space

f »= g[l~(Q'=0) —2M 1.o(Q'=0)]
' 2M~=g 3+ (CQM) .

3m
1+

4m
(60b)

f~» Ig~» = —0.47, (6 la)

while from the nucleon anomalous magnetic moments

Fitting m to the measured nucleon mass and a to the
known value for the axial-vector coupling constant
g~ = 1.25, we find a fairly large tensor-to-vector ratio:

(p+p"')„
2M A A

(65)

'y„B"—M +g V„—g, P .g =0 . (66)~ (p+p')"

where p,p' are the initial and final A four-momenta, Eqs.
(63) and (64) result in a pure convection current coupling
[Eq. (65)] between the A and the vector mean field. The
single-particle Dirac equation for a A embedded in a hy-
pernuclear system is

f »Ig.» = —o o9 . (61b)

This small value, Eq. (61b), is in good agreement with the
hadronic phenomenology [27]. Of course, arguments can
be given pro and con a fit to the measured nucleon mag-
netic moment values. It has been shown [21] that the re-
sult (61b) is stable relative to small changes in the nucleon
isovector and isoscalar magnetic moments and that the
procedure leading to Eq. (61b) also yields a tensor-to-
vector ratio for the pNN coupling which is closer to phe-
nomenological values.

The small tensor-to-vector ratio of Eq. (61b) agrees
well with the MFT Lagrangian for nucleons. For the A
hyperon we adopted [21] the uds basis, where quarks are
treated as distinguishable and the u, d quarks are explicit-
ly antisymmetrized. Assuming no admixture of strange
quark content in the co (or the o), the Okubo-Zweig-
Iizuka (OZI) rule implies that the mesons will couple only
to the u and d quarks. The coAA vertex is consequently

As shown in Refs. [20,21], this resolves the outstanding
problem of the small A-hypernuclear spin-orbit interac-
tion. The final result is [21] a transformation from a
complicated A-hypernuclear single-particle equation with
scalar, vector, and tensor potentials to a simple Dirac
equation virtually equivalent to the nonrelativistic shell
model with only a shallow central potential. (Note that
this discussion relies on the intensive nature of the ob-
servable, where only the time component of the four-
vector potential is important. )

In Ref. [21] the coAA tensor coupling, Eq. (64), was de-
rived from a quark model. In a purely hadronic theory
such terms are sometimes put by hand into the Lagrang-
ian, in analogy with magnetic-moment contributions of
Pauli type representing the interaction of the electromag-
netic field with the anomalous magnetic moment of the
baryon [cf. Eq. (67) below]. It has been realized that such
contributions should emerge (in terms of hadronic de-
grees of freedom) as higher-order perturbative correc-
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tions in the field theoretical calculations [28]. However, a
complete theory along these lines has never been worked
out; indeed, very similar words were written 40 years ago
[29] in very similar circumstances. It is important to
keep in mind, however, that the magnetic moments and
tensor couplings should not be treated as tree-level con-
tributions in the strict hadronic theory sense.

The preceding discussion may question the necessity of
a A-Dirac model. However, in a hypernucleus one deals
with nucleons and the hyperon simultaneously, and the
Dirc approach provides a natural framework for dealing
with both, without ad hoc forces. Thus, we consider the
results of Ref. [21] for A hypernuclei as a success of the
Dirac-MFT, because such a consistent and natural
description for both nucleons an a hyperon does not seem
to exist in the nonrelativistic shell model.

With the co-A tensor coupling included, the larger
values for g predicted from the quark model are no
longer ruled out, although a further decrease in the ex-
perimental limit on the A hypernuclear spin-orbit in-

teraction, if found in the future, is likely to change this
situation. Thus, we will consider values for g /g in the
range of 0.4 [Eq. (53)] to 0.7 (quark model values) reason-
able. However, our qualitative results will not depend on
these particular numbers.

Since the core response eAects are small for the single-
particle energies we shall deal with the magnetic mo-
ments and scalar densities of hypernuclei. We start with
a pure scalar+ vector theory (without the tensor cou-
plings) and then examine the eifect of the tensor terms on
the results. Magnetic moments of closed-shell plus one A
hyperon have been given by Cohen and Furnstahl [7],
while those of closed-shell + one isoscalar nucleon are
presented in Ref. [5].

In the present framework, where the A hyperon and
hole currents are separately corrected by the core
response in nuclear matter, the total isoscalar effective
electromagnetic current [2] in the hypernuclear ground
state is [cf. Eq. (36)]

N

& J(x) &
= —

—,
' Uz(x)a Uz(x) 1 — IIT

Pl
Vx [ U~(x)PX U~(x)]

N

A 2
—

—,'U (x)aU (x) 1+,II
gN gN

+ Vx I UA(x)PXUA(x)],
N

(67)

in a pure scalar+ vector theory (without tensor couplings
yet). Here Us (x ) (8 =A, X) is the Hartree single-particle
solution for the A or X in the meson fields of the closed-
shell core [2], the isoscalar nucleon anomalous magnetic
moment is ~, =(~ +~„)/2, IIT =——p, lEk from Eq.

F
(33), a and p are the usual Dirac matrices, and

o. 0X=

Note that the A has no charge, so its valence current is
not detected by an electromagnetic probe, but we must
include the relativistic core response current, which
modifies the electromagnetic current and the magnetic
moment. The anomalous magnetic moment operators
themselves are not modified in the present model [30]; the
corresponding elementary contributions to the nuclear
current in Eq. (67) are consequently not appreciably
modified in the present model, because the Dirac matrix
pX does not mix upper and lower components. Note that
in a nonrelativistic shell-model picture, the A contribu-
tion to the total current results only from the anomalous
component.

Based on systematics of regular nuclei, where the
Schmidt values for the magnetic moments agree with
measurements for even-even or odd-odd nuclei in the
neighborhood of doubly-magic nuclei, we expect even-
mass hypernuclei to be well described by the simple
configuration

I j&Sjz & . The magnetic moments of

' (or A&) states are obtained by coupling a nuclear
moment, (p&) and a A-hyperon moment (pA). The total
hypernuclear spin J is obtained by coupling a nuclear
spin jN with a A-hyperon spin. If the hyperon is assumed
to be in the s

& &~ state (which is, of course, a very reason-
able assumption for the purpose of determining magnetic
moments via weak-decay mechanisms), then the hypernu-
clear ground state is simply described by
[(6 )+' As in ]J.

Magnetic moments of the 1V 'A, XA systems are
given by [31]

2jN —1 2jN+2 2jN —1P(J=j.——,')&=
2 2 +1&V &

—
2 +1&PAjN

(68)
&i (~ =J +-,') &

= &i &+ &i .&,

where & pz & is the nuclear magnetic moment of the j~
state and & pz & the A-hyperon moment of the s, &z state.
A similar result can be obtained by applying the general-
ized Lande formula (see Eqs. (9.16) and (9.21) in Ref.
[32]).

Because of the numerical values of p, p„,pA, we find
that the magnetic moments of p A systems are non-
negative, while those of n A systems are nonpositive. For
XA systems the Schmidt lines of J=j„+—,

' are straight
lines on a Schmidt plot of & p & against jz, due to the ad-
ditivity of magnetic moments of such stretched states,
Eq. (68), considering the Schmidt lines of regular odd-
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mass nuclei with spin ~&
= l&+ —,'.

Using Eqs. (68) and (36) it is now possible to calculate
the MFT results for the magnetic moments of A-hole hy-
pernuclear states. From Eq. (36) we find that the particle
and hole currents are individually corrected by the core
response; this observation depends on the approximations
used in our model, which we believe to be justified for hy-
pernuclear A-h systems. In particular, neglecting the
two-particle A-h interaction, each core-response correc-
tion is of the type depicted in Fig. 1. We could use,
therefore, previous results by Cohen and Furnstahl [7]
and by Furnstahl and Serot [5] (for a A hyperon or for a
nucleon outside a closed shell, respectively) in Eqs. (68).
However, it can be reasonably argued that such a calcula-
tion would be an empty exercise from the experimental
point of view, since hole-state magnetic moments are nei-
ther very well described by the Schmidt model nor by the
"valence-plus-core" relativistic MFT. To a large extent,
this comes about because of the isovector component of
the nucleon magnetic moment; the MFT is primarily an
isoscalar theory. We therefore use here the experimental
values for the nuclear contribution to the magnetic mo-
ment [(p~) in Eq. (68)]. Since isoscalar magnetic mo-
ments are well described by the MFT, one might also
consider the (isoscalar) combinations of A particle—
neutron hole plus A particle —proton hole. However
these are produced at two different reactions [(E,vr )

or (m+, X ) for the A particle —neutron hole and (p, A+),
(e,e'K+), (y, E+) or a reaction of a similar type for the
A particle —proton hole] requiring two separate hypernu-
clear experiments, increasing considerably the experimen-
tal error. The hyperon contribution, on the other hand,
is believed to be reliable since the A is purely isoscalar.

Magnetic moment contributions for A particle—
neutron-hole states, where the initial nuclei are ' 0, Ca,

Zr, and Pb are given in Table I. The A single-
particle is assumed to be the 1s,&z, because unlike nu-
cleons the A is not Pauli excluded from any of the nu-
clear occupied states; the hypernuclear lifetime ( —10
sec) is large enough to allow the hyperon to reach the

I

A standard manipulation [35] gives

=E~g~(r) . (69)

1s
& &z state. We note that in certain cases, such as z' 0

and A Pb, large differences occur between the relativistic
and nonrelativistic predictions, resulting from the core
response to the A hyperon (which is a purely relativistic
eff'ect). These results are certainly encouraging; however,
the pertinent measurements are dificult to carry out and
would require a major experimental effort [33]. This is
the only case we are aware of where a careful relativistic
calculation provides a prediction which is difFerent from
the nonrelativistic one for a pure scalar+ vector model.

The possibility of the strong tensor coupling of the co

meson to A, Eqs. (63) and (64), aff'ects the magnetic prop-
erties of hypernuclei within the framework of the
minimal o.+cu model. Gat tone, Chiapparini, and
Izquierdo [22] have recently calculated numerically the
eff'ect of the tensor Lagrangian term, Eq. (64), on the re-
sults of Ref. [7]. They find that the resulting predicted
magnetic moments of A hypernuclei are restored back to
the nonrelativistic (single particle) predictions, when the
A single-particle state is assuaged to be 1s &&z. On the oth-
er hand, Gattone et al. find relativistic theoretical
modifications of the A hypernuclear magnetic moments
for higher A single-particle states, similar to Ref. [7].

While this eFect is beyond the scope of this work
(which is limited to nuclear matter) we believe that the
present work will be incomplete without a proper discus-
sion of the tensor coupling. Without repeating the calcu-
lation of Gattone et al. [22] we can provide a physical in-
sight into their nuclear results in an analytical and intui-
tive manner [34]. We will have to deal with a finite sys-
tern; a compact and self-contained derivation will be pro-
vided in the ensuing discussion.

Toward this end we start with the nucleon Dirac equa-
tion obtained from the Lagrangian of Eq. (1):

[ ia V+—P(M~ —g, Po)+gv Vo agrV]g~(—r)

2(E~ gt Vo)g—~(r)a/~(r) = if~(r)(V V—)giv(r)—+V X [g~(r)XA (r)] 2gv— (7O)

TABLE I. Hypernuclear magnetic moments (in units of p&) predicted in the present model for A-
particle —nucleon-hole states with J=j&+ —' [see Eq. (68)]. The A single-particle state is assumed to be
1s»2 (see text). With the free A-hyperon magnetic moment p&= —0.613p&, the nonrelativistic
Schmidt value (p~ ) = —0.613@~as well.

Hypernucleus

16O

16N

40C

40K
90Y
208Pb

A Contribution

—0.648
—0.648
—0.665
—0.665
—0.676
—0.681

Nuclear
contribution
(measured)

0.719
—0.283

1.022
0.391

—0.137
0.583

Total magnetic
moment

0.071
—0.931

0.357
—0.274
—0.813
—0.098

Nonrelativistic
prediction

0.106
—0.896

0.409
—0.222
—0.750—0.03
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The first two terms on the right-hand side of Eq. (70) are
convection and spin contributions, while the third one re-
sults from the spacelike vector potential V. Note that
f„NN—=0 and there is no other spin contribution in the
nucleon case.

The spinors fN in Eqs. (69) and (70) are the solutions
for the bound state single-particle wave functions of the
entire system (nuclear core + hyperon), not just the
closed-core (spherical) problem. Equation (70) can be
compared with the Gordon decomposition, Eq. (65), for
free, on-shell nucleons. Gattone et al. [22] use Eq. (65) in
an approximate finite nucleus calculation. Since for
infinite nuclear matter uNuN=(E„ /MN )uNuN, Eq. (70)
can be reasonably described as the Gordon decomposi-
tion with scalar and vector interactions included. It ex-
plicitly contains the spin, orbital, and vector potential
contributions.

The three-vector V in Eqs. (69) and (70) is related to
the baryon current, see Eq. (11). Although it is exact
only for nuclear matter we assume its validity here.
Thus, the total nucleon contribution to the baryon
current density can be expressed as

jN= g WN~A
N

[igN(V V)% +V X(g—NXPN))
N 2(EN g V ~0)

N 2
gv1+
Pl v EN —g v~0N

igNg Y

2mv

PNX jY.
+N gV VO

(73)

jB jN+jY l+ PN

. m . &N —gv~oN

gV N N PN1+, (gv —gv)—
mv EN —gv P'0

(74)

[cf. Eq. (67)]. This result gave rise to a relativistic effect
when compared with the nonrelativistic extreme single-
particle Schmidt theory. The main advantage of the
present derivation is that it allows us to account the coAA
tensor coupling (which is not possible in a model of
infinite nuclear matter).

The additional tensor coupling, Eqs. (63) and (64),
modifies the A vector current

/~a/A= i
- [i/~(V V)g—A2«A —gAI'o)

+VX(VAXWA)]

This result is similar to that obtained in Ref. [7], since the
total baryon current

2

gNV
PN 4N

N gV 0

(71)

PN
jN gV — N jh

N gV 0

where pN is the vector density of nucleons [cf. Eq. (15)].
Note that jN (and V) does not vanish since the spinors

gN in Eq. (71) are solutions of the many-body equation
(69) for the whole-nucleus model (and not just the spheri-
cally closed core).

We can now use Eq. (11) to solve for jN. Since the con-
tributions of the hole (jh) and the hyperon (j~) are in-
dependent in this model, the present argument is best
demonstrated by focusing on the hyperon part alone.
(The hole part is not affected by the present mechanism
and remains virtually unmodified relative to nonrelativis-
tic predictions [5].) Thus, the pertinent contribution is

In order to proceed we now assume that the energy
denominators can be taken outside of the sums, using an
average energy EN. The first term vanishes for closed-
shell nuclear configurations (with total orbital and spin
angular momenta equal to 0). Moreover, in calculating
nuclear magnetic moments the orbital contribution
would vanish for closed-shell, L=0 configurations
[p ~ Idr —,'r && j(r) ]. Only the hole contribution jh is left.

The last, nonvanishing term in Eq. (71) gives

by adding to it the tensor term

V X(t/~PXQ~) . (76)
g v~ 2M~

This extra (tensor) part, Eq. (76), is obviously expected to
modify our previous results (Table I and Ref. [7]) for the
hypernuclear magnetic moments.

For clarity of presentation we will deal with an s-state
A (no orbital contributions) first, and then with I )0 A
single-particle states. (The s-state A is, of course, our
main interest here. ) Such s states are described in terms
of real functions, so the first term on the right-hand side
of Eq. (75), namely, the one containing (V —V), does not
contribute to the A baryon current.

Since the A is electrically neutral, it contributes to the
hypernuclear electromagnetic current only through its
anomalous magnetic moment A (no orbital contributions)

j~™(r) = V X [PA(r )PXQA(r ) ] . (77)
2MN

This contribution is very close to the Schimdt value with
deviations of the order of 0(fz/g~A). The closed core
contribution

j:-.(r) =1/2 X 4N~4N
core

is identical in form to the nuclear baryon current in Eqs.
(71)—(76).

Our previous results (Table I and Ref. [7]) were ob-
tained when only a pure-vector cuAA coupling was used
in the closed core current j,'„,. With the presence of the
tensor terin, Eq. (76), the closed core contribution to the
magnetic moment is
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A
1 gvgv

I core 4 mv

N '2

1+ "
mv EN gv Vo(r)

px(r)

Ee gv Vo(r)

XrX IittA(r)(V —V)QA(r)+ VX[/A(r)X/A(r)]]+ „VX(QApXQ~) . . (78)
2[E~—gv Vo(r)] g v~ 2M~

rX,

In Eq. (78), it is possible to replace the density pz by the vector potential using pz =(m v/gv ) Vo.

For an s-wave A the term containing V —V vanishes. Using the methods of Ref. [35] once more, and Ileglecting
terms O(v /c ) (where v is the typical, average velocity of the A in the nucleus), we find

V, (r) V, (r) 1
I care= gv f d I+gv

Ez gv —Vo(r) E~ gv Vo(—r) 2E,

M~+ V X [g~(r)XQ~(r)]
gv 2M~ E~

(79)

Using Eq. (63), and noting that the derivatives (VX
operator) limit the values of r to the nuclear surface
where differences between M~ and MA are small, we find
next that

I core

This interesting result means that for a A hyperon in the
1s state, and in the presence of coAA tensor coupling, the
core contribution to the hypernuclear magnetic moment
is nonexistent or small and the expected result is simply
the Schmidt single-particle value. This result is in agree-
ment with the numerical calculations of Ref. [22]; here
we have provided the physical insight into those numeri-
cal results.

For higher orbital angular momentum (l~) 0) states,
orbital contributions do arise from the term involving the
(V —V) operator in the hyperon current. Note that this
term does not contribute to the A electromagnetic
current since the A is electrically neutral, but it contrib-
utes to the A baryon current and to the total nuclear elec-
tromagnetic current for lz) 0 . The pertinent orbital
contributions are large and their net contribution to the
electromagnetic current is always negative [7,22]. In or-
der to understand further the results of Ref. [22] we point

I

out that the last two terms of Eq. (78) (namely, the
anomalous —or tensor —type terms) still mutually cancel
for l~) 0. Thus, the nonuanishing contribution comes
from the first term (involving the V —V operator). How-
ever, this term is also the only contributor to a nuclear
matter or a local-density approximation (LDA) calcula-
tion such as Ref. [7]: no magnetic-moment-type contri-
butions exist in nuclear matter.

Thus, for lA )0 there is a great similarity between the
nuclear matter (or LDA) and the finite-nucleus calcula-
tions when the latter includes the effect of the coAA ten-
sor coupling. We therefore expect the LDA results of
Ref. [7] to be in good agreement with I& )0 finite-nucleus
calculations of Ref. [22]. The core contribution is nega-
tive in both cases and its magnitude is also similar, with
differences at a 1evel which can be fully expected when
comparing an LDA with a finite-nucleus calculation.

Using similar steps we have also derived the dynamical
electromagnetic matrix element between states differing
only in the hyperon orbital. The same techniques that
led to Eqs. (70), (71), (75), (76), and (78) yield the total
electromagnetic matrix element for the closed nucleon
core+A:

&f jli&=&f jA li&+&flj;.„Ii&

V X [4~ (r»&4~ (r ) ] gv ———Vo(r)

Wv 2 Ex gv Vo(r)

X . Ig (r)(V —V)P (r)+VX[/ (r)XQ (r)]]
EA +EA 2gv Vo(r)— f i

f i

+, VX[yA (r)rq~(r)] (80)

Based on arguments leading to Eqs. (75), (76), and (78),
the contribution to the A baryon current (j~) is very
small [i.e., the last two terms in Eq. (25) cancel each oth-
er]; we find that our observations for the hypernuclear
magnetic moments also hold for the dynamical elec-

tromagnetic current matrix element.
The preceding discussion would be valid in the pres-

ence of a nucleon hole as well, since the hole and hyperon
currents are independent in this model.

We have thus demonstrated in an intuitive, analytical
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M~ 1+
Q EA*

A N
gs gs

gN m2

N2

m S

gN
1 — II,N* m2

q S

(81)

In order to obtain a numerical estimate we now assume
that the A hyperon is at @=0, while the hole is at q —=kF.
This situation corresponds to a nucleon close to the Fer-
mi surface, which is converted into a A at the lowest pos-
sible hyperon single-particle state. Equation (81) then
gives

(hypernuclear) (cc)=1
S 0,

N

1 —' II,
m S

A
Ns

gN

manner that the results of Ref. [22] can be understood
from those of Ref. [7] upon adding coAA tensor coupling.
We have considered finite nucleus, bound-state wave
functions for the full system (nuclear core plus hyperon)
and used generalizations for finite nuclei of the Gordon
decomposition, analyzing full nuclear currents (including
the induced core contribution). The approximate spin in-
dependence of the A baryon current depends, of course,
on the precise numerical value of Eq. (63). This value
would differ for other hypernuclei [21]. However, experi-
mental studies of the currents of the more exotic hyper-
nuclei (X, :-, etc. , hypernuclei) are not expected in the
foreseeable future.

Another possible application of the present results in-
volves the scalar density, p, . The modification of the
closed-core quantity, p,'"', by the hypernuclear A-hole
state is seen from Eq. (43) to be

(hypernuclear) (cc)
S S

heavy nucleus is about 0.15 fm, and this is very close to
the nuclear matter result. We shall therefore use
I/0=0. 15/A fm to obtain

(hypernuclear) (cc)
—0.024 3

S

This is evidently a very small effect, even for a relatively
low 3 =10.

Note that for the case of a closed-shell nuclear core
plus an extra A hyperon (such as ~ 0 or AA Pb) the effect
on p, is much larger,

0.96 0. 14
5p, = = fm

because one does not have to subtract the hole contribu-
tion. However, even this correction to p, is too small to
be measured.

In principle, a potentially useful way of measuring p, is

by studying meson scattering. As discussed later, the
pion is not a sensitive enough probe for this purpose, but
K+ scattering is a promising candidate when high-
precision hadronic measurements are called for. Since
K+-hypernuclear scattering cannot be studied directly at
this time, one could resort to K+ production reactions.
For obvious reasons, the cleanest of such reactions would
be (y, K+ ) or a reaction involving the strangeness-
changing weak-interaction mechanism such as
e p ~A+ v, [36]. The useful interpretation of such pro-
cesses will not be free of ambiguities, however [37], and
such small effects, although theoretically interesting, can-
not be successfully measured at present.

Concluding our discussion of hypernuclei we still be-
lieve that the most promising scenario for probing the
effect of the strong MFT potentials is via hypernuclear
magnetic-moments measurements in a closed-shell plus A
system [7,22,34]. Such measurements are experimentally
difticult, however. Other effects we have looked into
prove to be too small to be experimentally detected.

MN

EN
kF

N2

1 —' rr,
m S

(82)

The numerical input used is similar to that at the end of
Sec. II C 3, following Eq. (43). Since (g, /m, )II,= —0. 11, the core-response correction to p,'"' is small.
This has already been pointed out to be the case for nu-
cleons [following Eq. (43)]; although core-response
corrections are somewhat larger for hypernuclei, the
changes in p, come mainly from the valence contribu-
tions. The overall effect is of order I /3 but is physically
interesting and theoretically attractive. Unfortunately,
the actual magnitude of this effect is too small to be stud-
ied experimentally. Indeed, we find

(hypernuclear) (cc) 0. 16
S 0

The finite Hartree result [2] for p, at the center of a

2. Meson nucleus (e-specially K+ ) scattering

T = 2 (s, t)+ ,' [(K, +Kf )—y]B(s,t) . (83)

The functions A and B depend on the Mandelstam vari-
ables s and t; E; and Kf are the initial and final kaon mo-
menta. This form, Eq. (83), is valid for on-shell scattering

In this subsection we deal briefly with meson elastic
and inelastic scattering off nuclei, evaluating its role in
our study of relativistic nuclear response. Much of the
following discussion is true for all mesonic probes
currently used in nuclear studies, namely, the pion, K+,
and K . However, the E+ meson holds the promise of
providing the cleanest mesonic probe for nuclear physics
with very small theoretical uncertainties [38]. Conse-
quently we shall mainly discuss here applications involv-
ing K+ mesons.

The Lorentz-invariant meson-nucleon T matrix, which
is a Dirac matrix (dimension 4X4) in the spinor space
can be decomposed as in Chew, Goldberger, Low, and
Nambu [39]:
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or partly off-shell where the nucleon is on-mass-shell but
the meson is not.

Elastic meson-nucleus scattering can now be studied in
the impulse approximation and within the relativistic nu-
clear MFT. For a closed-shell nucleus (where data exist),
only the scalar [3 (s, t)] and fourth (timelike) component
of the vector part [ ~ y B (s, t)] contribute to the elastic
transition matrix element. Thus, no large effects of the
enhanced small components in the Dirac single-particle
spinors are present. We note, however, that the elastic
scattering amplitude will depend on both the vector
( ( PN gz ) ) and scalar ( ( Pzg& ) ) densities in this
description. This is at variance with the nonrelativistic
calculation, where no difference occurs between p„and
p, . Since the latter is smaller by as much as 7% than the
former [12], this may prove to be an interesting possibili-
ty to explore [40]. Furthermore, Wallace [40] has looked
into the vacuum polarization corrections for the scatter-
ing amplitude. Such corrections affect differently the sca-
lar and vector densities [41], thereby contributing to fur-
ther modifications in the transition matrix. The overall
effect turned out to be small relative to present discrepan-
cy between theory and experiment [40]. (This is a
closed-shell, ground-state relativistic effect and does not
involve any core response. We note that in order to get
an appreciable effect it would be necessary to find a situa-
tion where the scalar-density contribution is dominant.
This does not seem to happen for threshold E+ scatter-
ing. Moreover, the E +-N Lorentz-invariant amplitudes
do not have large scalar and vector components with op-
posite signs such that changing the difference p, —p, has
a large effect. ) Note that [38] K+-nucleus elastic scatter-
ing calculations are in much better agreement with the
experimental data for Ca than for ' C, but a systematic
3 dependence has not been established yet.

The total EC+-nucleus scattering cross section poses an
interesting puzzle [38]: the ratio of the total cross section
of E+-carbon to E +-deuteron scattering shows a
discrepancy between theory and experiment, with the cal-
culated cross section roughly 10—15 % below the experi-
mental one. The total cross section is evaluated from the
forward scattering amplitude through the optical
theorem, thus a similar effect from the difference between
the scalar and vector densities could also be of interest.
Although not expected to be large, this is certainly an in-
teresting correction to look at.

Returning to the main subject of the present work, we
now discuss the core-response corrections in inelastic
meson-nucleus scattering. In view of the Lorentz struc-
ture of the T matrix [see Eq. (83)], the situation is similar
to inelastic electron scattering [42]. We shall be interest-
ed in a relatively simple model of one-particle —one-hole
excitations of closed-shell nuclei, where the reaction is
studied within the impulse approximation (this is an ap-
proximate tool for studying medium-energy E+-nucleus
interactions). The term in T involving y gives rise to
scattering amplitudes which are linear in the lower com-
ponents of the Dirac spinors. Using closed-shell spinor
solutions for the description of the p-h states would
enhance the cross section for such excitations relative to
the equivalent nonrelativistic results (by approximately

M~/Mg ). An example is [42] the 1+, T=O excitation in
' C; we can only deal with isoscalar excitations within the
present model, as already explained. The 1+, T=1 exci-
tation [43] in ' C is, therefore, not appropriate for studies
within the o.-co model.

In the spirit of our preceding discussion, a consistent
relativistic treatment must include the core response as
well. Even if we model the excitation as a pure p-h state
neglecting conventional particle-hole interactions, the
core-response effects cannot be neglected in a relativistic
nuclear-model calculation. Thus, the core response shall
significantly affect the enhanced isoscalar p-h transition
currents, just as it suppresses the nuclear ground-state p-
h convection currents in this framework (in the spirit of
Sec. II 8). This calculation is not identical with those
presented in Sec. II, since it involves transition matrix
elements rather than the "diagonal" bulk nuclear proper-
ties and nonzero momentum transfers, QWO. However,
the pertinent core response is a slowly varying function of
four-momentum for low-lying excitations, so the underly-
ing physics and much of the current ideas can be directly
applied. A detailed specific application is the subject of a
different work.

3. m. and K+ photoproduction;
md% and KNA nuclear vertices

In this subsection we introduce the motivation for and
discuss relativistic MFT studies of meson photoproduc-
tion reactions. We start with a discussion of threshold
(y, vr ) and then turn to (y, IC+). The effect of the nu-
clear many-body medium on the ~NN and ENA vertices
is also discussed, and the relevance of the relativistic core
response is examined.

Dealing with pion photoproduction we shall only be in-
terested in the threshold region, in order to avoid the
necessity of dealing with the 5-isobar contributions
(which are dominant away from threshold but are not yet
included in the relativistic cr-co model). Furthermore,
charged-pion photoproduction processes are purely iso-
vector and, consequently (as already discussed), are not
well understood in the pertinent model. We shall thus be
interested in neutral pion photoproduction where the ~
kinetic energy is of the order of 10 MeV.

Under these conditions the free reaction is described
(in an effective Lagrangian approach) [44] by tree-level
diagrams with exchanges of a nucleon in the s and u
channels, and an co meson in the t channel. The nucleon-
exchange diagrams provide equal isovector and isoscalar
contributions to the transition operator. The ~ produc-
tion cross section is much smaller (by about 2 orders of
magnitude at threshold) than the corresponding n cross—
section since the dominant Kroll-Ruderman (catastroph-
ic) term is missing in the former case. This is also the
reason one expects the (y, m ) reaction to be sensitive to
the scalar mean field (or M~ ).

Of special interest to researchers working on this topic
is coherent photoproduction [45,46]. In contrast with
charged pions, neutral pions can be produced coherently
from nuclei on neutrons as well as protons while the tar-
get nucleus remains in its ground state. Coherent neutral
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pion photoproduction occurs over the whole nuclear
volume. In the impulse approximation the amplitude for
the process is the sum of the elementary amplitudes for

production on single nucleons. Thus, this is a "bulk"
nuclear process. As a result of the small (y, vr ) cross sec-
tion as well as difficulties in detecting in coincidence the
photons following the ~ decay, only a small amount of
work has been done since the pioneering studies of
Schrack, Leiss, and Penner [45]. This situation is chang-
ing rapidly, however [45].

Coherent photoproduction of neutral pions provides,
therefore, a considerable enhancement of the cross sec-
tion for the ground-state transition. Unfortunately, the
process is not appropriate for a study of relativistic nu-
clear currents and core-response effects: while all nu-
cleons can contribute coherently in spin-independent pro-
duction, the spin-Rip contributions are nonexistent for
elastic coherent production from closed-shell nuclei, or at
most only a few nucleons can contribute coherently in
spin-Rip production from closed-shell nuclei. Thus, the
spin-independent term of the production operator will be
the major contributor for all nuclei, and the only large
contribution for closed-shell nuclei, at least in the im-
pulse approximation.

What is required for the present work, then, are p-h ex-
citation cross sections. Noncoherent photoproduction
has been measured by Arends et al. [45], who provide in-
coherent and total cross sections in addition to the
coherent one. However, the incoherent (i.e., the total
minus coherent) cross section is extremely small at
threshold for the reason discussed above, and more sensi-
tive measurements will be required for a meaningful com-
parison between theory and experiment.

Suzuko and Koch [47] have shown that the elementary
single-particle (y, ~ ) operator at threshold (the spin-fiip
term) is indeed enhanced by a factor of M~/Mg when
embedded in the nucleus. These authors discuss the
ground-state (g.s.) to g.s. transition Al(y, vr ) Al. Rela-
tivistic nuclear core-response calculations, similar to
those of isoscalar magnetic moments for closed core+ 1

systems, are indeed immediately applicable for g.s. to g.s.
(y, ~ ) calculations on such nuclei. One should then
compare the calculations with averaged experimental-
phenomenological amplitudes for pairs or mirror nuclei
(namely, a closed core plus one proton or one neutron), as
was the case for isoscalar magnetic moments [5]. For-
tunately, in practice the threshold (y, vP) reaction cross
section on the extra neutron is expected to be some 2 or-
ders of magnitude smaller than the pertinent extra-
proton quantity [48], and the closed-core+proton cross
section should suffice. Unfortunately, no threshold ex-
perimental data exist. It is clear, however, that the per-
tinent cross sections are very small; the coherent produc-
tion (which is not sensitive to the relativistic model and
core-response effects) will be the dominant mechanism,
and the experiments will be very difficult. Note that,
since the ~ photoproduction amplitude is so small near
threshold, multistep processes are expected to compete
strongly with the impulse, direct ~ production from a
single nucleon target. Koch and Woloshyn [44], and
later Bosted and Laget [49], have shown that the two-

nucleon rescattering mechanism is as important as the
direct ~ production process. For a meaningful compar-
ison between theory and experiment it would be neces-
sary to include all such processes in the relativistic-model
calculations. Furthermore, it is worthy of note that the
elementary p(y, ~ )p reaction at threshold is not com-
pletely understood, as recent experiments as Saclay and
Mainz have shown [50].

As in other processes involving pions and nucleons, it
is possible to formulate a theory based on either a pseu-
doscalar (PS) or a pseudovector (PV) m.NN coupling.
Large differences occur between PS and PV ~NX vertices
in the nucleus as a result of the large scalar mean field
[51]. Denoting the pion wave function by P(x), and the

nucleon wave functions by g~ (x) and ij'j~ (x) for the finalf j

and initial states, respectively, the matrix element of the
vrNN vertex operator (with an outgoing pion of momen-
tum t) is

H~; = f g (x)I „P(x)g (x)d x . (84)

In the PS case I z~ ——I z&=gy y~, while in the PV
case I ~~=I' ~&=(g/2M~)y y~/', where g is the 7rNN

coupling strength. The relativistic nuclear many-body
equivalence breaking term is a result of the strong scalar
potential (S = —g, Po) [51]:

S
Hg, =H~; +g f Q~ (x)y y~ P(x)g~(x)d x .f N

l
(85)

The extra piece is a "seagull" diagram [51,14].
According to Suzuki and Koch [47], the matrix ele-

ment of the PS photoproduction operator evaluated be-
tween Hartree closed-shell single-particle spinors is
enhanced by an extra factor of M&/M& over and above
the corresponding enhancement in the PV case. While
the relativistic core response is expected to cancel the
Mz/Mg. enhancement associated with the nuclear elec-
tromagnetic current [cf. Eq. (67)], it is unlikely to affect
the difference between the PS and PV results. The de-
tailed evaluation of the core-response effect for the nu-
clear (y, ~ ) reaction is an interesting issue which should
be addressed in the future.

Of great interest are relativistic studies of kaon pho-
toproduction [(y,IC+), resulting in hypernuclear final
states]. This subject has been studied [14,52] and re-
viewed [36] recently, and we shall mainly concentrate
here on issues directly related to relativistic core response
and hypernuclear physics, as well as important points ig-
nored in the published literature.

Virtually a11 relativistic-model studies for kaon pho-
toproduction have been performed within the impulse ap-
proximation, and the core response to the hypernuclear
A-h excitations has not been evaluated. It is expected
that including this mechanism should significantly affect
the reported results. This study again requires the evalu-
ation of the core-response effect on a nondiagonal, transi-
tion matrix element [see Eq. (80)], and will also be the
subject of future research (as already discussed above).
There are, however, interesting relativistic many-body
effects that only arise in the hypernuclear case. Thus, in
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4. Photonuclear knockout and capture reactions:
( y,p), (e, e'p), and (p, y )

A satisfactory theoretical description of the (y, N),
(e, e'N), and (p, y) reactions involve a large number of
nuclear processes and is currently not thoroughly under-
stood. Theoretical and experimental aspects of the
(e, e'p) reaction have been recently reviewed by Frullani
and Mougey [42]. Here we shall naturally mention pri-
marily issues related to our main interest in the present
work, namely, relativistic studies and core response.

The physical quantity of central interest in a relativis-
tic calculation of electron-nucleus scattering is the matrix
element of the nuclear electromagnetic current operator.
The transition amplitude for the (y,p) reaction can be
written as

M~; 'z= f (Q/y ~ J„(x)g;) A" (x)d x, (86)

where ~g; ) is the initial target wave function (for A nu-
cleons),

~ g& ) is the final-state wave function,
represents the photon with helicity A, , and J" is the nu-
clear effective electromagnetic current operator. In the
one-photon exchange model for the (e, e'p) reaction, Ai"
is replaced by a product of the lepton current and photon
propagator [53]; equivalently, the Mdller potential can be
used for Ai" [54].

In the impulse approximation (which may be used as a
starting point), the nuclear current is a one-body operator
given as a sum of one-nucleon effective electromagnetic
currents. The on-shell nucleon current operator (some-
times called the Dirac-plus-Pauli form) is [cf. Eq. (67)]

+
4M

(F2+r3F2)o." Q, U
N

(87)

where I'"& and I'2 are the Dirac and Pauli form factors
normalized such that at a vanishing four-momentum
transfer Q2=0, F; (0)=F i(0)= 1, and
~= —,

' [Fz(0)+r3Ez(0)] is the nucleon anomalous magnet-
ic moment. In an impulse-approximation model of the
(y, N) reaction the photon (y ) transfers nearly all its en-
ergy to the nucleon (N), so the magnitude of the nuclear
momentum transfer is large.

The final-state wave function can be approximately

the kaon photoproduction case the final spinor is that of
the A, and S/Mz in Eq. (85) is replaced by the ratio of
the sums —(g, +g, )Po/(M~+M~). Moreover, in addi-
tion to the scalar-potential equivalence-breaking term we
also find another term, proportional to the difference of
the nucleon and hyperon uector potentials, (g, —g„)VO.
This term vanishes for g, =g, which is the case analyzed
by Friar [51], but in dealing with strange particles in nu-
clei it introduces new many-body efFects these effects are
large since (g, —g, ) Vo =0.25M&,' cf. Eq. (53). Relativis-
tic core-response corrections to this picture remain to be
studied.

written as a product of the residual nucleus (with A —1

bound nucleons) and a relative proton-residual nucleus
continuum wave function using a single-channel optical-
model wave function. In an independent-particle model,
the residual nucleus can be described in terms of a one-
hole state relative to the initial nuclear state. It has been
emphasized by Crari and Hebach [55] and by Noble [56],
and more recently discussed by Lourie [57], that the
single-particle knockout mechanism with a transition
from a bound single-particle state to a continuum state
may be inadequate for a description of the (y, N) reac-
tion. Usually, orthogonality of the initial- and final-state
wave functions is not taken care of in impulse approxima-
tion treatments. Meson exchange currents and nucleon-
nucleon correlations, which are relatively insignificant for
differential cross sections, provide the dominant contribu-
tions to the total cross sections. Moreover, the impulse
approximation violates nuclear many-body current con-
servation (gauge invariance) [55,58]. However, such con-
siderations are outside the scope of our present treat-
ment. (At the time of this writing we are unaware of any
relativistic treatment addressing all these problems con-
sistently. Such a treatment should involve, however, iso-
vector mechanisms which are outside the scope of the
o-co MFT framework. ) For the purpose of a preliminary
discussion of the relativistic core response one can follow,
as a first step, the simpler (perhaps inadequate) procedure
of Refs. [58—61].

Taking a closed-shell nucleus for the initial state, the
final state has a hole in the closed core plus one particle
in the continuum. In a relativistic Hartree calculation,
the reaction is therefore sensitive to core-response effects.
These remain to be evaluated in a future study along the
lines of the p-h formalism in Sec. II, but appropriately
modified for a treatment of the transition (nondiagonal)
matrix element at QAO, as already emphasized above for
other applications. Of interest are (y, n) data [62]. There
the Dirac current in Eq. (87) vanishes while the magni-
tudes and shapes in existing (y,p) and (y, n) cross sec-
tions are similar. [This may be an indication that a one-
body mechanism does not adequately describe the (y, N)
reaction. ]

Likewise, relativistic core response is likely to play an
important role in the proton radiative capture reaction
(p, y ) [63]. In a single-particle, direct-reaction model [63]
an incident nucleon of momentum p interacts with a tar-
get nucleus taken as a closed core —1 in its ground state.
The nucleon emits a photon and is captured into a
single-particle state. The transition amplitude for the re-
action is (in the notation of Ref. [63]) similar to Eq. (86),
where now g, is the initial wave function (composed of
the incident proton in a continuum scattering state and
the target nucleus in its ground state) and f& is the final-
state nuclear wave function (with the proton in a bound
single-particle state).

Starting with a closed-shell —1 nucleus, transitions
leading to final highly excited nuclear states or to the
ground state of a closed-shell system are possible. The
former are not satisfactorily understood, while the latter
are accounted for reasonably well, in a direct reaction
model [63]. In the impulse approximation one needs to
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evaluate the transition amplitude between an initial
scattering state for the relative proton-nucleus wave func-
tion and a final single-particle shell model state. In a rel-
ativistic Hartree calculation, this reaction is therefore
also sensitive to core-response effects (evaluated along the
lines of the p-h formalism in Sec. II), appropriately
modified (as already emphasized) for a treatment of the
transition (nondiagonal) matrix element at QAO.

5. Other nuclear processes

A consistent relativistic study of the inelastic scattering
of hadrons and leptons from nuclei also requires core-
response corrections. As in Sec. III B2 this calculation is
not identical with those presented in Sec. II, since it in-
volves transition matrix elements rather than the diago-
nal one, as well as nonzero momentum transfers QWO.
However, the underlying physics is similar.

Inelastic proton-nucleus scattering (as well as elastic
scattering on open-shell nuclei) relativistic Dirac formal-
ism would require that the core-response corrections be
included in order to be self-consistent. Such corrections
are likely to arise mostly from terms such as F,y(1).y(2)
in the scattering amplitude. Examples of calculations
where such effects should be included and are expected to
be important are Shepard, Rost, and Piekarewicz [64]
[distorted wave impulse approximation (DWIA) Dirac
formalism for inelastic nucleon-nucleus scattering], Rost
and Shepard [64] (DWIA Dirac calculations of inelastic
nucleon-nucleus scattering), and Piekarewicz, Amado,
and Sparrow [64] [inelastic proton-nucleus scattering
plane wave impulse approximation (PWDIA) Dirac for-
malism].

The situation is similar for inelastic electron scattering.
Shepard et al. [42] found, in an early calculation, large
relativistic effects resulting from the enhanced lower
component of the bound Dirac nucleon wave function.
These calculations [42] did not include core-response
corrections, which are expected to be important since the
origin of the large reported relativistic effects is similar to
those discussed in this work for magnetic moments (and
for elastic form factors).

Another case where core-response corrections are ex-
pected to be important is the electric dipole sum rule
[65]. Interest in this quantity has been mostly due to the
large discrepancy (by as much as a factor of 2) between
the experimental value for the total integrated photoab-
sorption cross section [66], and the classical nonrelativis-
tic TRK (Thomas-Reiche-Kuhn) sum rule [65]. While
this enhancement has been explained in classical nonrela-
tivistic nuclear physics as an effect of the tensor com-
ponent of the nucleon-nucleon interaction and induced
many-body correlations [67], Price and Walker [68] cal-
culated the energy weighted electric dipole sum rule us-
ing the relativistic Dirac o.-co mean field theory discussed
in this work, for finite nuclei. They obtained enhance-
ments over the nonrelativistic TRK result which were
nearly large enough to bring the sum rule into agreement
with experiment for a wide range of nuclear mass num-
bers. The enhancement was virtually entirely due to the
inclusion of the large scalar mean field, namely, an

effective mass (M~ ) effect, as the sum-rule results are sen-
sitive to the nuclear interior (where Mg is much smaller
than M~). These calculations [68] did not include core-
response corrections, expected to be important in this
case (where the basic physical process is the photoabsorp-
tion cross section).

Finally, we brieAy discuss weak-interaction nuclear
probes. Interesting studies exist in the literature [69],
looking into the role of relativity when the nuclear sys-
tem is studied by means of probes coupled to the
(effective) charge-changing weak nuclear current (mediat-
ed by the charged vector meson W+). Such currents
have a vector —axial-vector ( V —A) structure. The vector
part (denoted by J„'—') is similar in structure to the elec-
tromagnetic or baryon currents studied above. Of in-
terest is the (effective) weak charge-changing axial-vector
current (J'~+'). These currents affect semileptonic weak
processes such as p decay (based on the V —A model),
muon capture (the free process would be p p ~n v„, with
a charge-changing weak current), radiative muon capture
(where the free reaction is p, p~nv y), or neutrino-P
induced reactions (e.g. , inverse P decay) [69]. In particu-
lar, the considerable difference between the closed-core
relativistic predictions based on the induced pseudovec-
tor and pseudoscalar axial-vector current is an interesting
subject; of related interest is pion absorption and the
difference between the pseudoscalar and pseudovector
~XX vertex [Eqs. (84) and (85)]. These currents are, how-
ever, purely isovector, and therefore no large core-
response corrections will be present; only a small core
response mediated by the isovector p meson is found for
an isovector baryon current in the extended MFT where
this meson is added [5]. Furthermore, isovector currents
are presently not well understood, as already discussed
above, within the cr-co model. Consequently, charge-
changing weak nuclear processes are currently not a suit-
able probe of relativistic dynamics in general and core-
response effects in particular. For a meaningful relativis-
tic MFT study within the 0-m model, it will therefore be
necessary to identify reactions involving weak neutral
currents (mediated by the neutral vector boson Z ). The
weak neutral current is given in the standard model by

J[o~ =J +J 2S1Il L9 J'
p p p n

v3 ~' =J„'+J~' is the electromagnetic current [Eq. (87)],
which has isoscalar (s) and isovector (v3) (ar3) com-
ponents, and sin 0~ of the %'einberg angle is a parameter
determining the mixing of the electromagnetic and weak
currents within the standard model. The (J '+J '

) partp pg

is the third isovector component of the V —2 charge-
changing weak nuclear current. Only the last term of J' '

P
will contribute for isoscalar transitions. Isoscalar weak
neutral currents will therefore have similar nuclear
characteristics to those of their electromagnetic counter-
parts, in particular with regard to the core response
(which is our main interest here). Suitable reactions may
be neutrino scattering, or scattering, with a parity-
violation signal, or longitudinally polarized electrons off
nuclei, resulting from the interference term between the
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weak neutral and electromagnetic currents. (The transi-
tion amplitude is first order in both the electromagnetic
fine-structure constant a and the weak Fermi coupling
constant G.) Elastic, inelastic, and inclusive isoscalar
processes may be studied [70]. Unfortunately, weak neu-
tral current processes have not been extensively studied
in the literature mainly as a result of considerable experi-
mental difhculties. Furthermore, other problems, such as
the parity-violating nuclear interaction —resulting in an
admixture of opposite-parity nuclear states, or parity-
violating corrections to the nuclear electromagnetic
current operators, may yet prove to be important. In
such a case, a meaningful theoretical interpretation of fu-
ture results would not be an easy task.

In conclusion, we have presented here a theoretical
analysis of p-h states in a Dirac relativistic o.-e mean
field theory for nuclear matter, with a special emphasis
on hypernuclear states. Applications to a number of oth-
er physical process of interest in nuclear and medium-

energy physics have been discussed, however such appli-
cations should comprise the subject matter of separate
studies. (Likewise an appropriate treatment of other
many-body effects traditionally included in most nonrela-
tivistic calculations remains an important open problem
for the Dirac based theory. )
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