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Statistical properties and stability of hot nuclei in a semiclassical relativistic approach
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(Received 27 January 1993)

Within the finite-temperature relativistic mean field theory models (linear and nonlinear) and using the
local density approximation, the statistical properties and stability of hot nuclei are investigated. It is
found that the nonlinear model presents higher thermal response than the linear model. The critical
temperature is found to be about 9 MeV for the linear model and about 8 MeV for the nonlinear one.
The value of the energy level density parameter obtained by the nonlinear model is found to be of the or-
der of 0.11 MeV ', in good agreement with the empirical value =0.12 MeV '. The linear model gives
smaller values. The nonrelativistic limit of the linear model indicates that the relativistic treatment in-
creases the excitation.

PACS number(s): 21.65.+f

I. INTRODUCTION

A consistent nuclear equation of state for finite nuclei
is of great utility for interpreting current experiments in
heavy-ion scattering and high-energy particle-nucleus
collisions. A necessary and major step towards obtaining
this equation of state involves solving for the thermal
properties of nuclei. Several calculations of thermal
properties for finite nuclei through difterent nonrelativis-
tic equations of state have been carried out [1—15]. For
example, Bonche et al. [9] have used Skyrme-type in-
teractions to study thermal properties and stability of ex-
cited nuclei in the framework of the finite temperature
Hartree-Fock approach and they found that the results
are very sensitive to the various versions of the Skyrme-
type interactions. The critical temperature (the tempera-
ture beyond which the nuclei become unstable) has been
found to be about 8 MeV and about 11 MeV for SKM
and SIII Skyrme interactions. The energy level density
parameter was found to be smaller than the empirical
value for almost all Skyrme-type interactions. In a previ-
ous work [1] we also studied these thermal properties
through the hot Thomas-Fermi approach using a realistic
effective Brueckner G-matrix interaction obtained by
solving the Bethe-Goldstone equation in momentum
space at zero temperature using the Reid soft-core poten-
tial as a bare nucleon-nucleon interaction. We got a
higher thermal response than the calculations of Bonche
et al. The critical temperature was found not to exceed 6
MeV, while the energy level density parameter was found
to be higher than the empirical value for light and medi-
um nuclei and slightly smaller for the heavy ones. This
shows that the thermal properties and stability of hot nu-
clei still need further investigations. Indeed, it would be
interesting to treat this problem through the relativistic
approaches. The relativistic field theory models provide
a very useful tool in describing nuclear and neutron
matters at a wide range of densities and temperatures.
Thus one can use these models for the investigation of the
thermal properties and stability of finite nuclei. For this
reason, the linear Walecka model [16—20] and the non-

linear Boguta and Bodmer versions [21] are used in the
mean-field approximation. These models consist of nu-
cleons interacting via meson exchanges. The mean-Geld
approximation treats the meson fields as classical c-
number fields. Its effect is that the nucleons interact only
via the mean fields. Thus the only quantum field is the
nucleon field. However, the inclusion of the whole Dirac
sea yields a divergent term in the energy which has to be
canceled with counterterms. Another way for treating
the negative and the positive continuum is to take a
cutoff. However, using a cutoft has the liberating side
effects that renormalizability is no longer a criterion for
the ansatz of a model Lagrangian. Since at normal nu-
clear densities and not too high temperatures, which is
the case of interest of this work, most of the quantum
field effects are very small, one can use the no-sea approx-
imation. Indeed, the effective Lagrangian is supposed to
have absorbed all "leftover" quantum field effects in its
parametrization. In the application of the mean-field
models to finite nuclei, the local density approximation is
used in the framework of the hot Thomas-Fermi ap-
proach. Moreover, surface and symmetry energy correc-
tion terms are added to the free energy in order to repro-
duce the experimental binding and root-mean-square
(rms) radii at zero temperature. In Sec. II the equations
of the finite-temperature relativistic mean-field theory
models used in this work are presented. A nonrelativistic
limit of the linear model is performed. The application of
these mean-field models to finite nuclei through the hot
Thomas-Fermi approach is described in Sec. III. Section
IV presents the results and discussion.

II. FINITE- TEMPERATURE RELATIVISTIC
MEAN-FIELD THEORY MODELS

In this section a brief description of the finite-
temperature linear Walecka model and nonlinear Boguta
and Bodmer versions is presented, and where it is as-
sumed that the nucleons interact via the exchange of a
scalar o. and a vector co mesons. The relativistic classical
Lagrangian density of a self-interacting scalar field P and
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a neutral vector field V& interacting with the nucleons is
given by [16—21] (irt=c =1)

+M 0
a 1

Bx&

2

+p2~2

,'Fy„—Fi.„—,m Vi, Vg+'gvit'y A'V&, gsit'A'

—
( ,'By —+,'Cy —) . (2.1)

F,„=(aV„/ax, )
—(a V, /ax„) . (2.2)

M is the nucleon mass and m and p are the masses of the
vector and scalar mesons, respectively. The meson fields
are treated classically and they are determined by their
sources.

For infinite homogeneous systems, particle momentum
and the corresponding energy are good quantum num-
bers. Using these together with the spin and isospin in-
dex, the fermion field is quantized. The spectral repre-
sentation of the field gi, (k denotes all the quantum num-
bers) is determined from the requirement that the Gibbs
free energy 6 be stationary. For finite-temperature nu-
clear matter 6 involves the particle occupation density
operator p. The state vectors g&, scalar P, vector field

V&, and the density operator p are determined from the
stationary condition of the Gibbs function, 66 =0, with
respect to arbitrary variations in these quantities under
the constraints (i'&, P& ) =1 and Trp= l. This method is
explained in Ref. [20]. For infinite homogeneous nuclear
matter, the following expression for the energy density is
obtained in the no-sea approximation:

The abbreviation x =(r, it) is used. F&„ is the field stress
tensor:

In the no-sea approximation, the effects of vacuum polar-
ization and baryon-antibaryon production are neglected.
This would be acceptable for normal nuclear densities
and not too high temperatures, which is the more in-
teresting case of this work. The parameters /3

( =B /(Mgs ) ) and y ( =C/gs ) are introduced by Boguta
and Bodmer [21].

In Ref. [20] a low and high temperature expansion has
been considered for the densities (2.4)—(2.6) and a nonre-
lativistic limit has been performed on these expansions
for the linear model. In this work, the exact expressions
for these densities are used and a different nonrelativistic
limit is performed. This limit is obtained by expanding
Ek as follows:

E =+M* +kk

=M*+k /(2M") —k /(2M*) + (2.10)

The third term of this expansion represents the first rela-
tivistic correction term. At zero temperature this term is
taken into account in addition to the first two terms of
the expansion (2.10) in the expressions of the densities k,
and ps, given by Eqs. (2.4) and (2.6). At temperatures
different from zero this term is neglected only in the ex-
pression of the occupation probability nk, given by Eq.
(2.8), in order to get the usual Fermi occupation probabil-
ity:

n& =1/I 1+exp[(k l(2M")+gzp/m —jL')IT]]

(2.11)

where

M*=M —go[ps+PM(M —M*) —y(M —M*)3]/p~ .

(2.9)

e(p, T)= M*ps+k, + —,'gvp Im A, '=A, —M* . (2.12)

+ ,'gsps[ps+PM—(M —M*) —y(M —M*) ]/p

where

+ ,'PM (M —M* )——
—,
' y(M —M* ) (2.3)

k
k,=, Jd'k n„.

(2~)

The density p and the scalar density p~ are given by

p= g, Jd'kn„,
(2~)

Pq= d k nk,g 3
M*

(2ir)

(2.4)

(2.5)

(2.6)

where

E =(/M* +kk

The occupation probability nk is given by

nI, =1/I 1+exp[(E&+gi p/m —A, )/T]]

(2.7)

(2.8)

The effective mass M* is determined self-consistently
from

Figure 1 shows the binding energy per particle in nu-
clear matter against density at T=O and 8 MeV. The
solid curves represent the results of the linear model cal-
culated with the parameters recently used by Furnstahl
and Serot (LFS) [19] namely, gsM /p =357.4,
g~M /m =273.8. The parameters P and y only appear
in the nonlinear model. The long-dashed curves
represent the results of the nonlinear model calculated
with Boguta and Bodmer (NLBB) [21] parameters,
gsM Ip =64, giM Im =4, P=0.471, y=9. 1. With
these parameters the binding energy is the same but at
the saturation po=0. 149 fm for the LFS model and
po=0. 171 fm for the NLBB model. Warke et al. [20]
have used Walecka parameters [16] which give the same
binding but at higher saturation po=0. 196 fm . The
major difference between these models comes from the
binding energy per particle as a function of density which
is a very stiff curve for the linear model, while it is a very
shallow curve for the nonlinear one, as seen from Fig. 1.
The nonrelativistic limit described by Eqs. (2.10)—(2.12),
which is performed for simplicity for the linear model, is
shown in Fig. 1 by the short-dashed curves with the pa-
rameters of Furnstahl and Serot (NRLFS). It is shown
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and the entropy,

S=f d rs(p, T) .

The entropy density s (p, T) is given by

(3.3)

s (p, T)= — f d k [nkln(nk )+(1—nk )ln(1 —nk )] .

(3.4)

The nuclear matter mean-field energy density e(p, T) ap-
pearing in Eq. (3.2) is given by Eqs. (2.3)—(2.9). e„, is a
correction term due to surface and symmetry energies
and has the form [1,2,24]

CL

LtJ

e„,=i' /(8M)y(Vp) +2)(p„—p ) p, v= ——', , (3.5)
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FICx. 1. The binding energy per particle in nuclear matter is
plotted against density at T=O and 8 MeV. The solid, long-
dashed, and short-dashed curves represent the results of the
linear model LFS, the nonlinear model NLBB, and the nonrela-
tivistic limit of the linear model NRLFS. S=pe —1~v~ —' (3.6)

where y and X) are two free parameters determined by
minimizing the total binding energy E of the nucleus with
respect to the density distribution parameters in order to
get good agreement for binding energies and rms radii
with the experimental values at zero temperature. How-
ever, theoretical investigations of the symmetry energy
suggest that the symmetry energy coefficient 2) can be
written as [22]

that the relativistic response increases the excitation and
the NLBB model has much larger excitation than the
LFS model.

III. APPLICATION TO FINITE NUCLEI

where g equals 215 MeV fm and e equals 9.39 fm [22].
For v equals —

—,', Eq. (3.6) gives the value 101.91
MeVfm for 2). This value of 2) is taken in the present
work for all nuclei. The last term in Eq. (3.2) is the
Coulomb energy:

The hot nuclear matter mean-field expressions
(2.3)—(2.12) are applied to finite nuclei by using the local
density approximation defined by Eq. (2.5). The total free
energy of the nucleus is given by

(3.7)

I' =E —TS,
where E and S are the total binding energy,

E = f d r f (e(p, T) Mp) +e„,+e—c,„,],

(3.1)

(3.2)

IV. RESULTS AND DISCUSSION

The following form is taken for the density distribu-
tions p; [23]:
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FIQ. 2. The entropy per particle p/p for ' Fe, Zr, and 2osPb is plotted against temperature T. The solid, long-dashed, and

short-dashed lines represent the results of the LFS, NLBB, and NRLFS models.
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FIG. 3. The density distribution p(r) [=p~(r)+p„(r)] is plotted against r for 'Pb at T=O and 8 MeV. The solid and long-
dashed curves represent the results of the LFS and NLBB models.

po;[I+co(r/R;) ]

1+exp [(r —R, ) /a ]
(4.1)

where po, is the central (proton or neutron) density of the
nucleus. The distributions (4. 1) are called the three-
parameter Gaussian shape. This shape is taken in the
present work for the nuclei Fe, Zr, and Pb, since
electron scattering experiments [23] favor these forms for
these nuclei. The parameter co is fixed from electron
scattering experiments [23]. The neutron half-density ra-
dius is assumed to have the form f d vp (r)=Z, f d rp„(v)=N . (4.4)

X, Z, and 3 are the neutron, charge, and mass numbers
of the nucleus, respectively. Rp is a length-scale parame-
ter taken to be 1 fm. In a previous work [1,2,24] 5 was
taken to be 0.2 for the heavy nuclei. This value is con-
sistent with the present approximation which is more
general and directly relates the increase in the neutron ra-
dius to the increase in the neutron number of the nucleus.
The central proton and neutron density distributions are
determined from the normalization conditions

R„=R +6Rp,
where

o=(E —Z)/A .

(4.2)

(4.3)

At each finite value of the temperature T, the free ener-
gy F, defined by Eqs. (3.1)—(3.7), is minimized with
respect to both the diffuseness and proton half-density ra-
dius parameters a and R of the nuclear density for each

TABLE I. The free energy per particle F/A, the binding energy per particle E/A, and the energy level density parameter a for
Fe, Zr, and Pb calculated at temperatures from 0 to 9 MeV for the linear model LFS (upper part) and at temperatures from 0 to

8 MeV for the nonlinear model NLBB (lower part).

T
(MeV)

F/A
(MeV)

56Fe

E/A
(MeV)

a
(MeV-')

"Zr
F/A E/A

(MeV) (Me V)
Linear model LFS

a
(MeV-')

F/A
(MeV)

208pb

E/A
(MeV)

a
(MeV ')

—8.78
—8.83
—9.03
—9.43
—9.97

—10.63
—11.44
—12.41
—13.58
—14.96

—8.78
—8.68
—8.43
—8.11
—7.62
—6.97
—6.1
—5.02
—3.25
—0.35

0.1

0.088
0.076
0.073
0.073
0.075
0.077
0.087
0.1

—8.7
—8.73
—8.94
—9.31
—9.82

—10.44
—11.21
—12.12
—13.22
—14.6

—8.7
—8.58
—8.38
—8.06
—7.6
—6.98
—6.18
—5.15
—3.66
—0.36

0.1

0.085
0.073
0.07
0.07
0.071
0.073
0.079
0.1

—7.87
—7.93
—8.1
—8.43
—8.89
—9.47

—10.18
—11.03
—12.04

—7.87
—7.8
—7.58
—7.21
—6.85
—6.26
—5.52
—4.56
—3.31

0.07
0.07
0.065
0.064
0.064
0.065
0.068
0.072

Nonlinear model NLBB
—8.77
—8.91
—9.21
—9.73

—10.53
—11.49
—12.67
—14.06
—15.68

—8.77
—8.67
—8.32
—7.77
—7.08
—6.14
—4.98
—3 ~ 56
—1.76

0.1

0.113
0.112
0.106
0.105
0.106
0.107
0.11

—8.71
—8.83
—9.13
—9.63

—10.39
—11.31
—12.45
—13.79
—15.35

—8.71
—8.61
—8.28
—7.75
—7.07
—6.17
—5.04
—3.64
—1.81

0.1

0.108
0.107
0.103
0.102
0.102
0.104
0.108

—7.84
—7.97
—8.25
—8.73
—9.45

—10.34
—11.44
—12.74
—14.27

—7.84
—7.76
—7.44
—6.94
—6.27
—5.38
—4.25
—2.87
—1.06

0.107
0.107
0.104
0.1

0.1

0.101
0.102
0.106
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FIG. 4. Proton and neutron root-mean-
square radii for Pb are plotted against tem-
perature T. The solid and long-dashed curves
represent the results of the LFS and NLBB
models.

nucleus. At the minimum, the free energy I', the binding
energy E, the entropy S, the energy level density parame-
ter a, and the root-mean-square radii are calculated. The
energy level density parameter a is defined as

a =e*/T (4.5)

where e * is the excitation energy per particle defined as

e =E*/A, (4.6)

E*=E ( T) E(0) . — (4.7)

At zero temperature, the value obtained for the surface
correction parameter y is found to be 8.5 fm for Fe and

Zr and slightly increased to 8.7 fm for Pb in the
linear model LFS, while it is found in the nonlinear mod-
el NLBB to take the constant value 11.75 fm for the
three nuclei. y is taken to be temperature independent.

Table I presents the results of the free energy per parti-
cle F/A, the binding energy per particle E/A, and the
energy level density parameter a for Fe, Zr, and Pb,
at temperatures from 0 to 9 MeV for the LFS model, and
from 0 to 8 MeV for the NLBB model. As seen from this
table the free energies increase, and the binding energies
decrease with increasing temperature. The NLBB model
presents more excitation than the LFS model. This is due
to the greater excitation that occurs in the binding energy
per particle in nuclear matter in the case of the NLBB
model, than that in the LFS model as shown from Fig. 1.

The entropy gets larger in the case of the NLBB mod-
el. This is shown in Fig. 2 which presents the entropy per
particle S/A against temperature for 6Fe, 90zr, and

Pb. The solid and long-dashed lines in this figure
represent, respectively, the results obtained with the LFS
and NLBB models. The short-dashed lines represent the
results of the nonrelativistic limit of the linear model,
NRLFS, described in Sec. II. This figure shows also that
the relativistic entropy is larger than the nonrelativistic
one.

The half-density radii and diffuseness and also the
root-mean-square radii are increasing with increasing
temperature. This is shown in Fig. 3, where the density
distribution p(r) [ =p (r)+p„(r) ] of Pb is plotted

where E* is the difference between the binding energy of
the nucleus calculated at 1 and the ground state energy,
i.e.,

against r at T=O and 8 MeV, and in Fig. 4 where the
proton and neutron root-mean-square radii are plotted
against temperature. Again the solid and long-dashed
curves represent, respectively, the results obtained with
the LFS and NLBB models. The increases in the radii
and diffuseness are much larger in the case of the NLBB
model than in the LFS model. Similar results are ob-
tained for the other two nuclei.

A more interesting quantity is the critical temperature
T„ the temperature beyond which the nucleus becomes
unstable. As seen from Table I, T, is a about 9 MeV for
the LFS model, depending slightly on the nucleus, and
about 8 MeV for the NLBB model. The difference comes
from the larger excitation that occurs in the case of the
NLBB model. In a previous nonrelativistic calculations
based on the Brueckner G-matrix effective interaction [1],
T, was found not to exceed 6 MeV, while that obtained
from the finite temperature Hartree-Fock calculations of
Bonche et al. [9] was found to be about 8 MeV for SKM
and about 11 MeV for SIII Skyrme interactions.

Another important quantity which can be deduced
from experiments is the energy level density parameter a.
This parameter has been found empirically to be of the
order 0.12 MeV '. As seen from Table I a is around 0.07
MeV ' for the LFS model and about 0.11 MeV ' for the
NLBB model. The value of a obtained from Hartree-
Fock calculations with Skyrme interactions [5,6,9] has
been found to be smaller than the empirical value, while
that obtained from Brueckner G-matrix calculations [1]
has been found to be much larger than the empirical
value for light and medium nuclei and slightly smaller for
the heavy ones. In these 6-matrix calculations, the
values of a have been obtained when the bare mass of the
nucleon is used instead of the effective mass but if the
effective mass is used [4], a is found to be close to the
empirical value for light and medium nuclei and much
smaller for the heavy ones. This means that a depends
strongly on the effective mass of the nucleon. The energy
level density parameter should also depend on the shell,
pairing, and deformation effects. However, all these
effects disappear at high excitations, T ) 3 MeV [2], and a
would mainly depend on the model equation of state.

It is a pleasure to thank Professor W. Wadia for read-
ing the paper.
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