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At medium energies the distorted-wave Born approximation provides a much less reliable de-
scription of transfer reactions induced by composite projectiles. While use of the 3ohnson-Soper
adiabatic method includes the dominant contributions from three-body breakup channels, recent
experimental data have suggested the need for additional theoretical refinements. The use of Wein-
berg or Sturmian states provides a framework within which the adiabatic theory can be improved
systematically. The results of the Weinberg states method are presented for the Zn(d, p) Zn
(g.s. ; 5/2; 8 =3) reaction at 88.2 MeV incident energy. The implementation of the method is
shown to reduce the three-body transfer reaction calculation to a very small coupled-channels prob-
lem. For the reaction in question, the method introduces significant corrections to the adiabatic
method which agree qualitatively with earlier calculations using the quasiadiabatic method.

PACS number(s): 24.10.—i, 24.10.Eq, 24.50.+g, 25.45.Hi

I. INTRODUCTION

We study breakup effects on transfer reactions by use
of the (d, p) reaction, the simplest theoretical context in
which these studies can be made. The distorted-wave
Born approximation (DWBA), by construction, does not
account for breakup effects and its accuracy and validity
for the deuteron-nucleus system has been the subject of a
large number of three-body (n+ p + target) studies. An
extensive review can be found in Ref. [1]. It is now ac-
cepted that the DWBA needs to be extended to include
breakup effects. What we learn from deuteron-induced
reactions is of course relevant to the study of analogous
effects in reactions induced by other loosely bound cluster
nuclei such as Li, Li, Be. In this work, we consider
specifically deuteron stripping reactions at incident en-
ergies Eg —100 MeV, at which energies one need not
include breakup effects due to the Coulomb interaction.

The Johnson-So per adiabatic approximation [2], in
which the center of mass energy of the n-p pair in the
breakup states is assumed degenerate with the elastic
channel, has provided systematic improvements over the
DWBA in the description of transfer reaction angular dis-
tributions [3,4]. More recent, complete and accurate data
on stripping and pickup transitions, with large trans-
ferred neutron angular momentum E and total angular
momentum j = / —1/2, at medium energies are, how-
ever, not even qualitatively reproduced [5]. As was dis-
cussed in Refs. [5,6], the spin structure and dynamics of
the (d, p) reaction at these energies lead to the reactions
being far-side dominated and to near-side/far-side inter-
ference which is a sensitive probe of high energy n-p rela-
tive motion components in the three-body wave function.
This reveals itself through oscillations in the measured
angular distributions of certain of the spin observables.
Such data provide a severe test of the quality of three-
body descriptions of reaction processes.

This has resulted in a reassessment of the applicability

of the adiabatic prescription. Recent calculations [6] us-
ing the quasiadiabatic approximation [7], where the n p-
center of mass energy in breakup configurations is as-
signed some average breakup energy, have yielded signif-
icant corrections to the adiabatic model in such transi-
tions. Although the quasiadiabatic calculations of Ref.
[6] lead to an improved description of the measured ob-
servables, theoretically there is ambiguity as to the cor-
rect choice of the average breakup energy inherent in the
method.

Extensive three-body studies have also been carried
out using the coupled discretized continuum channels
(CDCC) treatment of breakup effects [1,13] which has
been developed to a very sophisticated level. In this case
the three-body breakup continuum is discretized into a
finite set of representative square integrable states P; in
the continuum. This approach can be used as the basis
of a general approach to elastic scattering, breakup, and
transfer reaction studies.

In this paper we implement an alternative theoretical
approach, the Weinberg state method of Johnson and
Tandy [8], designed specificall for the investigation of
corrections to the Johnson-Soper treatment for transfer
reactions. While formulated many years ago, this proce-
dure has not previously been investigated quantitatively.
We apply the Weinberg state method to the (d, p) reac-
tion to assess the magnitude of the corrections to the adi-
abatic approximation and to gain some insight into the
reliability of the earlier quasiadiabatic calculation predic-
tions. We apply the method here to the Zn(d, p) Zn
(g.s. ; 5/2; E =3) reaction at 88.2 MeV incident deuteron
energy, the focus of a recent quasiadiabatic study [6].

In Sec. II we outline the formal aspects of the Wein-
berg state method and in Sec. III discuss its numerical
implementation. In Sec. IV we compare the calculated
Weinberg state predictions with those of the adiabatic
and quasiadiabatic approaches. A summary and con-
cluding remarks are presented in Sec. U.
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II. THE WEINBERG STATE MODEL

A detailed formulation of the Weinberg state model has
been presented by Johnson and Tandy [8]. We shall only
introduce the important physical and notational elements
here.

states, complete on the range of U „, namely, the Wein-
berg [10] eigenstates P; defined by the eigenvalue equa-
tion

[
—e~ —T —n, V„]P;(r)=0, i = 1, 2, . . .

with normalizations

A. The three-body model

The three-body wave function describing an incident
deuteron beam of center of mass (c.m. ) kinetic energy
Eg and binding energy eg, will be written @l+l(r, R),
and satisfies the Schrodinger equation (E = Ed —ed)

(4)

The three-body wave function is thus expanded,

g+ (r, R) = ) P, (r)y, + (R), lrl & range of V~
i=1

[E + i e —h„~ —Tz —U(r, R)]Ql+l (r, R)
where, using Eq. (4),

= ieger(r)e', (1)

where the incident boundary condition of a deuteron,
with internal wave function Pg(r) and Hamiltonian 6 „
(= T,+V „),with incident momentum K is made explicit
through the use of a small positive quantity e which will
eventually be set to zero. Here T„and TR are the kinetic
energy operators for the n-p relative and c.m. motion.
The interaction U(r, R) to be used in Eq. (1) has been
discussed extensively by many authors [2,9,8]. Through-
out this work we assume the interaction to be the sum of
the neutron- and proton-target phenomenological optical
potentials evaluated at half the incident deuteron energy.
The proton target Coulomb interaction is assumed to act
on the c.m. of the n-p system.

The (d, p) stripping amplitude in the three-body model
is [8]

(6)

The only physical state among the P, is the first (i
1, o.i ——1), which is proportional to the deuteron ground
state. The o., increase monotonically with i and are ob-
tained by solution of the eigenvalue problem, Eq. (3).
Since, with increasing i and o.„ the radial behavior of
the P, become increasingly oscillatory within the range
of V„„, the higher P; states are associated with higher
energy relative n-p configurations. For any particular re-
action system there will be an upper limit to the physical
n-p continuum energies which contribute significantly to
V zlgl+l) and the reaction process. Thus, in practical ap-
plications, a truncation of the sum over Weinberg states
to some number X of terms will be expected. This trun-
cation will be dictated by the requirement of accurate
numerical calculations. Introducing such a truncated ex-

pansion, the coupled equations obtained for the y,.
+ are

where 4 describes the transferred neutron-core bound
state and y~ ~, the proton distorted wave, describes pro-
ton elastic scattering from the residual nucleus.

Since the n-p interaction is short ranged, an accurate
evaluation of Td„requires that @l+~(r, R) be calculated
accurately only in the neighborhood of lr

I

= 0, i.e. , lr I
=

range of U „. It is well known that the wave function

g~+l(r = 0, R) satisfies much simpler boundary condi-
tions than does the full three-body wave function, and the
solution can be reduced to an effective two-body prob-
lem. This simplification for small lr

I

is also inherent in
the Weinberg state method in the sense that, for a given
n-p interaction U „, it is possible to develop an effec-
tive two-body method for the projected state V „Ig~+l).
Since this projection appears explicitly in the (d, p) tran-
sition amplitude, Eq. (2), the Weinberg state technique is
well adapted to an accurate determination of the transfer
amplitude.

where Kg is the constant

and

U;, (R) = V,, (R) + C,,

with

(8)

(10)

B. The Weinberg state expansion

For the calculation of V„~lg~+l), Johnson and Tandy
expand the three-body wave function in a discrete set of

The coupling potentials U,~ thus represent the interac-
tions coupling the internal n estates P, and P~ an-d con-
tain two contributions. The U;~ are the contributions due
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to the nucleon-target interactions. There are also, how-
ever, constant coupling terms C,~ which arise because
the Weinberg basis states are not eigenfunctions of the
n-p Hamiltonian h „.Explicitly, the required matrix el-
ements of 6 „are

(&'IV-.h-. l&') = -l&v(~' —1) —«~'i]
with off diagonal contributions which induce transitions
between the Weinberg states.

A characteristic of the coupled equations (7) is that
only the i = 1 channel solution contains the elastic com-
ponent, but every channel (i = 1, 2, . . . , N) explicitly in-
cludes breakup effects. Furthermore, retaining only the
first term in the expansion leads to the adiabatic equa-
tion [2,4]

[&d+ z& TR Vll(R)]Iy, ) = zeNdIK) . (14)

Thus the adiabatic approximation appears as the solution
of lowest order % = 1. In this sense, an expansion com-
prising several Weinberg states is expected to provide an
improved description of higher n-p relative energy com-
ponents which are not included accurately in the original
adiabatic method.

For any N, the conditions pi oc pd, (p, IV~„Ip~) = —b;~

guarantee that yz+ satisfies the Johnson-Soper equation,
but only when all other y; are neglected. A purpose
of this paper is to investigate these other components.
To do this one has to handle the couplings produced by
(P, IV „h „I/i). These couplings have infinite range in
B. It is desirable therefore to use a set of basis states
for which this coupling matrix is diagonal since then the
coupled equations for the y, have standard form with fi-
nite range couplings. The Weinberg states form a natural
choice for such a basis set as they are a complete set in
a space with a metric with weight factor V „. Choos-
ing Weinberg states based on the energy —ep guarantees

C. Removal of the constant coupling terms

From the calculational point of view, the coupled-
channels equations, as expressed in Eq. (7), are not in
a standard or useful form, due to the infinite ranged
couplings implied by the constant terms C,~. As was
shown in detail in Ref. [8], the constant coupling matrix
can always be diagonalized by a suitable nonsingular and
nonunitary matrix A. We use this result and write

C=A AA

with A a diagonal matrix, with elements A1, . . . , AN and
where A1 ——0. The A; depend implicitly upon the basis
size ¹ The particular procedure used to calculate the
A and A is outlined in the following section. Thus, after
diagonalization, the coupled equations take the form

[Ed —A;+ zE —TR]IF,
+

) = ze8;iNdIK)
N

+ ) W,", (R) IF,("),
(16)

where the center of mass states IF,.
+

) are related to the

Ix!+') by

N
IF(+)) ) g

I

(~)

where two sets of n prela-tive motion states, (0, I

and
IA~), defined by

(n,"I =) ~,„(y„I,

I&,")= ).I&.)&,,' (2O)

have been introduced. They satisfy the orthonormality
condition

(0, Iv„„Ib,, ) = —6,, (21)

There is no way to avoid the fact that the three-body
Schrodinger equation couples all regions of r together. At
the differential equation level, for a local V „and U(r, R),
this coupling occurs through the derivatives in T„and it
is the diagonalization of this operator which is involved
in the C;~ of Eq. (9). Switching to the (0, I, IA, ) basis
is one way of handling this coupling. The quantitative
effects of this coupling and the way they are influenced
by the properties of U(r, R) now appear through the cou-
pling matrix TV, - . This is natural because, if the r de-
pendence of U(r, R) was negligible over the range of V „,
the matrix W, would be diagonal and the effects due to
the coupling of different r regions would be irrelevant. In
this limit U would not generate any breakup.

From Eq. (16), the elements A, of the diagonal array A

are seen to play the role of the excitation energies of the
modified internal states IA, ) of the n @system. In ter-ms
of these internal states the three-body wave function is

Q(+l(r, R) = ) F, + (R)A, (r), (22)

and hence

F,"'(R) = -(0,"IV„,I@(+l) (23)

The IA, ) fori ) 1 thus play the role of effective inelas-
tic states of the n @system, for Ir I

&-range of V „,with
excitation energy A; above the deuteron ground state
while IAz ) = I(ti). Upon division of Eq. (16) by Nd,
the coupled equations can be solved for the IF, /Nd)
subject to the normal boundary conditions of a deuteron
(actually state Pi) incident in the i = 1 channel. It
should be noted, however, that, although the coupled

The elements of the coupling matrix W = AVA are
explicitly

W, (R) = (0; IV„„U(r,R,)IA. ),
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equations are now of a conventional form in the sense of
Gnite ranged coupling interactions, these coupling terms
are not symmetric, as is usually the case with such
coupled-channels sets in nuclear physics applications, i.e. ,

w,.", (R) g w~(R).
Pg(r) = JVe " [1 —e "]Ypp(r)/r, (30)

ments were found to be more accurately calculated by
direct numerical integration of the radial functions.

As noted earlier the i = 1 solution is proportional to
the deuteron ground state, i.e. , Pg(r) = Nggi(r), where

III. NUMERICAL IMPLEMENTATION

In this work we construct the Weinberg basis set P, us-

ing a central n-p interaction. The nucleon-target optical
potentials will also be assumed to be spin independent
and only the relative S-wave continuum of the n-p sys-
tem is included.

with JV the usual Hulthen S-state normalization con-
stant, JV = /2r. (ic + P) (2r. + P)/P. We take the param-
eters eg = 2.226 MeV, P = 5.255K, for which Vp ———84.86
MeU and Ng ——4.02 MeU / . The radial behavior of the
first three S, (r) are presented in Fig. 1 together with,
on the same scale, the Hulthen V „(r) to display the be-
havior of the states within the radial extent of the n-p
interaction.

A. The Hulthen Weinberg basis B. Diagonalization of the coupling matrix

We construct the Weinberg basis from the Hulthen n-p
interaction

VH(r) = Vp/(e~" —1)

where, to bind the deuteron ground state with energy
ed = /i2r2/2/i„„,

For the calculation of the transformation matrix A,
Eq. (15), we make use of the analysis of [8]. Rather than
attempt a direct diagonalization of the large unbalanced
and unsymmetric N x N coupling matrix C, where

&V = &V(~' —1)

/i'p' r' 2K)
Vp ———

/
1+—

/

we make use of the fact that C can be written

C =o. Bo, (31)

. t
2K+ ip)

(2r+P) (26)

where p „ is the n-p reduced mass. For the present ex-
ploratory investigation, this choice of potential is par-
ticularly convenient since the S-state Weinberg solutions
P;(r) can then be expressed analytically [11]. We use
the notation that P, (r) = [S,(r)/r]Ypp(r), with Ypp tile
spherical harmonic. In the Hulthen case the Weinberg
state parameters n, , Eq. (3), are given by

r'0 x&
0 b (32)

with b the (K —1) x (N —1) matrix with elements

tv = (~' —1)"&v(~' —1)"

Here n, a diagonal matrix, has elements (1, (n2
1) ~, . . . , (n~ —1) ~ ) and B is of the form

and the radial form of the Weinberg states S;(r) can be
written

0.2
't

S(r) =e-" ) a'*'e-'~"
j=O

) (') 0
j=O

(27)

O. I

l=2

where the a satisfy the recurrence relation ap g 0,(') ~ ~ (i)

with

('} ~2~i —~'+2(2 —1) l

0+1)(~+~i) ) ' (28)
0.0

/
L ~ /

5/ /

0] h/

(2p„„Vp)
$2/2 (29)

While the normalization condition on the a .', such
that (P, ~V „~P,) = —1, and the matrix elements P;~

(P, ~[V „] ~P~. ) can also be expressed analytically the re-
sulting sums contain large and canceling contributions.
The normalizations and calculation of the matrix ele-

-0.2
0.0

I

2.0
I

4.0 6.0
r (fm)

I

8.0 10.0 12.0

FIG. 1. Calculated radial S-wave Weinberg states S,(r)
(i = 1, 2, 3) using the Hulthen n pinteraction of Eq. (24). -
The actual Hulthen potential is also shown on the same ver-
tical scale (then in MeV).
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(*) x
y (*)

v(~) )
(34)

will be an eigenvector of B with the same eigenvalue pro-
vided that Vz~') ——xv(')/A, . Since the v(') are constructed
to be normalized, it follows that the normalized eigenvec-
tors of B, denoted P('), are (i = 2, . . . , N)

and x the (N —1) component row with elements (Pi2(n2—
1) 1 ~ ~ ~ 1P1N(+N 1)' ').

Since by construction the submatrix b is real and
symmetric, it can always be diagonalized by a similar-
ity transformation and its (N —1) real eigenvalues A;,
(i = 2, . . . , N) and normalized eigenvectors v(') are read-
ily calculated with high precision. It follows also that
the matrix B is similar to a triangular matrix whose di-
agonal elements are (Ai —0, A2, . . . , A~) and which are
therefore the N distinct eigenvalues of B.

Thus, for each eigenvalue A, (i = 2, . . . , N), for which
bv~'~ = A;v~'~, the vector

ponents in the wave function and is manifest through
oscillations in the angular distributions of the measured
spin observables. These oscillations were able to be repro-
duced qualitatively using the quasiadiabatic technique [6]
for a reasonable choice of the mean breakup energy as in-
put.

Since in the present analysis we do not include the non-
S-wave breakup continuum, the deuteron ground state
D-wave component, or the nucleon-target spin-orbit in-
teractions, important ingredients quantitatively, we can-
not compare the theoretical calculations directly with the
experimental data. Our aim here is to investigate the na-
ture of the convergence of the calculated wave functions
and observables with the size of the Weinberg basis set N
and the qualitative effects of these nonadiabatic (N & 1)
contributions upon the calculated cross section and vec-
tor analyzing power iTqq observables. We will compare
these Weinberg state expansion (WSE) calculations with
those of the adiabatic and quasiadiabatic methods using
the same n-p interaction and nucleon-target interaction
inputs.

'p(~)—

1+ [V'(*) v(') (35)
A. The rnodi6ed Weinberg basis

In the case i = 1 then

v(') =
l

'
l(0

with eigenvalue Aj ——0. It follows therefore, constructing
the matrix D, whose columns are the V~'~ in increasing
order of i, that

B=D AD

and therefore that the required transformation matrix
A = Do;, since

C=n Ba=n [D AD]n=A AA (38)

The calculated elements A, and elements of A were found
to be accurately reproduced when using a number of
available matrix eigenvalue and eigenvector library rou-
tines.

IV. REACTION CALCULATIONS

We apply the techniques developed above for the cal-
culation of the three-body wave function, Eq. (22), and of
reaction observables in the ssZn(d, p)s~Zn (g.s.; 5/2
=3) transition at 88.2 MeV incident deuteron energy.
Analysis of the high quality spin polarization data [6] for
this transition have shown that the adiabatic approxi-
mation, the N = 1 limit of the Weinberg state expan-
sion, provides an inadequate description of the three-
body breakup channels. The spin structure (large E,

j = E —1/2) and dynamics of the (d, p) reaction at such
energies [5,6] lead to the reaction being far-side domi-
nated and to a near-side/far-side interference which is
a sensitive probe of high n-p relative momentum com-

and similarly

(r I&,") = &,"(r)&»(r)

(~,"lr) =~, (r)&«(r) .

(39)

(4o)

Given the diagonalization procedure of Sec. III we can
now calculate the representative continuum energies A;
and the matrix A. Given A, we can construct the new
basis sets (APl, Eq. (19), and lA; ), Eq. (20), for any
value of ¹ We first investigate the spectrum A, of rel-
ative n-p energies as a function of N. This part of the
analysis is clearly a function only of the chosen n-p in-
teraction and is independent of any particular reaction
system. As is also clear from the coupled equations, Eq.
(16), when applied to a specific reaction, with deuteron
incident kinetic energy Ep, the effective channel c.m. en-
ergies are E, = Eg —A, and the magnitude of the cal-
culated A, will determine whether a given internal state
lA; ) is open (E; & 0) or closed (E, & 0) asymptotically
(R -+ oo).

In Fig. 2 we show the lowest three calculated energy
eigenvalues (Ai = 0) A, (i = 2, 3, 4), as a function of
the size of the original Weinberg basis P, , for N values
from 1 to 35. The calculated A, obtained in this work
are collected in Table I for Weinberg state bases N & 35.
Clear immediately from the figure and table is that, of the
N —1 nonzero A;, only three have values below 200 MeV
for N & 35. Thus, in the context of deuteron-induced
reactions with Eg -100 MeV, of interest here, for basis
sizes N & 15 there will be only two open channels lAz )
and lAz ), the third channel being increasingly closed as
N is reduced. For basis sizes N ) 15 then the third state
lZs ) is also open. At N = 35 the fourth channel remains
closed by some 45 MeV, corresponding to broken up n-p
fragments with relative energies of order 130 MeV.

We normalize these relative motion states such that
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200.0
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0.0
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j

8.0
I
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FIG. 2. Calculated energy spectrum A, (i = 2, 3, 4) of the
n pstates -iA, ) as a function of the size of the Weinberg state
basis N for the Hulthen n-p interaction of Eq. (24).

FIG. 3. Calculated radial form of the n pstates -v A, (r)
(i = 1, 2, 3) for the Hulthen n pinterac-tion.

The radial behavior rA; (r) of the open n-p relative mo-
tion states iA; ) (i = 1, 2, 3) are presented in Fig. 3 in
the case that K = 35. The radial forms rO, (r) of the
corresponding states (0,

~
(i = 1, 2, 3), required for the

calculation of the coupling potentials W;. , Eq. (18), are
presented in Fig. 4, also for N = 35. The relative mag-
nitudes of the two sets of states should be noted. The
orthonormality relation, Eq. (21), was satisfied to high
accuracy by these calculated n-p states.

B. The coupling interactions

As was stated earlier, we assume that the nucleon-
nucleus optical potentials are purely central. In the sub-
sequent transfer reaction calculations the spin-orbit com-
ponent is neglected in the exit channel also. We use
for the entrance channel nucleon-nucleus optical poten-
tial the global parameter set of Becchetti and Greenlees
[12] with energy Ed/2. As was shown above, for origi-
nal basis sizes N & 35, only a very small number n ( 3
of the transformed basis states iA; ) are open channels.
For N = 35, the calculated real and imaginary parts of
a typical diagonal continuum to continuum interaction,
Wz2(B), and a ground state to continuum and a con-
tinuum to continuum off diagonal coupling, Wzi (B) and
W2s(R), term are presented in Fig. 5. In all cases, the
presence of the short ranged n-p interaction in the cou-
pling potential matrix elements means that the range of
all terms is essentially that of the range of the nucleon-

target interactions. The coupling interactions of the
WSE are thus characteristically di8'erent to the longer
range matrix elements (P;]U(r, R) Pi) which enter the
CDCC treatment of breakup eKects [1,13] where the fold-
ing integral is over the much longer ranged continuum bin
states ~P, ).

C. Solution of the coupled equations

Given the set of coupling interactions W+(8) the

coupled-channels equations for the F, + (K) are readily
solved for any size of original Weinberg basis set N and
for the inclusion of any number n ( N of transformed
basis states AP(r). Although not explicitly indicated,
it must be remembered that the states I',. depend im-
plicitly upon the choices made for N and n. Such sets
of coupled equations are frequently encountered in nu-
clear physics, hence the existence of several dedicated
computer codes. The code FRESco [14] was used in
this work since it incorporates the option to read non-
symmetric coupling interactions. In the present work
we include only those n-p states which are open, i.e. ,
E; = Eg —A, ) 0. An attempt to assess the importance
of this approximation is made in the following.

D. Transfer reaction calculations

As in Ref. [6], the sZn(d, p) transfer reaction cal-
culations are carried out in a zero-range approxima-

TABLE I. Calculated energies A, (MeV) obtained by diagonalization of the coupling matrix C
for size of Weinberg basis N ( 35.

N
AI

Ag

A3

A4

5
0.0

71.55
404.57

1941.65

10
0.0

35.49
148.77
404.49

15
0.0

26.14
102.10
254.76

20
0.0

21.69
81.75

196.66

25
0.0

19.03
70.09

165.10

30
0.0

17.23
62.42

144.98

35
0.0

15.92
56.90

130.89
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FIG. 4. Calculated radial form of the n pstat-es rB, (r)
(i = 1, 2, 3) for the Hulthen n pinterac-tion.

tion using the computer program TwoFNR [15]. The
neutron- Zn bound state potential parameters and the
Anal state proton- Zn optical potential parameters were
taken from Table I of [6] with, in the case of the proton
potential, the strength of the spin-orbit interaction set
to zero. Using the Weinberg expansion of the three-body
wave function, Eq. (22), then

10.0

50O
Q)

CC

0.0

In the zero-range approximation, the neutron- and
proton-target wave functions kg~ and y~ ~ are assumed
to vary slowly with r, over the range of the n-p interac-
tion, in the (d, p) transition transition. Thus one writes

-5.0
0.0 2.0

I

4Q
I

6.0
R (fm)

I

8.0
I

10 0 12.0

dr V„p(r)g(+ (r, R) = ) G, F,+(R).
i=1

(42)

where the G, , the zero-range strengths appropriate to
each open channel, are

4.0

G, = v 4~ drr V„„(r)A, (r) (4S)

T„'„= ~~-~ R C&, R G, F,'+' R . 44
i=1

The zero-range (d, p) transition amplitude is therefore

O
0)

CC

2.0

0.0

The calculated G, used in this work are collected in
Table II for those open channels which arise for N & 35.

The description of the n-p c.m. motion introduced to
the transfer reaction calculation in the WSE is therefore

-2.0
0.0

I

2.0 4.0
I

6.0
R (fm)

8.0
I

10.0 12.0

Z (R) =) G F, (R)
i=1

(45)

where the dependence on the basis size N and the number

FIG. 5. Calculated real (solid lines) and imaginary (dashed
lines) components of the diagonal interaction W~q(R) in the
continuum and of the ground state to continuum and contin-
uum to continuum couplings W2r (R) and W~~(R) for N=35.
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20N
GN
gN
GN

10 25 30
—31.10

14.41
—31.10

9.21

—31.10
16.32
—7.95

—31.10
15.90
—7.53

—31.10
12.86

—31.10
15.31
—7.01

TABLE II. Calculated zero-ra g(, ) to t 882 M

5

ofWi b brg asis N & 35.
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—31.10

16.64
—8.30
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ing power iTi i angular distributions for the selected
Zn(d, p) Zn (g.s. ; 5/2; E =3) transition at 88.2 MeV

incident deuteron energy as a function of the size N of
the Weinberg basis. For all N )15 there are three open
channels; for N &15 there are two. As is seen in the fig-
ures, for N )25 there are only very small changes in the
calculated cross section angular distribution. Similarly,
for N &30, the changes in the calculated iTii angular
distribution are small compared with typical error bars
on the experimental data at these energies [6]. We note
in particular the onset of interference oscillations in the
calculated iTii near 0 25 as N is increased.

It is precisely these interference oscillations, the sig-
nature of appreciable near-side/far-side interference in
the reaction [6], which were not reproduced in adia-
batic (N=l) calculations for the transition. In Fig. 8 we
demonstrate this point by comparing the N=35 WSE
calculation above with the predictions of the Johnson-
Soper adiabatic result with N=1. Also shown are the
results of the quasiadiabatic calculation of Ref. [6], but

10

ADIA N=1

10

10
E

~ 10
D

10

10
0.0

I

20.0
I

40.0 60.0
0, „(deg)

I

80.0 100.0

FIG. 8. Comparison of the calculated differential cross sec-
tion and iTri angular distributions for the Zn(d, p) reaction
using the N=35 WSE model, the adiabatic approximation
and the quasiadiabatic model of [6].

1

WSE (N=15)

(D
10

E
(

10

10

10
0.0 20.0 40.0 60.0

0, (deg)

I

80.0 100.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6
0.0

I

20.0
I I

40.0 60.0
8,„(deg)

I

80.0 100.0

FIG. 7. Calculated cross section and vector analyzing
power iTir for the Zn(d, p) Zn (g.s. ; 5/2; E =3) transi-
tion at 88.2 MeV as a function of the size N of the Weinberg
basis used.

in the absence of the nucleon spin-orbit interactions, so
as to allow a precise comparison with the WSE calcu-
lations. It is clear that the interference pattern in the
iTii predicted when using the quasiadiabatic model, so
important to reproducing the experimental data in this
system, is confirmed by the WSE calculations as arising
from the high energy n-p configurations in the entrance
channel wave function (N )1) and treated inadequately
in the adiabatic approximation.

In the present work we do not include possible con-
tributions from closed ]4; ) channel configurations with
E; = Ed —A, ( 0. We note from Table I that, for the
largest basis calculation presented, N = 35, the excita-
tion energies of the included states are, in addition to
Ai ——0.0, at A2 ——15.92 MeV, and A3 ——56.90 MeV.
The next lowest configuration has A4 ——130.89 MeV, 74
MeV above the last included state. This component is
not included in the present calculations. Evidence from
the extensive deuteron breakup studies using the CDCC
treatment of breakup effects [13] has shown it unneces-
sary to include, in those calculations, configurations with
n-p relative motion wave number k „&1.5 fm, or rel-
ative energy of order 90 MeV. The contributions from
k „)1.0 fm or relative energy 42 MeV were also
found to be very small. While in the present work we
use a different n-p continuum basis to that of the CDCC
method, the CDCC results, and the calculated contribu-
tions from the open channels presented below, suggest
that the errors involved in neglecting the closed ]A; )
channels are indeed small.

In Figs. 9 and 10 we investigate the relative impor-
tance of the three included open channels on the transfer
reaction observables in the calculations with N = 35.
In Fig. 9 we show the calculated differential cross sec-
tions obtained when using each component G; F, + (R)
of the entrance channel state rYs (K) individually. While
the three contributions interfere when combined to the
physical cross section, the figure shows that over most of
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FIG. 9. Comparison of the calculated difFerential cross sec-
tion angular distributions due to the i =1, 2, and 3 open chan-
nel contributions to the entrance channel state X~ (R) of the
%=35 WSE model.

observables of suitable accuracy for comparison with data
in this energy region. Interference oscillations, the sig-
nature of appreciable near-side jfar-side interference, not
reproduced by the adiabatic model, are confirmed by
the present calculations as arising from the high energy
n-p configurations in the entrance channel wave function,
treated inadequately in the adiabatic method.

The aim of the present work was not the reproduc-
tion of the available experimental data, but to investigate
quantitatively the potential of the WSE method within a
realistic model environment. We have shown that, within
the WSE formulation, the resulting coupled-channels cal-
culation for the three-body wave function, of relevance
to (d, p) reactions near 100 MeV, requires only a very
small number of physically important open channels to
be included. In this work the maximum number of chan-
nels used was 3. Nevertheless, a quite significant number
(N 35) of underlying Weinberg states ~P, ) were required
from which to construct these few representative n-p in-

10

the angular region, and in particular near 0 -25 where
the data reveal interference oscillations, the i = 3 con-
tribution to the transfer amplitude is approximately an
order of magnitude smaller than that of the i = 1 and
i = 2 contributions. In Fig. 10 we show the cumulative
eKects of including the open channel components of the
N = 35, n = 3 coupled-channels calculation of the three-
body wave function. The calculated di8'erential cross
section and iTqq angular distributions are shown when,
in the transfer reaction, we include only the i = 1, the
summed i = 1 and i = 2, and all three open channel
components in the X (K) of Eq. (45). For both observ-
ables we note that the contribution from the third open
channel, at 56.90 MeV excitation, is relatively small and
would indicate that the inAuence of the next configura-
tion, the closed A4 ——130.89 MeV channel, will indeed be
negligible for practical purposes.
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L
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V. SUMMARY

Although formulated some time ago, the Weinberg
state technique for the treatment of breakup efFects in
transfer reactions has not previously been investigated
quantitatively. The method, in which the Johnson-Soper
adiabatic model appears as the lowest order solution, pro-
vides a means to include systematically the leading cor-
rections to that model.

The WSE method is applied to the Zn(d, p) Zn(g. s.)
reaction at 88.2 MeV. The observables in this reaction
have been shown to be particularly sensitive to the treat-
ment of the high energy n-p relative motion components
in the n+ p+target three-body wave function. We have
shown that there are indeed significant corrections to the
three-body wave function and to the calculated cross sec-
tion and vector analyzing power when compared with the
Johnson-Soper adiabatic model. The calculations require
a Weinberg basis of order 35 states to achieve calculated
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~ ~

-Q 4

-0.5

-0.6
0.0

I

20.0
I

40.0 60.0
0, (deg)
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I"IG. 10. Comparison of the differential cross section and
iTqq angular distributions obtained when including the i = 1
term, the sum of the (i = 1) and (i = 2) terms, and all terms of
the entrance channel state X3 (R) of the 1V=35 WSE model.
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ternal states [A; ) and (0; ], required as input to the
coupled-channels calculations.

In this sense the Weinberg states might be viewed as
an inappropriate expansion basis since, in the final event,
the continuum could be represented efFectively by a very
much smaller function set. However, it is precisely a
formal framework to generate this most appropriate set
of states, for transfer reactions, which the WSE method
addresses. Although a very significant reduction in basis
size is achieved, this reduction of the Weinberg basis ]P;)
to states [A; ) and (0; ]

is independent of any particular
reaction transition, target, or projectile energy, depend-
ing only on the underlying binding interaction in the com-
posite projectile. As such the numerical reduction need
only be carried out once for any particular projectile and
transfer interaction, here V z.

It should be noted that the three-body wave function
of the WSE method is readily incorporated into finite
ranged transfer reaction calculations and the formalism
is easily generalized to include noncentral terms in the
binding interaction generating the ]P,), the n ptensor-
interaction in the case of the deuteron. Zero-range cal-
culations were used. here only to allow comparison with
the earlier quasiadiabatic results, where the calculated
three-body wave function is not expressed as a product

of functions of c.m. and internal projectile coordinates,
and does not lend itself so readily to such a finite range
generalization.

It would be interesting and straightforward to ex-
tend the analysis to other systems. The (d, Li) reac-
tion has been used extensively for alpha particle spec-
troscopy studies, with Ep 100 MeV, using the DWBA.
The WSE method would provide a natural framework
within which to investigate the magnitude of breakup
corrections in this system. In particular, the technique
should also find application when the rapidly increasing
database on reactions induced by light neutron-rich ra-
dioactive nuclei, e.g. , Be, with large breakup channel
efFects, is extended to include single-nucleon or cluster
transfer reaction data.
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