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Excited muonic atoms in the actinide region may induce prompt fission. Following atomic muon
capture, some of the inner-shell transitions proceed by inverse internal conversion, i.e., the excitation
energy of the muonic atom is transferred to the nucleus. In particular, the (E2 : 3d — 1s) muonic
transition energy is close to the peak of the isoscalar giant quadrupole resonance in actinide nuclei
which exhibits a large fission width. Prompt fission in the presence of a bound muon allows us
to study the dynamics of large-amplitude collective motion. We solve the time-dependent Dirac
equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a
three-dimensional lattice and demonstrate that the muon attachment probability to the light fission
fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the

scission point.

PACS number(s): 25.85.Ge, 36.10.Gv, 02.70.—c

I. INTRODUCTION

Nuclear physics experiments with 4~ beams provide
information on fundamental symmetries and interac-
tions. Moreover, muonic atoms have proven extremely
useful in examining the electromagnetic properties of nu-
clei, e.g., electric charge distributions and multipole mo-
ments, because the muon has a high position probability
density inside the nucleus owing to its small Compton
wavelength A\c = A/(m,c) = 1.87 fm [1,2]. In this pa-
per we shall discuss how bound muons in muonic atoms
may induce fission in actinide nuclei by inverse internal
conversion and how muons may probe the dynamics of
prompt fission because their mean lifetime exceeds the
fission time scale by many orders of magnitude.

From a theoretical point of view, muon-induced fis-
sion has several attractive features. Because the nuclear
excitation energy exceeds the fission barrier by several
MeV, it is permissible to treat the fission dynamics clas-
sically (no barrier tunneling). The muon dynamics is
determined by the electromagnetic interaction which is
precisely known; hence, the process can be calculated, at
least in principle, with any desired precision. Our main
task is the solution of the Dirac equation for the muon in
the presence of a time-dependent external Coulomb field
which is generated by the fission fragments in motion. We
will demonstrate that the muon attachment to the light
fission fragment depends on the nuclear friction between
the outer fission barrier and the scission point. In this
context, nuclear friction is defined as the irreversible flow
of energy (and linear or angular momentum) from collec-
tive to intrinsic single-particle motion [3]. We include in
our classical dynamical calculations for the fission mode a
linear friction force to account for energy dissipation via
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neutron and photon emission. Through muon-induced
fission one expects to gain a deeper understanding of the
energy dissipation mechanism in large-amplitude nuclear
collective motion. A very important and still unresolved
question in nuclear many-body theory is to what extent
the dissipation mechanism can be understood in terms of
“one-body friction” (collisions of the nucleons with the
moving walls of the self-consistent mean field [4]) and the
role played by “two-body friction” (two-body collisions
between the nucleons).

Nonrelativistic calculations for muon-induced fission
have been carried out by several theory groups [5-11], but
only very recently have relativistic calculations become
feasible [12,13]. We discuss here in detail our theoretical
approach and the numerical implementation, and we wish
to ultimately compare our results in detail with experi-
mental data obtained at the Los Alamos Meson Physics
Facility (LAMPF) [14-16], at CERN and the Paul Scher-
rer Institute (PSI) [17-20], and at the Tri-University Me-
son Facility (TRIUMF) [21,22].

II. PROMPT AND DELAYED FISSION
INDUCED BY MUONS

Following the irradiation of a target with a 4~ beam
the muons lose most of their kinetic energy by ionization
in the target material within 107° to 1071° s. Once their
velocity has become comparable to the orbital electron
velocities characteristic of these atoms, they are slowed
down further by inelastic collisions with valence electrons
and are finally captured into high-lying states (n, =~ 14)
forming a muonic atom. The theoretical aspects of the
interaction of muons with condensed matter were first
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studied by Fermi and Teller [23] and were later explored
in more detail by Wu and Wilets [24] and by Kim [1]. Be-
cause all muonic bound states are unoccupied the muon
will cascade down to the ground state within 10713 s.
From the outer shells the excited muonic atom decays
preferentially by emission of Auger electrons. Since AF
increases rapidly for the inner shells, the transitions be-
tween levels with n < 5 are dominated by mesic x rays.
Alternatively, the transitions may proceed without emis-
sion of radiation via inverse internal conversion. From
the K shell, the muon disappears at a characteristic rate
A = Ao + A, where Ao = (2.2 x 107% s)™! denotes
the free leptonic decay rate and A. the nuclear capture
rate; A. depends upon the charge and mass of the nu-
cleus (Goulard-Primakoff formula [25]) and is of order
(7.5 x 1078 s)~! for actinides [15]. Muons stopped in an
actinide target may induce nuclear fission in two different
ways.

(i) Delayed fission following nuclear muon capture.
The muon is captured by a proton inside the nucleus
and forms a neutron and a muon neutrino

p +(Z,A) = (Z-1,A)" +v,. (1)

Even though most of the energy is taken away by the
neutrino, the average nuclear excitation energy is 15 — 20
MeV, which is well above the fission barrier for actinides
E¢ = 5—6 MeV. Fission via nuclear muon capture is de-
layed, i.e., it occurs with the characteristic mean lifetime
of the weak decay process, Teapt = (7 — 8) x 1078 s.

(it) Prompt fission resulting from inverse internal con-
version in muonic atoms. In this case, the excitation
energy of the muonic atom is transferred to the nucleus
by an internal conversion process (nonradiative transi-
tion) and the muon ends up in the K shell of the muonic
atom

(2, 4) ()" = (2, 4)"n". (2)

For the innermost atomic transitions in an actinide
muonic atom, the transition energy generally exceeds the
fission barrier height. The result is prompt fission in the
presence of the muon, since the muon is not annihilated
by this process, in contrast to fission resulting from nu-
clear muon capture. The nucleus will be surrounded by
the muon during the entire fission process, unless the
muon is ionized. Eventually, the muon will decay by
nuclear muon capture from the fission fragments. Exper-
imentally, both fission modes can be distinguished be-
cause of their different time scale. In this paper, we fo-
cus on prompt muon-induced fission. This process was
first discussed by Wheeler [26] and considered in more
detail by Zaretski and Novikov [27]. It is important to
know the specific atomic transitions that are responsible
for prompt fission. Figure 1 shows the Coulomb inter-
action energy between the muon and a 23¥U nucleus as
well as the binding energies.of the lowest bound states.
Even though FEO transitions such as 2s — 1s and 3s — 1s
exhibit the largest internal conversion rates they do not
contribute to fission because they lead to excitation of
the giant monopole resonance which is spherically sym-
metric and much too high in energy. On the other hand,
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FIG. 1. Coulomb interaction potential and energy levels of
the muonic atom 23%U. Indicated are the two nonradiative
muonic transitions leading to prompt muon-induced fission
by inverse internal conversion (E1 : 2p — 1s, AE = 6.6 MeV)
and (E2:3d — 1s,AE = 9.6 MeV).

the (E1 : 2p — 1s) and the (E2 : 3d — 1s) transi-
tions result in excitation of the electric giant dipole and
quadrupole resonances, respectively, both of which act
as doorway states for fission; this is indicated schemati-
cally in Fig. 2. Let us consider the specific case of 238U:
The giant dipole resonance is located at Egpr = 12.8
MeV and has a width I' = 6 MeV [28]; for the T = 0
giant quadrupole resonance the corresponding numbers
are Egqr = 9.9 MeV and I' = 6.8 MeV [29]. Accord-
ing to Teller and Weiss [30] it is very probable that the
3d — 1s radiationless transition will be dominant for
muon-induced fission, because its transition energy of 9.6
MeV is very close to the peak of the giant quadrupole
resonance whereas the 2p — 1s transition energy of 6.6
MeV is far off the center of the giant dipole resonance.
Experimentally, the situation is controversial: Johansson
et al. [18] measured muonic x rays in coincidence with
prompt fission in 238U. From the muonic x-ray intensity
ratios for prompt and delayed fission they conclude that
(74 £15)% of all prompt events can be attributed to the
3d — 1s radiationless transition and only (26 + 15)% to
the 2p — 1s transition. On the other hand, Kaplan et
al. [22] find in similar studies a predominance of the F1
transitions in their prompt fission data.

The prompt muon-induced fission process is most eas-
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FIG. 2. Left side: double-humped fission barrier for an ac-
tinide nucleus; the giant dipole resonance (GDR) and giant
quadrupole resonance (GQR) are the doorway states to fis-
sion. Right side: prompt fission in the presence of the muon.

light fragment
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ily understood in terms of a “correlation diagram” in
which one plots the binding energies of the transient
muonic molecule as a function of the internuclear dis-
tance R (Fig. 3). If the nuclear fission process is slow
(large energy dissipation), the muon will stay in the low-
est molecular energy level (1so) throughout the fission
process and emerge in the 1s bound state of the heavy
fission fragment. On the other hand, if the nuclear mo-
tion is relatively fast (low friction), there is a nonvan-
ishing probability that the muon may be transferred to
higher-lying molecular orbitals, e.g., the 2po level from
where it may end up attached to the light fission frag-
ment. Hence, theoretical studies of the muon-attachment
probability to the light fission fragment in combination
with experimental data can be utilized to probe the dy-
namics of prompt fission. In fact, the muon appears to
be the only available tool for such studies. However, this
simple picture is complicated by the fact that transitions
to some of the higher-lying levels of the transient muonic
molecule (e.g., 2pm and 2so0’) result again in muon attach-
ment to the heavy fragment.

To obtain an order-of-magnitude estimate for the muon
attachment probabilities, we utilize a simple formula de-
rived by Demkov [31] and by Meyerhof [32]. Their model
is based on the two lowest molecular levels (1so and 2po)
and utilizes first-order perturbation theory to calculate
the transition probability from the 1so to the 2po level;
within the two-level model, it is equal to the muon at-
tachment probability to the light fission fragment:

w(Ig — I)
(2) vomue? (VI + VIz)
3)
where Iy and I;, denote the binding energies of the
muonic K shell belonging to the heavy and light fission

fragments, respectively, and v is the relative velocity of
the fission fragments. For a fragment charge asymmetry
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P = (1 + ezlml) , T =

H L
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FIG. 3. Schematic “correlation diagram,” i.e., binding en-
ergies of the transient muonic molecule as a function of the
internuclear distance during prompt fission. At small dis-
tances (left side) the molecular energy levels correspond to
the bound states of the 33®U muonic atom; at large inter-
nuclear distances (right side) the molecular levels approach
the binding energies of the heavy (H) and light (L) fission
fragment.
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£ =Zuy/Z = 55/39 = 1.41 (corresponding to the peak
of the mass distribution) one finds Iy=5.93 MeV and
I7;,=3.45 MeV. If we assume that the molecular transi-
tion occurs at a relative velocity of the fission fragments
of v = 0.08¢, we obtain a muon attachment probabil-
ity Pr = 0.042 for the light fission fragment; this value
decreases to Pr, = 0.015 if v = 0.06c.

III. MUON DYNAMICS: TIME-DEPENDENT
DIRAC EQUATION

For the dynamical description of the muonic wave func-
tion during prompt fission, the electromagnetic coupling
between muon and nucleus (—e7y,A*) is dominant; the
weak interaction is negligible. The source of the elec-
tromagnetic vector potential A* is the nuclear current
density j#... In the following we shall adopt a time-
dependent description of the fission process, i.e., the cur-
rent density of the fissioning nucleus is an explicit func-
tion of time j¥ . = jk . (r,t). Because of the nonrel-
ativistic motion of the fission fragments (v/c =~ 0.08),
retardation effects can be neglected and the electromag-
netic interaction is dominated by the Coulomb inter-
action A%(r,t); the vector potential A(r,t) is several
orders of magnitude smaller. We may determine the
Coulomb potential generated by the nuclear charge den-
sity pnuc(r,t) either from Poisson’s equation

V2A%(r,t) = —4mpnyc(r,t) (4)

or, equivalently, from the Coulomb integral equation

A° (r,t) = /df‘r'w. (5)

v —r'|

It is convenient to measure the muon position in units
of its Compton wavelength and to measure time in units
of its Compton time. Hence we introduce the following
dimensionless coordinates

x=r1/X, A= Hh/(myuc) = 1.87 fm,
T=t/Te, Te=Acfc=623x10"25s (6)

and the dimensionless Coulomb interaction between the
muon and the fissioning nucleus

VO = —eA®/(m,c?). (7)

The muonic binding energy in the ground state of an
actinide muonic atom amounts to 12% of the muonic
rest mass; hence nonrelativistic calculations, while qual-
itatively correct, are limited in accuracy. Several years
ago, we have demonstrated the feasibility of such nonrel-
ativistic calculations [5,6,10,11] which are based on the
Schrédinger equation

iV + VOx,7)]o(x,7) = ia%_d)(x,v'). (8)

Recently, we have developed the numerical methodology
to solve the relativistic problem on a three-dimensional



1300 V. E. OBERACKER et al. 48

Cartesian mesh. The time-dependent Dirac equation for
the muonic spinor wave function in the Coulomb field of
the fissioning nucleus has the form

. .0
[—ia- V 4+ B+ VO (x,7)¥(x,7) = za—Td)(x, 7). (9)
Quantum electrodynamics radiative corrections such as
vacuum polarization and self-energy amount to less than
1% in heavy muonic atoms [33] and are negligible in view
of other uncertainties.

IV. FISSION DYNAMICS
A. Parametrization of nuclear shape and density

In these first numerical studies of the time-dependent
Dirac equation for prompt muon-induced fission on a
three-dimensional lattice, we have chosen a relatively
simple parametrization of the nuclear charge distribution
(see Fig. 4): two spherical segments (radii R;, Ry) with
uniform charge density separated at a distance R. Be-
cause of volume conservation during fission, the fragment
radii depend upon the elongation, R; = R;(R). In subse-
quent studies, more realistic charge density distributions
will be obtained from the hydrodynamic model [34], from
the shell correction method [35], or from nonrelativistic
and relativistic mean-field theories [4,36,37]. The fission
process is described by two collective coordinates: the
fission coordinate R and a mass asymmetry parameter

defined as £ = (R;/R;)3.

B. Fission mass parameter

Microscopic nuclear structure calculations, e.g., the
cranking model [38], show that the collective mass pa-
rameter B associated with the fission coordinate R is
not constant, but in fact a function of the distance R.
In our current model calculation this behavior is taken
into account: After the nucleus has reached the scission
point Ry, we use the reduced mass m..q of the fission
fragments

A1A;

BR>Rsci = Myred =M 10
(R = Raci) a=moa (10)

R, R,
a; a,

FIG. 4. Parametrization of the nuclear charge distribution:
two spherical segments (radii Ri, Rz;) with uniform charge
density separated at a distance R.

where m denotes the nucleon mass. At small distances
corresponding to the ground-state minimum of the ac-
tinide parent nucleus, we can determine B(R) from the
mass parameter B () associated with the § vibrations.
The collective model yields [39]

h2
B =3pes s om A )

where 3; denotes the ground-state deformation and AE
is the transition energy in the first (-vibrational band.
For the nuclear shape parametrization given above, one
finds the following relationship between the two mass pa-
rameters by simple geometric considerations

7B (3B
B (Rmin) = —Sé—g—l—), (12)
where R, is the nuclear elongation in the ground-state
minimum and Ry = (1.2 fm)A'/3. For distances between
Ruyin and R, B(R) is obtained by linear interpolation
between the values of these two mass parameters.

C. Fission potential

From experimental studies of fission induced by neu-
tron capture or neutron transfer reactions one can map
out the properties of the fission potential. We first con-
struct an empirical fission potential U(z) for a ficticious
constant mass parameter; for convenience we utilize the
reduced mass mq of the fission fragments. Later on,
we transform this potential to the coordinate-dependent
mass B(R). Following Back [40] we parametrize the
double-humped fission potential with four parabolic sec-
tions

1 2 2
((E1 + 3Mreawi(z — 21)%, 0< 2 < 214,
1 2 2
EA - ”jmrede(z - ZA) y 21A S z S ZA2,
_ 1 2 2
U(z) = § B2+ 3Mreaws(z — 22)%, 242 < 2 < 228,

1 2 2
Ep — 3Mreawg (2 — 2B)%, 22B < 2 < 23,

\ ZrZre?/R(z) + const, z > zs.
(13)

The four regions ¢ = 1, A,2, B correspond to the first
minimum, the inner barrier, the second minimum, and
the outer barrier, respectively. At large distances, the
parabolic potential is joined smoothly with the Coulomb
potential of the fission fragments. If the ground-state
energy is normalized to zero, the energy of the first min-
imum is given by E; = —%Emﬁ, where Eg+g = hw; is
the position of the (B-vibrational bandhead. As a spe-
cific example we consider here the isotope 238U. We find
Aw; = 0.993 MeV, from which we deduce E; = —0.497
MeV. The barrier heights and frequencies are taken from
Table 2 of the review article by Bjornholm and Lynn [41]:
EA = EB = 5.70 MeV, ﬁwA = 1.0 MeV, ﬁwB = 0.60
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MeV. These authors also report the energy of the iso-
meric ground state to be Eis, = 2.60 MeV. The curvature
Fuwy is probably the least certain parameter. From a fit
to (t,p) reactions Back [40] finds 7w, = 0.90 MeV, from
which we infer E; = Ej — 3wz = 2.15 MeV for the
value of the isomeric potential minimum. The ground-
state deformation z; is obtained from the (3-vibrational
band, and the parameters of the parabolic sections (z1.4,
ZA, ZA2, 22, 22B, 2B, and z3) are obtained uniquely by
requiring continuity of the potential U(z) and its first
derivative.

We now transform the potential U(z) which corre-
sponds to a constant mass parameter to the physical
fission potential with coordinate dependent mass B(R).
Starting from the nuclear energy

Myred (dz

Enuc = 9 E) + U(Z) (14)

we obtain with the coordinate transformation z = z(R):

B Mied (dz dR

= (%) +UEE)

- %B(R) (%Itj) + Vas(R). (15)

The last equation determines the relationship between
the fission coordinates R and z (for variable and constant
mass, respectively)

4z = | BB yp (16)
Mred

from which z = z(R) can be obtained by integration, and
it also defines the physical fission potential Vz5(R), which
is shown in Fig. 5.

20
10
% 1 - 1
s =10+ 38
Ny L
—-20 —— fission
ootential
0 5 10 15 20 25
R{fm)

FIG. 5. Phenomenological fission potential for 33U corre-
sponding to the coordinate-dependent mass parameter B(R)
defined in Sec. IV B. The potential is constructed from four
parabolic sections and is smoothly joined with the Coulomb
potential of the fission fragments at large distance R.

D. Fission mass asymmetry parameter

The phenomenological mass asymmetry parameter { =
(R1/R3)® is made explicitly R dependent, £ = {(R), as
indicated in Fig. 6. In this way, we reproduce the results
of fission calculations in the shell correction method [35]:
symmetric shapes, £ = 1, up to the second minimum
in the fission potential (E;) and then a steady increase
to the asymptotic value {(R — o0) = Ay /AL which is
reached at the outer fission barrier (Eg).

E. Classical description of nuclear dynamics

Because the nuclear excitation energy exceeds the fis-
sion barrier height, there is no barrier tunneling and we
may treat the fission dynamics classically; in this case,
the collective nuclear energy has the form

2
Bt = 5 B(R) () + Vel (17)

The effective fission potential
Vet (R) = Vas (R) + E,. (R) (18)

contains a contribution from the muonic binding energy
which depends on the elongation of the fissioning nucleus.
This results in an augmentation of the fission barrier, an
interesting effect first studied by Leander and Moller [42].
In addition, we introduce a linear friction force which
acts between the outer fission barrier and the scission
point. In this case, the dissipation function D is a sim-
ple quadratic form in the velocity and the time rate of
change of the nuclear collective energy equals twice the
dissipation function

dEE dR\?
nue _ _op — _f (%) . 19
dt 2D =-f ( dt) (19)

The adjustable friction parameter f determines the dis-
sipated energy. The classical collective motion of the

1.50
‘ An/ AL
feo

1.30 — —
o
v
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R {(fm)

FIG. 6. Fission mass asymmetry parameter as function of
the fission coordinate R.
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fissioning nucleus is described by Egs. (17)-(19). Note
that the nuclear and muonic motions are coupled via the
instantaneous muon energy

E#(R(t)) = <¢(xa t) |_ia -V + 8+ Vo(xvt)l 1,/1(x, t)> .
(20)

Therefore, the nuclear equation of motion (19) and the
Dirac equation (9) must be solved simultaneously.

V. ELECTROMAGNETIC INTERACTION
BETWEEN MUON AND NUCLEUS

The Coulomb interaction is computed numerically
from the nuclear charge distribution ppuc(r,t) of the fis-
sioning nucleus. For the axially symmetric nuclear charge
distribution considered here, it is advantageous to intro-
duce cylindrical coordinates

It)F
7p7 ma

(21)

'-eAO (Z, P t) /p’dpl / dz’pnuc
—oo

where F' (er—,k) denotes the complete elliptic integral of
the first kind and

a=p*+p%+(z-2), b=2pp, k= 2 - (22)
a+b

As long as the fission fragments are connected, the double
integral must be solved numerically on a two-dimensional
equidistant mesh for the coordinates (2/, p’) with a step
size Az’ = Ap’ = 0.25). = 0.47 fm. However, once the
fission fragments have separated (R > R; + R3) we can
solve the Coulomb integral analytically because of the
simple geometry of the nuclear charge distribution; we
find

—eA%(z,p,t) = —(Zpa)f(di (¢), Ru)

—(Zpa)f(d2 (t),RL), (23)
where Zy,Z;, and Ry, R; denote the charge numbers
J

and radii of the heavy and light fission fragments, re-
spectively. The distances d;,ds are given by

di(t) =vp?+[z+a (D),
(24)

dz () = Vp? + [z — a2 (1)]%.

The geometric quantities a; (¢) are depicted in Fig. 4, and
the function f is defined by

% , T>R,
f(r,R) = . (25)
ﬁ(3 - }L-'.ff)’ r < R.

VI. NUMERICAL IMPLEMENTATION

We solve the time-dependent Dirac equation (9) on a
three-dimensional Cartesian lattice using the basis-spline
collocation method. The four Dirac spinor components
»®) (z,y,2,7),p = (1,2,3,4) are expanded in terms of a
product of basis-spline functions BM (z)

> BM(@)BM (y)BY (2)(l) (). (26)

3,5,k

PP (z,y,2,7) =

The basis-spline functions BM(z) are piecewise-
continuous polynomials of order (M —1). They represent
generalizations of the “finite elements” that are widely
used in computational physics; in fact, finite elements
are B-splines with M = 2. In the present calculations
we employ B-splines of order M > 5. Since the spinor
wave function is represented by polynomials of high or-
der, very high accuracy can be achieved with a modest
number of lattice points. This is the crucial advantage
of the B-spline collocation method which enables us to
study three-dimensional problems.

In the collocation method, the unknown expansion co-
efficients 1/)”k (7) are eliminated as follows: the Dirac

spinor components 1(P) are represented on a rectangular
Cartesian lattice (zq,yg, 2y)

vE, =P (Ta,ys, 2, 7) = 3 BM(2a) BY (ys) BY (2,825 (1) = 3 BMBMBMyi* (r), (27)

47,k

where (a =1,...,N;08=1,...,Ny;v=1,...,N,), i.e.,
the lattice representation of the spinor wave function ¢ ®
is a vector 9 in collocation space with N = 4N.NyN,
complex components. Even for lattices of moderate size
N becomes quite large. For example, if N, = N, = N, =
29 we find a wave vector of dimension N = 9.8 x 10%. By
matrix inversion of the last equation we find the relation

E;;e Z B BJﬂBk'y,l/)(P) (28)

apBy’
a,B,y

which allows us to eliminate the coefficients of the basis

4,5,k

[

expansion in favor of the values of the Dirac spinor wave
function at the collocation points. In the B-spline collo-
cation method, the original partial differential equation
(9) is transformed into a matrix equation

Hy(r) = 27, (29)

where we use boldface type for matrices and vectors in
collocation space. The lattice representation of the Dirac
Hamiltonian is a N x N matrix H of the form

H=—ia-D+ 8+ Vx,7). (30)



48 MUON-INDUCED FISSION: A PROBE FOR NUCLEAR ... 1303

It is impossible to store H in computer memory, since
this would require the storage of N2 complex double-
precision numbers. Even for the moderate lattice size
mentioned above one obtains N2 = 9.6 x 10°. Hence, we
must resort to iterative methods for the solution of the
matrix equation which do not require the storage of H.

We solve the time-dependent Dirac equation in two
steps. First, we consider the static Coulomb problem
at time 7=0, i.e., the muon bound to an actinide nu-
cleus. The stationary Dirac equation for the ground-state
spinor is given by

H0¢gs = 931/’95 (31)
with the Hamiltonian
Ho = H(r = 0). (32)

The static problem is solved by the iterative procedure
(damped relaxation method [43])

PO = @ 4 At-D(H, — (98 [Ho| 909 (33)

with the damping operator

. -1
D=($+,@+u) . (34)

The parameters u and v may be thought of as mass and
energy shifts, respectively. For 233U we utilize the pa-
rameters u = 3.0, v = —0.74, At = 4.5.

The second part of our numerical methodology is the
solution of the time-dependent Eq. (29) by a Taylor ex-
pansion of the propagator. For an infinitesimal time step
AT we find

P (r+ A7) =U(r+ A7, 7) 9 (7)
N . n
(1+ 3 #{)—) $(r). (35

n=1

Q

We have thus reduced the original problem to a series
of (matrix)x (vector) operations which can be executed
with high efficiency on vector or parallel supercomputers
without explicitly storing the matrix in memory. Details
of the numerical method can be found in Refs. [44-47].
Typical runs on a CRAY-2 supercomputer for cubic or
rectangular lattices with up to 29 points in the z,y, and
z directions and a lattice spacing Az = 2.0\, take four
Megawords of memory and 6.5 CPU hours. As in all lat-
tice calculations, we need to demonstrate convergence in
terms of the lattice size and lattice spacing; we estimate
that convergent calculations will require a rectangular
lattice with approximately 39 x 39 x 65 lattice points and
a lattice spacing Az = 1.0\.. We also plan to exam-
ine a possible additional improvement of our numerical
method by using variable lattice spacing; the basis-spline
collocation method is well suited to this task.

VII. NUMERICAL RESULTS AND DISCUSSION

In the following we present results for prompt fission of
238U induced by the E2 : (3d — 1s,9.6 MeV) nonradia-

tive muonic transition. Figure 7 shows the relative veloc-
ity of the fission fragments as a function of time; all times
are indicated in units of the muon Compton time 7¢,
Eq. (6). Our model assumes that there is no friction until
the outer fission barrier Ep is reached; hence, the velocity
profile is essentially the mirror image of the fission poten-
tial displayed in Fig. 5, with small deviations arising from
muonic binding energy contributions. The numerical cal-
culations have been carried out for a variety of friction
parameters; for f = 500 we observe a time delay in the
nuclear relative motion of Aty,c = 6007, = 3.7 x 10~%!
s.

Figure 8 shows the nuclear energy dissipation (in form
of neutron and v emission) as a function of time; in our
model, friction is confined to the region between the outer
fission barrier and the scission point; for friction param-
eters f = 10 and f = 500, we obtain total dissipated
energies Fgjss = 0.7 MeV and 15.8 MeV, respectively.

In Fig. 9 we depict the time variation of the instanta-
neous muon energy defined in Eq. (20): at t = 0, it cor-
responds to the energy of a muon bound by the Coulomb
field of a quadrupole-deformed 238U nucleus; at t — oo,
the binding energy approaches a value somewhere in be-
tween the binding energies of the heavy and the light
fission fragment, but much closer to that of the heavy
fragment.

Figure 10 shows the Coulomb interaction energy be-
tween the muon and the fission fragments at large sepa-
ration. The two Coulomb wells are clearly visible; the
deeper well on the left is generated by the heavy fis-
sion fragment. Also shown (at the bottom of Fig. 10)
is the associated muon position probability density [13].
For a fragment mass asymmetry Ay/Ar = 1.40 we ob-
serve that the muon sticks predominantly to the heavy
fragment; the muon attachment probability to the light
fragment is represented by the small bump on the right.

The process of prompt muon-induced fission was first
observed experimentally by Diaz et al. [48]. More recent
experiments by Ahmad et al. [21] yield a total fission
probability per muon stop of Py = 0.068 for 2*¥U and
a ratio Py(prompt)/Ps(delayed)= 0.089. Mean lifetimes
of muons bound to fission fragments of several actinides
have been measured by Schroder et al. [15]. From the
observed lifetime 7, = 1.30 x 1077 s it was deduced that
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FIG. 7. Fission fragment velocity versus time for two values
of the friction parameter, f = 10 and f = 500.
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the muon is predominantly captured by the heavy frag-
ment with a probability Py > 0.9. The most recent
experimental muon attachment results are given by Po-
likanov [20]: (0.090+0.027) for a fission mass asymmetry
& = 1.13, and (0.015+0.15) for a fission mass asymmetry
€ = 1.90.

Based on the formalism presented here, preliminary
results for the muon attachment probability to the light
fission fragment P as a function of the dissipated nu-
clear energy have been published in a recent Letter jour-
nal [13]. As expected, we found that P, decreases with
dissipated energy. For a fission mass asymmetry £ = 1.40
(which corresponds to the peak of the fission mass distri-
bution in 238U) and reasonable values of the dissipated
energy, we calculate muon attachment probabilities Py,
less than 10%. This is in agreement with the data of
Schroder et al. [15]. Since the sticking probability de-
pends strongly on the fragment mass, a quantitative com-
parison with the data [20] is not yet possible. For this
purpose, we have to replace the empirical fission poten-
tial used in this work (which is valid only for £ = 1.40)
with a theoretical fission potential energy surface that is
explicitly mass-asymmetry dependent.
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FIG. 9. Expectation value of the instantaneous muon en-
ergy during fission, for f = 10 and f = 500.
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FIG. 10. Coulomb potential (top) and muon position prob-
ability density (bottom) at time ¢ = 13017, and internuclear
distance R = 52.9 fm. The friction parameter f = 10 corre-
sponds to Egiss = 0.7 MeV.

VIII. OUTLOOK

Prompt muon-induced fission is a very promising tool
for the study of nuclear fission dynamics. In particular,
our goal is to determine the nuclear energy dissipation
between the outer fission barrier and the scission point;
this will be possible in the near future by comparing our
theoretical values for the muon attachment probabilities
as a function of energy dissipation with the experimental
data [20].

In this paper we have presented a dynamical theory
of prompt muon-induced fission. For the first time,
the muon dynamics is described by the Dirac equation
(rather than the nonrelativistic Schréodinger equation)
with a time-dependent external Coulomb field which is
generated by the fission fragments in motion. Because
the nuclear excitation energy exceeds the fission barrier
height, it is permissible to treat the fission dynamics clas-
sically, including a phenomenological friction force.

We have presented both the formalism and the nu-
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merical methodology in considerable detail; it is our in-
tent to build a robust time-dependent model, and the
present paper is only one first important step along the
way. It will serve as a foundation for future work; in
particular, we plan to extend the present nuclear dynam-
ics description as follows: We want to examine the de-
pendence of the muon final state on different theoretical
descriptions of the nuclear density distributions and fis-
sion potentials, e.g., the hydrodynamic model [34], the
shell-correction method [35], and the nonrelativistic and
relativistic mean-field theories [4,36,37]. Ultimately, we
want to link our current studies of the time-evolution of
the muonic spinor wave function to a microscopic treat-
ment of fission dynamics. This can be achieved via a
time-dependent Hartree-Fock description [4] of the nu-
clear motion between the outer fission barrier and the
scission point, providing the first experimentally acces-
sible way to check the concept of mean-field dynamics
and the associated one-body dissipation. Discrepancies
between theory and experiment would indicate two-body
dissipation.

It will be interesting to compare the muon attachment
results to experimental information from other methods
such as neutron emission [49] and to theoretical models
of friction (macroscopic and microscopic) [3,34,50,51]. In
this context we plan to study p~ attachment probabil-
ities to the fission fragments as a function of dissipated
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energy and fission fragment mass asymmetry, and we will
attempt to analyze all available experimental data. We
also plan to make theoretical predictions for actinide nu-
clei which have not yet been investigated experimentally.
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