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Large discrepancies have been observed between measured electromagnetic dissociation (ED) cross
sections and the predictions of the semiclassical Weizacker-Williams-Fermi (WWF) method. In this
paper, the validity of the semiclassical approximation is examined. The total cross section for
electromagnetic excitation of a nuclear target by a spinless projectile is calculated in first Born ap-
proximation, neglecting recoil. The final result is expressed in terms of correlation functions and
convoluted densities in configuration space. The result agrees with the WWF approximation to
leading order (unretarded electric dipole approximation), but the method allows an analytic evalua-
tion of the cutoK, which is determined by the details of the electric dipole transition charge density.
Using the Goldhaber-Teller model of that density, and uniform charge densities for both projectile
and target, the cutofF is determined for the total cross section in the nonrelativistic limit, and found
to be smaller than values currently used for ED calculations. In addition, cross sections are calcu-
lated using a phenomenological momentum space cutofF designed to model final state interactions.
For moderate projectile energies, the calculated ED cross section is found to be smaller than the
semiclassical result, in qualitative agreement with experiment.

PAC S number (s): 25.75.+r

I. INTRODUCTION

The availability of relativistic heavy-ion beams has
opened a new avenue for the study of electromagnetic
ewcitations of nuclei. Cross sections are enhanced both
by the charge of the projectile ions and by the relativistic
contraction of the projectile's electric field into a sharp
pulse of radiation at high energies. Experiments range
from single and double nucleon-removal reactions [I], to
the study of "halo" nuclei using radioactive beams [2],
to the possibility of multiphonon excitations of collec-
tive nuclear states [3]. Aside from their intrinsic interest,
electromagnetic excitation processes in peripheral colli-
sions will also be important at the Brookhaven Relativis-
tic Heavy Ion Collider (RHIC) [4].

There is, therefore, a tremendous incentive to develop
an understanding of the physics involved in these pro-
cesses. Such an understanding has two facets. On the one
hand, one must be able to calculate the detailed structure
of the target nucleus in order to calculate its response to a
particular probe, such as the electromagnetic interaction.
Fortunately, this has been one of the central topics of nu-
clear physics for many years, and an extensive literature

exists on the subject [5]. On the other hand, it is also
necessary to understand the process by which the projec-
tile excites the target. With few exceptions to date [6],
this aspect of the problem has been dealt with by using
the venerable Weizacker-Williams-Fermi (WWF) method
of virtual quanta [7], and its generalization to arbitrary
multipoles [8]. This approach is based on the observa-
tion, due to Fermi, that the electromagnetic fields of a
point charge, when boosted to high energy, are transverse
to the direction of the charge's motion. The supposition
is that one can calculate cross sections by replacing the
projectile by an equivalent pulse of electromagnetic radi-
ation. The cross section for a given reaction is then

0~~ —— dun u o~ ~,
where ~o( )aris the cross section for the same reaction
induced by real photons, and n(w) is the number of pho-
tons of energy u in the pulse of equivalent radiation. For
dipole transitions, n(u) can be determined by calculating
the intensity of the projectile fields as a function of fre-
quency, integrated over impact parameters [9]. Assuming
the projectile s trajectory is a straight line, the result is
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where Ko{z~ is a Bessel function of imaginary argument,
Z„ is the projectile charge, P its speed, x = &'", and
b;„ is an impact parameter cutoK required to get a finite
result.

In some respects, the Weizacker-Williams-Fermi
(WWF) method is very well suited to the problem of elec-
tromagnetic dissociation by heavy ions. Cross sections
may be calculated either using a model or, as is often
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done, by direct appeal to measured photodisintegration
cross sections. In the latter case one obtains a cross sec-
tion, at least at high energy [10], that is independent of
any model of the target's structure. Furthermore, the
equivalent photon number, n(w), can be obtained by a
relatively straightforward classical calculation. Nonethe-
less, the WWF method is not completely satisfactory.
Theoretically, there is no systematic procedure for eval-
uating corrections to the semiclassical result, and conse-
quently no way of gauging the reliability of the approach.
In addition, there is the troublesome problem of choosing
the minimum impact parameter. Since 6;„is not Axed

by the WWF procedure itself, a number of choices have
been proposed [11], based on phenomenological consid-
erations. On the experimental side, large discrepancies
from the naive WWF predictions have been observed in
target fragmentation experiments [12], leading some au-
thors to question the validity of erst-order perturbation
theory for heavy projectiles [13].

The aim of this paper is to go beyond the semiclassi-
cal WWF method and calculate the quantum mechani-
cal cross section for electromagnetic excitation of nuclei
in heavy-ion collisions. In the next section we derive an
expression, originally used in high energy physics [14],
for the unpolarized cross section in first Born approxi-
mation, neglecting recoil efFects for both the projectile
and target nuclei. We demonstrate that the cross sec-
tion does approach the WWF approximation in the limit
of large projectile energy, and in an Appendix we derive
an expression for the cutoff parameter, 6;„, for dipole
transitions, using a simple model for the transition ma-
trix elements. In the following section we use the same
simple model to compare our results for the full cross sec-
tion to those of the WWF approximation as a function
of projectile energy, transition multipolarity, and transi-
tion &equency. Finally, using a phenomenological cut-
off designed to model final-state interaction efFects, we
compare the results of this simple model with measured
single-neutron removal cross sections.

II. QUANTUM EXCITATION CROSS SECTION

We begin this section with a discussion of the kine-
matics of the nuclear excitation process. The projectile
nucleus, with mass Mq and momentum P," = (E;,P, ),
scatters from the target by exchanging a virtual photon
of momentum q". In the process, depicted in Fig. 1, the
target of mass M2 is excited from its ground state to an
excited state of mass M2 + u. For high Z& projectiles,
elastic scattering of the projectile (oc Z„) will dominate
over inelastic processes (oc Z„), so that in the following
we shall assume that the projectile remains unexcited in
the final state. This is in accord with the semiclassi-
cal picture, where the projectile remains in its ground
state, following a straight line trajectory throughout the
collision. Kinematically, the elastic scattering of the pro-

P)

KI Kf

FIG. 1. Electromagnetic excitation process.

jectile translates into a condition on the four-momentum
transfer q,

2

I & I222&~ = qO/& qrnin = &0
(4)

where p = . In exactly the same fashion, we derive
P2

a relation between the energy transfer and the target
excitation energy,

qo
—~+ Q((u /M2). (5)

Even at this stage of the calculation, we see a similar-
ity with the semiclassical calculation at high energy. For
large projectile energies, the minimum momentum trans-
fer goes to zero, so that it is reasonable to expect that
the cross section will be dominated by the pole in the
photon propagator at q = 0, where the interaction cross
section will be well approximated by the cross section for
real photons.

Having treated the kinematics, we now turn to the
calculation of the cross section. The method we use is
a straightforward evaluation of the Feynman diagram of
Fig. 1, borrowing heavily from the theory of relativistic
electron scattering [15] in order to relate the target and
projectile form factors to the appropriate nuclear transi-
tion matrix elements. For a 0+ projectile (the general-
ization to nonzero spin is trivial), the spin-averaged cross
section for an arbitrary transition multipole is given by

q =2P, qmq =2E;(qo —P q),

where P = P;/E; is the projectile velocity. For nuclear
transitions, the momentum and energy transfers are on
the order of tens of MeV, while the projectile and tar-
get masses are on the order of tens of GeV. As a result,
q /2E; is negligible, and we immediately obtain the min-
imum momentum transfer

(4vr Z„o.)
'

[(P; . K;)' —M'M']'~'
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where the matrix element of the projectile current is given by Z„F„(q2) (P;„+ ~2 ), and the spin-averaged target
structure function is given by

d3K
W„(q*,q K) = f ~(2m )8 (Ky —K; —q) ) (K, , m~~J„(O)~~K~, m')(Kg, m'~~J (O)~~K;, m)

mm'

where m (m ) denote the azimuthal angular momentum quantum numbers of the initial (final) state, (Elc~, Kf) is the
final state four-momentum, and Wi(q2, q. K;) and W2(q2, q K;) are Lorentz invariant target structure functions. For
what follows, it is critical to realize that while the structure functions Wi(q, q K;) and W2(q, q . K, ) are different
for difFerent transition multipoles, the tensor form of R'„„is determined by current conservation and parity, and thus
independent of both the multipolarity of the transition and spin of the target. Using the elastic scattering condition
for the projectile, and keeping only the leading terms in inverse powers of the projectile and target masses, we get

(4~Z„~)' dq de 443
0'ww [(~ l2 MgM2jy) g (2)l') 8 (Pf Pg + q) F (q )

x Mi Wi(q, q K;) + (P; . K, ) W2(q, q K;) .

At this point, it is useful to reexpress the two invariant structure functions in terms of nuclear matrix elements. In
particular, we shall choose the two rotationally invariant combinations (Jo(0)Jo(0)) = (p(0)p(0)) and (J(0) . J(0)),
where the brackets are introduced as a convenient shorthand for the spin sums and matrix elements of Eq. (7). Hence,
in the target rest frame,

d'Kf
2 4/4 K K

—q'(J(0) J(o)) + qo(P(o)P(o))
)

d'Kf q' (2q'+ q') (p(0) l (o)) —q'(J(0) J(o))

For analytical purposes, it is convenient to have expressions in configuration space. Replacing the momentum b
functions by an integral representation, and using translational invariance, we obtain

...—q'(J( ) J(o)) + q'(p( )p(o))

Kf
2 g E M ., q' . .... (2q' + q')(P( )P(o)) —q'( ( ) J(0))

4

(12)

The projectile form factor is related to the projectile rest frame charge density via

P(q*) = J d'z~* '"p~(~), (14)

where q' = q —~~&, lP . qP is the three-momentum transfer in the projectile rest frame.
Since the matrix elements appearing here are rotational scalars, we may replace the complex exponential by its

angular average with impunity. The result for the cross section then becomes, after performing the integrations over
the three-momentum transfer,

~ww= p. .. , (2~)~(Ez, —M2 —q )
2(z ~)2 dq d Kf 0
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io(qy)
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+[Ci((1/P + 1)y) + Ci((1/P —1)y)](sin y —y cos y) + 2Pp sin(y/P)),
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with Si(y) and Ci(y) the sine and cosine integral func-
tions, respectively, and
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At this juncture, the expression bears little resem-
blance to the compact semi-classical result in Eqs. (1)
and (2). There is no simple factorization of the integrand
into a flux factor multiplying the photonuclear cross sec-
tion. The integrand is not even a function of the same
variable, q /pP, as the expressions in Eq. (1). Asymptot-
ically, the cross section of Eq. (14) falls off like a power
for large q, in contrast to the exponential decrease dic-

2

Ii(y &) =
2

~o(y)+&(1)
I (»)9) = &o(y) In(&) + +(1)
is(y &) = &(1)

(20)

(21)
(22)

and the cross section is given by

tated by the Bessel functions of the semiclassical result.
In light of this, it seems quite unlikely that the semiclas-
sical expression will yield a good approximation for the
cross section over a large energy range.

On the other hand, the correspondence principle tells
us that the two expressions must agree in the classical
limit. For the problem at hand, the classical regime oc-
curs for large projectile energies, where the straight line
trajectory of the projectile represents a good approxima-
tion to the classical trajectory. In that limit (p -+ oo),
the momentum integrals become

(Z„n) '
&WW

P2

dq0

(qO)2

d~Kf
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From which it follows that (p~ is Euler's constant)

2(Z„n) 2

(TWW
dq r' 2p l 1

(q) qBg 2

l +s(l ) ~ ~(y) 2)j
where all the terms of order (1/p)o have been absorbed
into the cutofF parameter Bg.

The first term in this expression is just the high energy

Using methods identical to those just described, the cross
section for real photons can be written as

I

limit of the semiclassical cross section, with no cutofF pa-
rameter. The cutofF parameter, Bg, represents the lead-
ing order corrections due to Coulomb and longitudinally
polarized virtual photons, as well as ofF-shell corrections
to the photonuclear cross section. In the limit of large p,
the precise value of ln(q Br) will be negligible compared
to In(p), and the semiclassical result is recovered.

In the low frequency limit, the oK-shell corrections to
the photonuclear cross section vanish, and Bg is deter-
mined solely by the projectile and target transition den-
sities. In Appendix B we exploit this fact to calculate
Bq, using the Goldhaber-Teller model [16] for the transi-
tion densities. Accurate determination of this parameter,
which governs the total excitation cross section, will be
relevant for estimating the large background due to elec-
tromagnetic processes at RHIC, where the semiclassical
limit should be realized.

Once A~ is determined, the cross section can be ex-
pressed in a particularly simple and elegant form which
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emphasizes well-known photonuclear sum rules. In Ap-
pendix B we find

2n cr iZ2 f 2p~ ) p2
(B23)

harp g(dRi ) 2

where a. i is defined in Eq. (A9) and has the experimen-
4

tal value, 0.22(2) A~' mb for medium to heavy nuclei, and
w is the mean photon energy, which can be taken to be

1
the giant resonance energy, 79A~ ' MeV see [21]. The
factors in front of the bracket are (numerically) consis-

4

tent with Z„A~' /P pb. The argument of the logarithm
is (Pp, where ( varies from 6.0 to 4.3 as B„vari esfrom
0 to Rg.

III. RESULTS

In this section we compare results both with the
semiclassical calculations using the Weizacker-Williams
method and, ultimately, with data from single neutron
removal experiments. To do this, we are required to as-
sume a model for the transition matrix elements appear-
ing in Eq. (14). Since the emphasis here is on a compar-
ison of the quantum and semiclassical methods rather
than a detailed description of data, we shall postpone
many of the nuclear structure details (realistic transi-
tion densities, widths, fractional saturation of the energy

1
1 = — d xd x'b (z —x+ x'), (26)

into Eq. (14), and by using the Bessel function identity

~.(qlx —x'I) = 4~).i~(q*)i~(q~')&~-(*)&&* (*'),
em

to do the angular integrals. The result is

weighted sum rules, etc.) for later consideration. For
simplicity's sake, we again choose the Goldhaber-Teller
(GT) [16] model to describe the transition densities, and
assume that the projectile and target are described by
uniform density spheres. A brief sketch of the GT model,
as applied to dipole excitations, may be found in the Ap-
pendix. For general multipoles, a more detailed descrip-
tion of the model, including electromagnetic transition
matrix elements, may be found in Ref. [15].

In order to effect a comparison with the semiclassical
calculation for arbitrary p, it is useful to decompose the
total cross section into multipoles. Since the magnetic
multipole contributions to the cross section are small, we
shall restrict our attention to electric multipoles larger
than zero. The decomposition may be accomplished by
inserting a factor

q dqP„'(q')2(Z„n) 2

~ww =
2 ) . dq ~(q —~s)

e ao/P

1 +,'(q) —I"~(q) +'(q) —+'(q) &'(q) 1 +'(q)
2

(
2 2)2 (q2 q2)q2 q4 ~2 (q q )q2

(28)

where, for E & 0, +r(q) = /Q&j&~(q&t), and +&(q)

~q~, with Rq the radius of the target nucleus

and Cg a constant chosen such that the photonuclear
cross section satisfies the energy weighted sum rule for
multipole I., and F„(q') = 3ji(q'R„)/q'B„ is the elastic
form factor of the projectile, with R„ the projectile ra-
dius.

For comparison, we also calculate the semiclassical
cross section in the same model, using a prescription from
Ref. [11] for the minimum impact parameter,

S;„=1.34 A„'/'+ A,"—0.75(A /'+ A ")
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appropriate for single and double nucleon removal ex-
periments. The ratio of the quantum and semiclassical

"~Au tar
cross sections for C and Au projectiles incide t'nci en on a

Au target are shown, as a function of projectile energy,
in Figs. 2 and 3, respectively, for both E1 and E2 tran-
sitions. We assume that the El (E2) transition is to a

0.0
1.0

I

10.0 100.0
Y

FIG. 2. Ratio of the quantum to classical excitation cross
sections for C oon Au as a function of projectile energy.
The solid and dotted curves result from the full quantum
mechanical calculation assuming no cutoff on the transverse
momentum transfer, while the dashed and dot-dashed curves
include a cutoff q „=1/tI
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FIG. 3. Ratio of the quantum to semiclassical excitation
cross sections for Au on Au as a function of projectile197 197

energy. The solid and dotted curves result from the full quan-
tum mechanical calculation assuming no cutoff on the trans-
verse momentum transfer, while the dashed and dot-dashed
curves include a cutoff q „=1/b

FIG. 4. Ratio of the quantum to classical excitation cross
sections for C on Au as a function of transition energy.12 197

The solid and dotted curves result from the full quantum
mechanical calculation assuming no cutoff on the transverse
momentum transfer, while the dashed and dot-dashed curves
include a cutoff q „=1/b

sharp, isovector (isoscalar) giant resonance state at 13.8
(11.0) MeV, and that the energy vreighted sum rule is sat-
urated. We further assume that the giant resonance state
decays exclusively via one neutron emission. For high
projectile energies, we find that the quantum El cross
section is enhanced by about 10% relative to the classi-
cal result. This enhancement agrees with the results of
the Appendix, where it was shown that the quantum me-
chanical cutoff is smaller than that of Eq. [29], resulting
in a larger cross section. More surprising is the enhance-
ment of the E2 cross section, which remains a factor of 2
larger than the classical result at p=100. Also notewor-
thy is the huge enhancement of both the quantum El
and E2 cross sections at small projectile energies. For
p &5, nearly all of the difI'erence in the El cross section
may be reabsorbed into a redefinition of 6;„asdescribed
in the Appendix, so we conclude that the WWF method
is a good approximation for the total El cross section
for energies of 5 GeV/nucleon and higher, provided that

~ ~the minimum impact parameter is properly chosen. For
lower energies, much of the difFerence can be eliminated
by altering b~;» but discrepancies as large as 20% persist
at very low projectile energies.

In Figs. 4 and 5, the ratio of the quantum and semi-
classical cross sections is shown as a function of energy
for p=2, assuming that the momentum dependence of
the transition matrix elements does not vary with tran-
sition energy. As w goes to zero, the El cross section
approaches the semiclassical result. This is expected, as
in this limit the argument of the logarithm is large in both
the semiclassical expression and the high energy limit of
the quantum calculation. As a result, the semiclassical
piece of the quantum cross section dominates, and the
two limits are the same. For large co, both the E'1 and
E2 ratios are enhanced, and the degree of enhancement
is quite sensitive to the behavior of the transition form

10.0

8.0

cU
(3

6.0
C3

E
Q)

CO

E
4.0—

C3

E1(no cutoff)
E2(no cutoff)
E1(q,„=1/b,.„)
E2(q =1/b, „)

2.0

0.0
0.0

I

20.0 40.0
Co(Me V)

I

60.0
I

80.0 100.0

FIG. 5.~ . Ratio of the quantum to classical excitation cross
sections for 7Au on Au as a function of transition en-197

ergy. The solid and dotted curves result from the full quantum
mechanical calculation assuming no cutoff on the transverse
momentum transfer, while the dashed and dot-dashed curves
include a cutoff q „=1/b

factors. For small w, the quantum E2 cross section is
roughly four times the classical result, indicating that the
large p and small u limits are not equivalent for higher
multipoles.

In order to make a meaningful comparison with exper-
iment, we must account for the final-state strong inter-
actions between the target and projectile. The choice of
b~;„ in Eq. (29) is designed to do exactly this for the
semiclassical problem [11]. Briefly, b;„ is chosen such
that the mean number of nucleon-nucleon collisions cal-
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TABLE I. Predictions of Weizacker-Williams-Fermi and
quantum theory for single neutron removal from Au using
the Goldhaber-Teller model for the transition densities. Data
from Refs. [1,12].

Proj
12Q

20N
40A
56F

139L
238U

y

3.23
3.23
2.91
2.81
2.34
2.0

cr' " (mb)
El E2
42 9
111 22
315 62
614 120
2190 462
4337 1045

&quantum (mb) &ExPT (mb)
El E2
36 4
95 9

262 25
506 47
1738 171
3388 365

75+14
153+18
348+34
601+54

1970+130
3160+230

culated using the Glauber approach, at impact parame-
ter 6 = 6;„is exactly 1. For 6 & 6;„, the probability
that a second nucleon will be knocked out of the tar-
get by the strong interaction drops rapidly to zero. For
6 & b;„, the mean number of nucleon-nucleon collisions
rises very rapidly, and the probability of at least one addi-
tional nucleon getting out of the target goes rapidly to 1.
Hence, we obtain the usual semiclassical picture, where
the equivalent photon number is calculated by integrat-
ing the field intensity from all trajectories with 6 ) 6

The same idea can be applied to the quantum picture
by artificially including a maximum value, q „1/b
for the transverse momentum transfer in the collision.
The effect of this cutoff is to change the upper limit
of the q integration in Eq. (28) to gqe2/P2 + 1/b, „ in-
stead of oo. In Figs. 2—5, the ratio of the new quantum
and semiclassical cross sections is shown as a function
of the projectile energy and transition frequency for the
same projectile target combinations used previously. The
same general trends hold; the quantum cross section is
enhanced for small projectile energies, and approaches
the semiclassical limit as p gets large. (This latter fact
holds because the cross section is dominated by the pho-
ton pole as p —+ oo, so that the precise value of the high
q cutoff becomes irrelevant. ) Not unexpectedly, the size
of the quantum cross section is smaller than in the case
of no cutoff, with the result that the small p enhance-
ment of the cross section is less pronounced, and, for
large p, the semiclassical limit is approached from below,
rather than above as before. Similar conclusions may be
drawn regarding the transition frequency dependence of
the cross section. As before, the small u and large p lim-
its of the E1 cross section approach the classical result,
while the two limits differ markedly for the quadrupole
cross section. Perhaps the most noteworthy feature of
the w dependence is that the strong dependence of the
cross section ratio on the transition form factors has been
largely eliminated.

Of particular phenomenological interest is the 20—25 %
suppression of the quantum E1 cross section relative to
the semiclassical in the region p = 2—3. This suppres-
sion is at precisely the right location and magnitude to
explain the discrepancy between the WWF approxima-
tion and recent single neutron removal data for U on

Au [12]. In Table I, we compare the results of our

calculation and the WWF calculation with experimental
data from Refs. [2,12]. For the heaviest projectiles, the
agreement between the quantum theory and experiment
is much improved over the WWF results. For Fe and Ar,
the quantum theory does about as well as the semiclassi-
cal, and for the lightest two projectiles, the semiclassical
theory does better.

This level of agreement with the quantum theory is in
fact quite heartening. To begin with, the "experimental"
numbers listed in Table I are not raw data, but rather
the difference between the raw data and an estimate of
the strong interaction contribution to the single neutron
removal cross section. As noted in Ref. [11],estimates of
the strong interaction contribution to the cross section
are model dependent, so that an additional systematic
uncertainty of at least 20 mb should be added to all the
results listed in Table I. Clearly, for the heavy projec-
tiles, this additional uncertainty is not important, as the
extracted electromagnetic cross sections are quite large
by comparison. For the lightest projectiles, however, the
additional uncertainty is comparable to the extracted ED
cross section, and is quite likely responsible for the ob-
served discrepancies.

IV. CONCLUSIONS

Using a very simple model of nuclear structure, we
have calculated the electromagnetic excitation cross sec-
tion for nuclear collisions in first Born approximation,
neglecting final-state interactions, and have found signif-
icant differences from results of the semiclassical WWF
method. For E1 transitions, we find that the impact pa-
rameter cutofF required for the semiclassical calculation
to agree with the high energy limit of the quantum cross
section is significantly smaller than the phenomenologi-
cal cutoffs used to analyze experiments. At energies less
than a few GeV/nucleon, the cross section is enhanced
over the semiclassical result by as much as 20'%%uo when the
smaller cutoff is used. For E2 transitions, we find the
cross section is significantly enhanced even at RHIC en-
ergies, and, unlike the El case, that the limit of small
transition energy and large projectile energy are not the
same.

When final-state interactions are included via a phe-
nomenological cutoff, we find that the El cross section
is greatly enhanced over the analogous WWF calcula-
tion for low projectile energies, while the cross section
is suppressed at higher energies. The E2 cross section
is suppressed by as much as factor of 3 for all but the
lowest projectile energies. The low energy enhancement
is relevant for electromagnetic dissociation studies of the
low energy, pygmy resonances in neutron-rich nuclei such
as Li, and the suppression at higher energies resolves
the conBict between single neutron removal experiments
and the semiclassical theory for all but the lightest pro-
jectiles, where the data are very sensitive to systematic
errors in the separation of the nuclear and electromag-
netic contributions to the cross section.

While the agreement with data is extremely satisfac-
tory given the simplicity of the GoMhaber-Teller model,
a number of interesting questions remain. To begin, the
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calculation should be redone using a realistic model for
the projectile and target densities, including the widths
of the giant resonance states, in order to improve the
quantitative description of the data. This is particularly
relevant for heavier targets, where the applicability of the
Goldhaber-Teller model has been questioned [17]. In ad-
dition, the efFect of additional photon exchanges should
be studied, both to understand the effect of the repulsive
Coulomb potential on the scattering process and to study
the question of multiphonon excitations in the target nu-
cleus. Finally, the process where both the target and
projectile are excited, which should be non-negligible in
target fragmentation experiments with light projectiles,
should be calculated.
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AP PENDIX A

In this appendix we sketch the cross section derivation
for target excitation in a more familiar form, which high-
lights the nonrelativistic nature of the nuclear physics. It
also allows us to point out our approximations (explicit
or implicit) and to emphasize the role of gauge invari-
ance, which puts the results into a form where Siegert's
theorem can be applied immediately. We assume the fol-
lowing. 1. First Born approximation in the fine-structure
constant o.; this is required for tractability. 2. No target
recoil, which presupposes that momentum transfers are
very small compared to the target mass mz, this greatly
simplifies the kinematics. 3. The maximum momentum
transfer can be replaced by infinity, for ease of perform-

ing integrations; in practice, small momentum transfers
dominate. 4. A nonrelativistic description of the tar-
get nucleus, and of the internal structure of the projec-
tile nucleus, is sufBcient; the photonuclear response is al-
most entirely nonrelativistic, and most of what we know
is based on this (successful) description. 5. Both tar-
get and projectile are spinless and only the former is ex-
cited; neither restriction is essential, but will simplify the
derivation. 6. All purely hadronic contributions to the
excitation amplitude can be ignored. Elastic Coulomb
scattering is infinite and will also be ignored.

The current of the elastically scattered projectile is
conserved and is given by F„(q )(Py + P, )"/+4EfE;,
where the projectile charge distribution is present
through its Fourier transform, the projectile form fac-
tor, F„(q ). The latter is a function of the (squared)
four-momentum transfer, q~ = P; —Py. The distinction
between this quantity and the three-momentum transfer
is a relativistic correction (and a recoil correction in the
projectile rest frame). We consequently replace Fz(q2)
by F„(q )—:I dsx p„(z) e*& ".

The target current is denoted by J"(q) = (p(q), J(q))
and is conserved. That is, q„J"(q) = 0. Rewrit-
ing the kinematical factors in the projectile current,
(Py + P;)", as 2P,"—q~, we can use current conservation
and drop the q+ factor. Thus, the current-current ma-
trix element is given by (E,/Ey) 2 [p~o(q) —P J~p(q)),
where P = P,/E, is the projectile velocity and J&p(q)

(N~ J~(q)~0). The energy difference qp of the states
labeled N and 0 is denoted by ~~.

We wish to calculate the total cross section, which
means that we must integrate over all of phase space.
Ignoring recoil (which means that P" is independent off
the scattering angle 0) we have for fixed energy trans-
fer: q = (Py —P;) = P& + P, —2PyP; cos 0 or

dq = 2PyP, sin gdg = dO(2PJP, /2'), since the az-
imuthal dependence is trivial. All of the phase-space
integrals (but one) can now be evaluated and we obtain

(A1)

This deceptively simple form has many aspects of complexity. The integral should be dominated by the pole in the
photon propagator and the small values of q2;„= m~2/P2 and q2;„= —m~2/P p . This further implies that electric
dipole processes should dominate, because they are largest for small q . This multipole should consequently not
be very sensitive to E~, unlike higher ones which are certain to be. In addition, we can make use of the conserved
current to transform to Coulomb gauge. This eliminates the (redundant) longitudinal component of the current, and
expresses the result in terms of transverse-current matrix elements (which determine photoabsorption) and purely
Coulombic excitation. We also impose the no-recoil approximation in the form P; q/E, = qp —P q = q2/2E; 0, so
that we can replace P q by tv~(= qp) where needed. We also impose current conservation: q JNo(q) = su~ pjyp(q).

Expanding the squares of matrix elements and using the two spin-summed relationships

) 6o(q) pro�(q') = ) I p&o(q) I

spins SPlHS
(A2)
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2 3ld aP "a "P) JNo(q) JNo(q) = ) . ", I~NO(q) I'~ ' +
I I

JN. (q) I' — "lt No(q) I'
~

A q2 qspins spins

leads to the (spin-summed) result

IPNO —0 JNol = IPNO(q)l + —
I P —

I IJNo(Q)l I&NO(Q)l
, (q ~N) 2

q 2 ( q q

(A3)

(A4)

Note that the factor which multiplies (the first) lpl cancels the photon propagator and substitutes the Coulomb one.
Moreover, the quantity in square brackets is the transverse current (i.e. , the full current minus the longitudinal part).
This leads to the Coulomb gauge result

N Qp &oooooo q q
(A5)

Using P = ——,+ 1 this can be rearranged into a form commensurate with Eq. (14), after we perform the q
integrations. We use

«5o(~) = f~'*o*'"(~l«"(")lo) (A6)

and the fact that there is no overall dependence on q after spin sums are performed, which leads to a slightly different
form of Eq. (14):

4mZ„o. ]

NAO NCa)
&N p (x)&No (x ) + Is (y)

3 I2 (y)

I«o'o(&) «)oo(& ) P(&o)og (&o)o) o + «o(u) ).I I, (y) (A7)

One projectile form factor has been folded into each charge and current matrix element. That is, pNO(x) is actually
the convolution of a projectile (elastic) charge density with a target (transition) density. We have also used y =
wNz = o«Nlx —x I. This compact result in configuration space is finite, requires no cutoffs, and is relatively simple to
work with.

The corresponding expression for the cross section for the absorption of a photon with energy, u, can be developed
in the same form:

(«« —MN
o~((u) = 2vr'a ) d z

Ngo
x jp (y) [JNp (x) JNp (x ) —pNO (x)pNO (x')] . (A8)

Various sum rules can be constructed from this by inte-
gration:

0~ = 84) (d CT& (d (A9)

In Appendix 8 the leading-order contributions are
worked out in detail, including an analytic evaluation
of the cutoff Bs (for E = 1), in the context of a simple
nuclear model.

APPENDIX B

Complete expressions including formulas for the cut-
offs Bg are dificult to develop. They will also differ from
multipole to multipole. Nevertheless, because most of the
photodisintegration cross section at low energies is unre-
tarded electric dipole in nature, it is useful to investigate
how the cutoff arises and estimate its size according to
models of the electric-dipole transition density.

If one expands to lowest order in z [viz. , (z)o]

the factors multiplying the current matrix elements
[JNp(x) JNO(x')] in Eq. (A7), only unretarded electric-
dipole transitions can result. Using Siegert's theorem [15]
to express the current in terms of the dipole operator, D,
and the excitation energy, uN,

d xJNo (x) = i(uN DNo,

one finds that the current terms contribute to the total
disintegration cross section

4vrZ o.
OWW = ", ).TNO,

NQO

an amount

TNo = IDNOI'1»(~) ——
I

.(J) 2 f p
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Note that these terms neither require nor generate a cut-
o8' in the logarithm.

The corresponding constant factors multiplying
pavo(x)p~o(x') give no net contribution to this order,
since

term in Eq. (A7), which itself comes solely from Coulomb
scattering [i.e. , the first term in Eq. (AS)].

If the integration variables in Eq. (B8) are changed to
z and x, we find

d'x p~o(~) = QiVo
—= 0, (B4)

d x d x' pavo(x) p~o(x') z' ln(z)

because we have agreed not to include elastic scattering
(N g 0). The first-order terms in z generate elastic
scattering plus electric-dipole transitions: where

d zE~(z) z ln(z), (B9)

NO
(f)

3
d x d x'pavo(~)p~o(x') z ln(z)

d'x' p~o(z + ~')p~o(x'), (B10)

2 2 ((div ) 1--ID~ol' lnl I+ -»(&)+&~
3 qP) 2

p'
6 4

(B5)

where p~ is Euler's constant, z = x —w', and z = (x +
x' ) —2x . w' has been used. Combining the charge and
current contributions one obtains

T~o —— d x d x'p~o(~)p~o(~') z In(z)3

+-ID~ol'
I

» —~~+ ——
I (B6)

2 2f pp ll p)
6 2)

which is a convolution of transition densities. Elastic den-
sities of this type have appeared in atomic calculations
[18,19]. This form is particularly convenient for deriving
asymptotic forms, as well. The drawback is the required
construction of the second-order (convoluted) transition
density. We note that the logarithm in Eq. (B8) is the
only one contained in Is(y), but it contributes to all
Coulomb multipoles.

A complete model of the electric-dipole transition den-
sity is needed in order to construct E~(z). One such
model is the Goldhaber- Teller model [16], which we
sketch below. The transition charge operator p~o(w) can
be represented by the surface-peaked function

This can be rearranged into the conventional Weizacker-
Williams [7) form

pNo(~) = Pm'lp(")10) = —&No & ' +po(x) (B11)

T~o = —ID)vol' »
I3

where (Olp(x)IO) = po(x) is the ground-state charge den-
sity, from which it follows that

if we de6.ne d x 3c piVo(3c) = A~o e = DiVo . (B12)
11 jdsx J' dsx'p~o(x)p~o(x') z ln(z)
6

(B8)

Given any (electric-dipole) transition density, the p-wave
part of z21n(z) can easily be projected out and the dou-
ble integral evaluated. The cuto6' Bq comes from the I3

We have defined J dsx po(x) = 1 and used the spherical
projection operators e* and the Wigner-Eckart [20] theo-
rem to determine the dependence of the transition matrix
element on the magnetic quantum number (m) of the fi-
nal (dipole) state. For this model then& IDNol = I&ivol
and the last term in Eq. (B8) can be rewritten as

d'x po(x) d'x'po(x') [In(z) + —,']

d z p(2)(z)[ln(z) + -]

= —. + -' " po( ) "' 'po( ') [(*+ ')'1 ( +*') —(*— ')'1
I

— 'I]/**', (»3)

pf2) (z) = d x' po(lz + x'I) po(lx'I) . (»4)

where the elastic counterpart of E~(z) is the Zemach
density [18]:

The latter density plays a critical role in the nuclear-
size modification of the hyperfine splitting [18] and Lamb
shift [19]in atoms. Note that if po is properly normalized,
then pf2) is also. The final form in Eq. (B13) results from
performing the average over the angle between x and x'
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contained in z. This collective model then leads to the
very simple result

1»(R~/2) = —I + f d z pt~~(z) 1»(z) . (B15)

To go further requires another model assumption. For
simplicity we choose a uniform (liquid-drop) charge den-

sity: po(r) = ~
&,"), which leads to

3 I' 3r

ln(Ri/2) = ln(2Rt) ——, (B17)
1

or R' ——0.695, where Rg ——1.2A, fm.
This derivation ignores one important piece of physics.

The projectile, as well as the target, has a finite size.

The integral in Eq. (B15)has the value ln(2Rt) —z, which
leads finally to

i(")= f ~'» po(l» —«'l)»' v'~o(»')

= e* Vp(2) (x), (B18)

where p~2~ is obtained by folding po and po together.
Thus, we can use Eq. (B15) if we fold two densities (p~2))
together. This density, p~4)(x), can be shown to be inde-
pendent of the order in which the folding is performed.
Consequently, one can form p~4~ by first folding two den-
sities po together, then separately folding together two
densities po, and finally folding these two (folded) densi-
ties together.

The resulting forms are rather complicated, and we
simply state the result

Because in momentum space the form factors of initial
and final projectile and target are all multiplied together,
the projectile charge density will enter as a convolution
with the (transition) density of the target. For example,
folding the target density in the previous model (with
radius R&) with a projectile whose density is po (with
radius Rz) leads to a transition density

(ln(z)) = d z p~~)(z) ln(z) = ln(2(Rq+ R„))

(R„+2Rg) (Rg + 2R„)(2R„+11RtR„+2Rq2)
+(Rp —R,)'

2 1OOR~ Rp
ln

R, +Rp
(4R„—81R2) f R„) ~ (4R, —81R„) / R,

1050Rs (R~ + R„) 1050R„(Ri+ R„j
B„Rq4 107B~2 107' 16661

525R~ 525B„700R 700R, 12600

(B19)

There are two simple limits:

lim~ o [(ln(z)) —ln (2(Rq + Rz))] = —
&

and

limR„~R, [(ln(z) ) —ln (2(Rq + Rz) )]
ll

1 ( )
1823 (B20)

The terms in Eq. (B19) which supplement in[2(Rt, + R„)]
[which we denote by s(~&)] vary monotonically from
—0.75 to —1.114 as R„ is varied from 0 to Rq. Thus
we can rewrite Eq. (B15) as

ln(Ri/2) = in[2(R& + RJ,)] —1 + s, (B21)

or

Ri ——6 (Rg + R„), (B22)
1

where B„&:1 2A& z and b = 4e +' varies from 0.70
to 0.48 for the range of variation of R~ above. Previously,
a value of 1.0 was recommended [8].

Although the model used here can be criticized on the
basis that it is too simple to be realistic, our derivation
nevertheless represents an exact solution to the problem
for a simple collective model of electric-dipole transitions
(Goldhaber-Teller model with a uniform charge distri-
bution) in the unretarded dipole limit. The troublesome
cutoff is determined by details of the electric-dipole tran-
sition charge density.

Finally, we can express our results in a particularly
simple and elegant form which emphasizes well-known
photonuclear sum rules. We find

2n (7 iZ„t' 2pp )(rww = " ln
I

—
~ p& (B23)Ri 2

where (T i is defined in Eq. (A9) and has the experi-
4

mental value 0.22(2)A~' mb for medium to heavy nuclei,
and w is the mean photon energy, which can be taken

1
to be the giant resonance energy, 79A~ ' MeV [21]. The
factors in front of the bracket are (numerically) consis-

tent with Z2A~'/P2 yb. The argument of the logarithm
is (Pp, where ( varies from 6.0 to 4.3 as R„varies from
0 to Rg.
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