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Mean fields: Explicit dispersive and retardation properties
of the dynamical polarization potential within a simple model
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The dynamical polarization potential corresponding to a simple and tractable, but physically meaning-

ful, two-channel model is derived and examined, with particular attention to its analytic properties. This
enables us to illustrate explicitly the emergence of the general dispersive and retardation features expect-
ed from the imposition of causality. The energy dependence of the potential, and the associated nonlo-
cality in time expressed by its Fourier transform, are explored. A new theorem is proposed for the
asymptotic behavior of the Fourier transforms.

PACS number(s): 24.10.Eq

I. INTRQDUCTIQN

A particle moving through a medium will, in general,
experience interactions with the other particles of which
the medium is comprised. These may be experienced as a
rapidly fluctuating field as the particle proceeds, particu-
larly if the interparticle forces are strong and have a short
range, as in the case of a nucleon moving through a nu-
cleus. However, for the purpose of describing the average
effect of the medium on the particle's motion, these in-
teractions may be replaced by a smooth mean geld M.
When describing an electron scattering from an atom or
a molecule [l], or a nucleon scattering from a nucleus [2],
this mean field is called an optical-model potential. In
the latter case, if the nucleon has negative energy so that
it is bound in the medium, the mean field is called a
shell-model potential.

If the medium has internal structure, the incident par-
ticle may excite it, thereby losing energy itself. If the en-
ergy is above the lowest nonelastic threshold, these none-
lastic processes result in incident Aux being lost ("ab-
sorbed") from the elastic channel. The mean field, which
describes the elastic scattering of the particle without ex-
plicit reference to the internal degrees of freedom of the
"target" medium, is then complex, M = V+i 8' in close
analogy to the appearance of a complex refractive index
for the scattering of light [3] by an absorptive material.
In addition, the nonelastic processes may be virtual; after
the initial excitation, following some delay time ("retar-
dation" ), the medium may deexcite, returning the in-
cident particle to the elastic channel. This results in a
contribution hV to the real part of the mean field,
V= Vo+4V, over and above the value Vo it would have
in the absence of any coupling to the medium that could
produce the excitations. Thus, we have

M= Vo+~M, ~M =~V+

where 4M is called the dynamical polarization potential.

In the case of an electron plus an atom, or a nucleon plus
a nucleus, Vo could be the Hartree-Fock potential. The
correction term AM would then arise, as just described,
because the target atom or nucleus can be excited, or po-
larized, by the incident particle.

It is well known that the mean field is frequently found
to be nonlocal in the spatial coordinates, and that this
nonlocality is equivalent to a dependence on the momen-
tum of the particle [2,4]. The Hartree-Fock potential
provides an example of such nonlocality. Furthermore, it
is well known that the polarization component hM of the
mean field depends upon the energy of the particle. Less
familiar is the concept that an energy dependence is
equivalent to a nonlocality in time. Although the ex-
istence of this relationship has been remarked upon previ-
ously [5—7], only recently [8,9] has it been explored in
any depth.

The recent studies have focused upon the general prop-
erties that can be expected for the dynamical polarization
potential when the condition of causality is imposed [6].
This condition can be most easily visua1ized, in a time-
dependent description, as requiring that a wave packet
P(t) at time t should not be influenced by P(t') at later
times t') t. A popular way of expressing this is that a
"scattered wave should not appear before the incident
wave has reached the target. " This simple condition has
as a consequence that the real and imaginary parts of the
mean field M are related by dispersion relations. Again,
these are close analogs of the Kramers-Kronig relations
for the propagation of electromagnetic waves which also
result from requiring causality [3].

Current treatments and presentations of the properties
of the mean field have been very general, so that the con-
nection with the physical aspects of any particular case is
not always evident. It can be very helpful to examine a
simple and tractable model from which a dispersive po-
tential can be derived directly from the Schrodinger
equation. This enables us to illustrate explicitly the emer-
gence of these and other properties. This we do here,
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paying careful attention to the analytic properties and the
conditions under which the results hold.

In the next section, we review briefly the general
features expected for a mean field. Section III describes
our model and the resulting polarization potential. Sec-
tion IU establishes the dispersion relations that are
satisfied, while the following section examines the time-
dependent form and the associated temporal nonlocality.
A discussion and summary are given in Sec. UI. Appen-
dix A outlines the construction of the coupled equations
and the extraction of the equivalent mean field and its
properties, while Appendix B summarizes the properties
of the Fourier transforms of the real and imaginary parts
of the field and their relationship.

and the polarization part that is energy dependent (thus
nonlocal in time),

At(r;r)= Vc5(r)+b JN(r;r) . (2.6)

In our specific model we have set Vp as zero, so our mean
field has no instantaneous piece. Since the retardation
and dispersive effects come only from the reaction terms,
this assumption does not alter the essential physics in any
significant way. It is made to allow an explicit closed-
form calculation of the time-dependent nonlocal poten-
tial. According to a theorem of Titchmarsh [10,11], the
causality condition (2.5b) is equivalent to asserting that
the real and imaginary parts of

bM(r;E)=D, V(r;E)+iW(r;E) (2.7)

II. GENERAL FEATURES OF THE MEAN FIELD

In general, the mean field is nonlocal in the spatial
coordinates. However, the nature of our model ensures
that it remains local in our case (Appendix A); thus, since
it is spherically symmetric, the mean field depends only
on the radial coordinate, M=M(r;E), in addition to the
energy E. As will be seen in Sec. III and Appendix A,
the spatial locality is not an assumption but a conse-
quence of our model. Our principal results will demon-
strate that the existence of dispersion and retardation
effects do not depend on spatial locality or nonlocality.
The corresponding one-body Schrodinger equation is
then

g2
V f(r;E)+M(r;E)g(r;E)=EQ(r;E), (2.1)

p

form a Hilbert transform pair; i.e., they satisfy the disper-
sion relations

b V(r;E)= —f dE' (2.8a)

IVv(r;E) = ——f dE' E' —E (2.8b)

EJR(r; r) =2i 6(r)'N(r; r), (2.9)

where P denotes a principal value. The relations (2.8) are
the analogs of the Kramers-Kronig relations [3]. Further
properties of the Fourier transforms are implied [8]. For
example, relations (2.8) imply that the mean field involves
only one function of E. Then it can be shown [8] that the
Fourier transform of AM(r;E) can be expressed in terms
of the Fourier transform of its imaginary part alone,

g(r;E)= f dt P(r;t)e' '~" (2.2)

where p is the reduced mass. The time-dependent repre-
sentation is obtained by introducing the Fourier trans-
forms

where 8(r) is the Heaviside step function,

(2.10)

and

M(r;E)= f dr JK(r;r)e' '~", (2.3)

These properties, and how they arise in our model, will
be examined explicitly below.

thus demonstrating the equivalence between energy
dependence and temporal nonlocality.

The condition of causality is expressed by requiring
that

(2.5a)

or

Af(r;r)=0 if r&0 . (2.5b)

As discussed above, in general we expect the mean field
to be comprised of a (real) piece that is independent of en-
ergy (and thus instantaneous in a time representation),

where r=t —t'. (Invariance of the Hamiltonian under
translation in time ensures that the transform depends
only upon the difference t —t'. ) Then Eq. (2.1) becomes

V P(r;t)+ f dr JK(r;r)P(r;t r)=ili-a
2P —oo Bt

(2.4)

III. THE MODEL

The problem of a projectile incident upon a target
which possesses a number of excited states can be re-
duced to a set of coupled equations ("coupled channels" ),
one for each state of the target (see [2,4] and Appendix
A). Then by projection upon the elastic channel (target
in its ground state) [2], one obtains an expression for the
equivalent (complex, nonlocal, and energy dependent)
one-body potential which gives the same elastic wave
function and elastic scattering as the original set of cou-
pled equations. This is our definition of the "mean-field. "

For our simple model, we take a spinless projectile in-
cident in an S wave upon a target whose ground state is
labeled 0 and has zero spin, and which has a single excit-
ed state labeled 1, with excitation energy c, also with zero
spin. The diagonal interaction Vpp= V» = Vp between
the projectile and target is taken to be zero, while it is as-
sumed that there is a spherical shell of interaction at the
target surface, r =a, which may excite it. The coupling
interaction then has the form
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V, = V, = —(iii /2p)$, 5(r —a), (3.1) I I I I I I I I I I I I I I

M(r;E) = —m (E)~goi ~
5(r —a ), (3.2a)

where

m(E)=(E —e) ' sin[(E —s)' a]exp[i (aE —e)' ],
(3.2b)

and where, to simplify the notation, we have expressed
the energy variables E and c., as well as M itself, in units
of fi /2/J„where p is the reduced mass. Then m(E) has
the dimension of length. It is also to be understood in
Eq. (3.2b) that we take the positive root,
k =(E—s)' )0 when E & e, and the positive imaginary
root

k=(E —e)'~ =is. &i0

when E & e. This convention specifies that M(r;E) is on
the first Riemann sheet of the double-valued function
m (E), with a (finite) branch point at E =e.

The function (3.2) is complex when E ) e (above the in-
elastic threshold), and real when E & e, (including E &0).
The imaginary part gives rise to absorption, physically
due to the opening of the inelastic channel when E)c.
When E & c,, this channel is closed and there is no absorp-
tion, but virtual excitations can still contribute a real part
to the field. As described in Appendix A, the field (3.2)
exhibits the phenomenon known as a "threshold anoma-
ly" [12] in the vicinity of E =c,. The real and imaginary
parts of the energy-dependent factor m(E) are displayed
in Fig. 1.

The double valuedness of Eq. (3.2b) comes from the
square root. If we write the energy in the complex E
plane as

E =a+pe' (3 3)

where go, is a strength parameter (with the dimension of
an inverse length}. This model is a very simplified version
of a system in which a projectile excites surface oscilla-
tions of the target, a system frequently used to describe
the excitation of nuclei by hadronic probes [2,4]. The ex-
treme assumption of a delta-function inelastic interaction
forces the resulting dispersive potential, Eq. (3.2) below,
to be local, eliminating the nonessential complication of a
spatial nonlocality.

It is shown in Appendix A that a formal elimination of
the inelastic channel, which is equivalent to a Feshbach-
type projection onto the ground-state channel, results in
a one-channel problem of a particle moving under the
influence of an effective, complex, and energy-dependent
mean field
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FIG. 1. The real and imaginary parts of the energy-
dependent factor m(E) of the polarization potential, as ex-
pressed in Eqs. (3.2), (A13), and (A14).

Xexp 2p ~ a i cos ——sin ——1, (3.5)1/2
2 2

we see that m(E) goes to zero as p~ ao for all angles
0 & 0 & 2m. . Then m (E) is analytic at all finite values of E
except on the cut, where it is double valued, and is zero
at infinity. The properties of m(E}, including its relation
to the effective mass, are discussed further in Appendix
A.

IV. DISPERSION RELATIONS

Here we examine the existence of dispersion relations
for our model mean field (3.2). We begin by specifying a
contour parallel to and d units above the real axis in the
E plane. The function m (E) is analytic in this region, so
Cauchy's theorem applies. Then we have for E, in the
upper half plane,

1

y
m (E')dE'mE=

2iri c E' E— (4.1)

where the contour C is indicated in Fig. 2(a). Now Eq.
(3.5) shows m(E) to vanish as phoo for all angles
0&0&2+. Thus we have

with the upper sign of the exponent for 8=0, and the
lower for 0=2~. To define a definite function on the first
Riemann sheet, 0~0(2~, we take a cut along the real
axis from E = e to oo. Further, by reexpressing Eqs. (3.4)
as

m(E)= 'ip —' —e
2

then we have for Eq. (3.2b)

rn(E) = [sin(xa)/x ]e'"', (3.4a)

1 + d
dE

m(E')
2~i —~+id E' —E (4.2)

where

1/2ei8/2 (3.4b)
E =ED+id+i g, (4.3)

Next we examine Eq. (4.2) for a value of E just above the
lower segment of the contour,

When 0=0 or 2n, this reduces to

m(E) = [sin(p'~ a )/p'~ ]e*'~ (3.4c)
for example, as shown in Fig. 2(b). Letting E'=x+id,
we may rewrite Eq. (4.2) as
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(a)

Gamplex E Plane
We note that the order in which d and q are set to zero

does not matter; they both give the same limit (4.5). This
is not surprising because nothing special happens at the
real axis. Although m is double valued on the cut, we
take only the limit as the contour is approached from
above.

V. RETARDATION IN THE MEAN FIELD

A. Evaluation of the Fourier transform

We recalled in Sec. II that the mean field in a time-
dependent representation was the Fourier transform of
M(r;E), namely, the inverse of Eq. (2.3),

Jkf, (r; r) = dE M(r;E)e
27K

(5.1)

(b)
C

j d
0

With our choice of A /2p as the unit of energy, r here
stands for (t t')A/2', .—Then introducing our model po-
tential (3.2), the Fourier transform becomes

FIG. 2. (a) Contour C for the integral in Eq. (4.1). (b) Illus-
trating Eq. (4.3).

1 m(x +id )

21Tl —ao x Eo l'I)

x —Ep
dx m(x+id)

27Tl (x Eo) +g—

Jbt(r;r)=,
—m(r)~go, ~

5(r —a),
where in units of (A' /4p )

m(r)= f dE m(E)e
277

dE
1 ~ sin[(E —s)' a ]

2m —- (E—E)»'

X exp[ia (E—E )
'~ ]e

(5.2a)

(5.2b)

(5.2c)

(x —Eo) +ri

(4.4)

If we first take the limit as d —+0, the bracketed quantity
in Eq. (4.4) is unchanged. Then in the limit as r)~0, the
first term is equal to the principal part integral, and the
second term gives a delta function, irr5(x Eo). Then w—e
have

The upper sign in Eq. (3.4c) must be taken for the in-
tegration along the cut. [The lower sign would corre-
spond to the complex conjugate of our choice for m (E),
giving the emissive potential that would result from
choosing an ingoing-wave boundary condition; see Ap-
pendix A.]

It is convenient to transform to the wave-number vari-
able k =(E—e)'~ in order to evaluate the integral (5.2c),
where according to our rules

m(EO)= P f dx +imm(EO)
2m —~ x —Ep

(4.5)

k)0 for E) c.

k=i~, ~)0 for E&c, .

(5.3a)

(5.3b)
Solving for m(EO)=v(Eo)+iw(EO), for example, with v
and w being real, gives This gives us

m(EO)= . f dx
mt —~ x —Ep

(4.6a) m(r) =—f sin(ka )e'"'exp[ —i(e+k )r]dk,1

C
(5.4)

P ~ v(x)+iw(x)
dx

&l —oo X Ep
(4.6b)

Equating real and imaginary parts on both sides yields
the required dispersion relations

v(EO) =—f dx
P ~ w(x)

x —Ep

P ~ v(x)
w(EO) = —— dX

(4.7a)

(4.7b)

Equations (4.7) state that v and w are Hilbert transforms
of one another.

where now C is the contour in the complex k plane
shown in Fig. 3. Notice that this transformation has
simplified the integrand in the sense that it is analytic
everywhere in the entire finite plane, whereas the in-
tegrand of Eq. (5.2c) has singularities (the branch point at
E =s and the cut). According to Cauchy's theorem, we
may deform the contour C in Eq. (5.4) at our conveni-
ence. However, since the contour goes to infinity in two
directions, it is necessary to examine the behavior of the
integrand in the limit of large

~
k~.

As ~k~~~, the k factor in the exponent in Eq. (5.4)
will dominate. To investigate its behavior at infinity, let
k=pe'. Then
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FIG. 3. Contour C for the integral in Eq. (5.4).

—ike '" '=exp[ ip (—cos28+i sin28)r]

=exp[ —ip 7 cos28]exp[p rsin28] . (5.5)

v(v) ~ m
++00

C ~ Complex k Plane

v(~)~o

B. The retarded Aeld, ~ & 0

First, let us consider ~)0. sin20 must be negative for
Eq. (5.5) to remain finite as p~ ~. This will be so if

0= n +—,
' m+ —,'a C, C

with n an integer and 0&a&m. Then —,'~&0&m if n =0,
and —3n &8&2vr if n =1. Thus the factor exp( ik r) for—
~) 0 goes to zero as p —+ ao in the second and fourth qua-
drants, but goes to infinity in the first and third qua-
drants.

Now we may take advantage of our ability to deform
the path C and attempt to change the contour C into one
C' consisting of two arcs at infinity plus a straight line
passing through the origin, as shown in Fig. 4(a). The
two arcs, taken at

~
k

~
~ ~ in the second and fourth qua-

drants, give zero contributions to the integral along C'.
Thus the integral path along C has been unbent into the
straight line portion of C', which may be expressed by
taking 0 to be an arbitrary angle in the fourth quadrant.
We may then include the section in the second quadrant
by allowing p to be the integration variable running from
—oo to oo.

Then m(r) can be evaluated most conveniently by us-
ing a new parameter P=8+m. /4, in terms of which Eq.
(5.4) becomes

v(w) = o
~+00

V(7 ) —+00

g +00

FICx. 4. (a) The deformed contour C' used to evaluate Eq.
(5.4) when ~&0. (b) The contour C' used when &&0.

(5.7a)

and for the second term,

be done by completing the square on the exponent of the
first term,

pre '~+2ip—a exp[i(P —n/4)]

(
1/2 iP ~ —I/2 —im/4)2 2 —I —iver/2

lD
m (r) = f [exp(2ipae'~ i) —1]

2l7T C
p2 re 2iP

(pr 1 /2e lP
)

2 (5.7b)

X exp( pwe '~)exp[i—(P vr/4)]dp . —

(5.6)

The conditions on 8 ensure that cos2P is positive in the
second and fourth quadrants, so the integral converges at
infinity. The integral is of gaussian character and may

e lE1

m (r) )/2 [exp(ia /'r) —1 ], r) 0
2i(in-r)'" (5.8)

The two terms (5.7a) and (5.7b) give the same result in
the integral (5.6), except for the additional phase factor
arising from the last term on the right of Eq. (5.7a), so we
have the simple result for positive ~ that
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Notice that Eq. (5.8) is independent of our choice for the
angle P (except for the restriction that 0 be confined to
th second and fourth quadrants). This must be so in or-

er to satisfy Cauchy's theorem. The convergence wouuld
be most rapid along the 0=7m/4 line, and slowest along
the axes.

E'=E —E is the kinetic energy in the inelastic channe,1
the Fourier transforms would have been taken with
respect to E' as the variable and the phase factor would
not have appeared. Consequently, we investigate the
properties of

m(r) =e'"m(~), (5.14)

C. The advanced field, v & 0

The result (5.8) applies when r) 0. The causality con-
dition (2.5) requires that m(r)=0 when r&0. We now
demonstrate how this requirement is satisfied by our
model. We must again consider the dominant behavior
of Eq. (5.5) as p~ ~, but now for negative r. Rewrite
this equation as

e '" "=exp(ip frfcos28)exp( —p /rfsin28) . (5.9)

m(r)=0 for r&0,
demonstrating that the potential (3.2) is causal.

(5.10)

D. Properties of the model m (~) and a new theorem

It can be shown on general grounds [8] that the
Fourier transform of a causal function can be expressed
in terms of the Fourier transform of its imaginary part
alone. This implies that if we write

In this case we must have sin20) 0 for good behavior as
p~ m. Thus we need O=n~+a/2 with 0&a &~. Then
0&0&m/2 for n =0 and m &0&3~/2 for n =1. These
regions, now the first and third quadrants, are indicated
in Fig. 4(b); then the contour may be deformed within
the first quadrant. The contour C cannot be straightened
in this case, but the vertical and horizontal portions can
be bent so as to join at infinity, as shown in Fig. 4(b). The
joining portion contributes nothing because exp ik2r-
vanishes as k~ ~ in the first quadrant. Consequently,
the entire integral (5.4) is zero by Cauchy's theorem, or

rather than m ( r ) itself.
Using Eq. (5.8), we may break m(r) into its real and

imaginary parts,

m (r }=m~ (r)+ im, (r),
where for ~ & 0

(5.15a)

m (r)=(8~r) '~ [1—cos(a /r)+sin(a /r)],mR 7

m (r)=(8m') '~ [1—cos(a /r) —sin(a /r)] .mI ~

(5.15b)

(5.15c)

m(r) —+(1 i )(8~) —a r—1/2 2 —3/2 (5.16)

These quantities are displayed in Fig. 5.
As has been found in other cases [8], it is difficult to as-

sign a range o" to the temporal nonlocality expressed in
Eqs. (5.15) because the dependence on r is not monotonic.
The simple r ' behavior, which diverges as ~—++0, is
modulated by factors which oscillate between (1— 2)
and 2 with a period of 2nr /a . Thus, these oscillations
become infinitely fast as ~ approaches zero.

with theThe divergence as ~~+0 may be compare wi
result for an energy-independent potential, which also
has an infinite Fourier transform at ~=0, namely, a Dirac
delta function. Furthermore, this also has an infinitely
rapidly oscillating representation, lim „sin ar /r.
However, in contrast, m(r) has nonzero values for in-
tegrals over finite domains of ~ for ~& 0, and does not
have a finite integral over an infinitesimal interval about
~=0.

2Asymptotically, we have for ~)&a

m (r) =v(r) + iw (r), (5.11)
which is in curious contrast to the ~ ", wit n integer,

where v(r) and w(r) are the Fourier transforms of v(E)
and w (E), respectively, we should have the relation (2.9),

m(r)=2ie(r)w(r) . (5.12)

(We hasten to stress that 7 and w are not the real and
imaginary par s o m,ts of m' both are complex quantities. ) The
implication here is that

amR

v(r) =iw(r), r) 0,
V(r)= iw(r), r&—0 .

(5.13)

Indeed, this result is shown explicitly for our model in
Appendix B. The relation (5.13) also implies that v(r) is
discontinuous at r=0, unless w(r) is zero there, which,
in general, it is not. In our case, w(r) diverges as r ' at
small ~.

forThe phase factor exp(

iver)

in the exp—ression (5.8) or
m (r) is trivial in the sense that it arises simply from our
choice of zero for the energy scale at E =0 ~ ~„'~8~ i.e. at the
point where the incident particle has zero kinetic energy.
If, for example, we had chosen E'=0 as zero, where

I

0. 4
i

0.8
I

1.2

'6 ja2

i

1.6

FIG. 5. The real and imaginary parts of the temporally non-
local factor m(~), where ~=t —t', of the polarization potential
A, (~), as expressed in Eqs. (5.2), (5.14), and (5.15). Both parts
oscillate very rapidly as ~ approaches zero, and diverge like

—1/2
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behavior found for several examples by Mahaux, Davies,
and Satchler [8]. Those examples are in agreement with a
theorem quoted by Bracewell [13],which states that if the
nth derivative of a function f(E) is impulsive (i.e., a delta
function in energy), then its Fourier transform f(r) falls
off as r " at larger r. However, our model m(E) has no
derivative with such an impulsive behavior, so its trans-
form m(r) is not bound by the theorem. Rather, we
derive in Appendix C a similar theorem which states that
if the nth derivative of f (E) with respect to E has an
(E—E)'~ singularity, the Fourier transform f(r) behaves
as ~ '"+' ' asymptotically. Both theorems require that
f (E) and its derivatives go to zero as E~+ oo. In our
case, m (E) has no infinities on the real axis but the first
derivative (n =1) has an (E—E) '~ singularity. Conse-
quently, the new theorem requires that m(r) behaves as

as r~ ~, in agreement with Eq. (5.16).

VI. POTENTIAL AVERAGED OVER ENERGY

Realistic systems generally have many more degrees of
freedom than our simple model, and tend to give rise to
mean fields that show a rapidly Auctuating behavior with
energy [2]. In such cases, empirical optical potentials are
identified with some suitable average over energy of the
underlying mean field M(E). A Lorentzian with a full
width at half maximum (FWHM) of 2I provides a suit-
able weight factor, and has the consequence that the
average of M(E) is simply M(E) =M(E+iI) [14].

The effect of this averaging on the Fourier transform of
our model potential is easy to see. The calculation of
m(r) is again done by transforming to the k plane, the
origin of which changes from (E—E)' to (E+iI s)'—
The right-angle path shown in Fig. 2 then changes to a
curve in the first quadrant resembling an hyperbola
which approaches the axes at infinity. The k-space in-
tegrand is still analytic and has the same behavior at
infinity as before. Again the path may be deformed to a
straight line, giving a Gaussian integral. The only change
from the result (5.8) is an additional factor exp( Ir), as-
has been proved, in general, by Lipperheide [7]. For
~ & 0, the path can again be closed in the first quadrant by
a quarter circle at infinity, proving that m(r)=0 for
r(0, so that the energy-averaged field M(E) remains
causal.

The appearance of the factor exp( Ir) means that—the
degree ("range") of nonlocality in time has been reduced.
This is consistent with the slower variation with energy
of the averaged field.

VII. SUMMARY AND PHYSICAL INTERPRETATION

In order to demonstrate explicitly the various general
properties expected for a dynamical polarization poten-
tial, a simple, but physically meaningful, two-channel
model was introduced, and an effective energy-dependent
mean field, or optical potential, derived by elimination of
the inelastic channel. The resulting polarization poten-
tial was expressed in Eqs. (3.2), and its properties were
explored in Sec. III and Appendix A. In Sec. IV we
demonstrated that its real and imaginary parts form a
Hilbert transform pair satisfying the dispersion relations

JR(r; ~) = —exp
g3

m
4p a

where

X5(r —a), (7.1a)

m
To

(1+i)
[1—exp(iso/r)]

[8~(rlro) ]' (7. lb)

and the characteristic time is

r0=2pa /iii . (7.1c)

We remember that p is the reduced mass of the system,
and a is the radius of the spherical shell of interaction
(3.1), with strength go„ that couples the two channels.
Thus, except for the trivial phase factor exp(

iver),

At—is
a function only of the ratio ~/~o.

We now present an interpretation of the characteristic
time ~0. Consider the projectile colliding with the target
and virtually exciting it by crossing the shell of interac-
tion. It is then confined within a sphere of radius a until
it again collides with the shell of interaction, when it may
deexcite the system and scatter back to the elastic chan-
nel. Within the confining sphere, the uncertainty princi-
ple implies a momentum of order A /2a, corresponding to
a classical velocity of A'/2@a. Thus the time from entry
into the inelastic channel until its reemergence is the
average distance traveled, of order a, divided by the ve-
locity, namely,

co=a/(A'/2@a ) =2@a /A . (7.2)

This simple argument suggests that the characteristic
time of the nonlocality is connected with some average
classical transit time through the nucleus, which is also
the average time between inelastic collisions. Thus we re-
late the nonlocality to a time delay experienced by the
system while it propagates in the inelastic channel before
suffering another interaction and returning to the elastic

(4.7). The temporal nonlocality of its Fourier transform
(5.2) was derived and examined in Sec. V. The depen-
dence upon r=t —t' is contained in m(r) of Eq. (5.8) for
~) 0, while the potential vanishes for ~&0, confirming
that the model potential is causal. This causal nature of
the polarization potential follows from our choice (A7) of
the outgoing scattered wave solution of the original cou-
pled channels equations; the two conditions are
equivalent.

The model time-dependent potential was found to de-
crease as r ~ for large r, as in Eq. (5.16). This result
led to the formulation of a new theorem (Appendix C)
which states that if the nth derivative with respect to E of
a function f(E) has an (E—e) ' singularity, its
Fourier transform f(r) decreases as ~ '"+'~ ' at large r.
Our model potential has n =1.

We may attempt a physical interpretation of the tem-
poral nonlocality that appears in our model potential.
For this purpose, we should abandon the special units of
time and energy that we adopted in order to simplify the
notation. Then from Eqs. (5.2), (5.8), and (5.14), we have
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channel. It is interesting to note that the extent of the
nonlocality depends only upon the reduced mass and the
size of the system but is independent of the strength of
the interaction. The interaction strength go& determines
only the magnitude of M(r; E), as shown by Eq. (3.2a).

V„„=O, if nXn'WO .

Substitution into Eqs. (A3) gives

(A4c)

ko+ +$08(a —r) uo(r) =g go„5(r —a)u„(r),
dT
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APPENDIX A: DERIVATION
OF EFFECTIVE POTENTIAL

k„+ +g„e(a r) u„(r—) =$0„5(r—a)uo(r),
dr

where e(x) is the Heaviside step function and

k„=[(2p/A' )(E—E„)]'

(ASb)

(ASc)

is the wave number in the nth channel, with the rule that
the positive square root is taken if E )c„,while k„=i~„,
an)0, ifE&En.

Integrating Eq. (ASb) from r =a —g to r =a+g,
where q is a small element of length, and taking the limit
g —+0, results in the continuity equations at r =a,

u„(a+ ) =u„(a ), (A6a)
Consider a spinless projectile incident upon a target

with a ground state (n =0) and a number of excited
states (n )0) with excitation energies e„and internal
state vectors 4„. Let each target state also be spinless so
that, if the incident state of relative motion is an S wave,
there are only S waves in the inelastic channels. The cor-
responding Schrodinger equation is

du„(a+ ) du„(a )
=g„Duo(a),

where a+ =lim„o(a+7) ).
We adopt outgoing waves for the open inelastic chan-

nels, n )0, so that

dE—H,+,—V 9=0,
2p dr

(A 1) u„(r)= .
ik„rB„e ", r)a,

C„sinE„r, r &a,
(A7a)

(A7b)
where Ho is the target Hamiltonian, Vis the interaction,
and r is the separation between projectile and target. Ex-
panding 4 in terms of the target states,

where

IC„=[(2p/A' )(E—e„)+g„]'~ (A7c)
%=+4„u„(r), (A2)

Then Eqs. (A6) yield

we obtain as usual a set of coupled equations for the
states of relative motion, u „(r ),

d(E—e„)+ —V„„(r) u„(r)
2p dr

ik„aB„e " —C„sinK„a =0,
ik a

ik„B„e " —C„K„cosK„a=g„ouo(a) .

These can be solved to give

(ABb)

n'Wn
V„„(r)u„.(r) . (A3) g„ouo(a)

u„(a) =B„e ik„—y„
(A9a)

%'e now assume that the interaction V couples only the
ground state to each excited state, or each state to itself.
Further, we take a square well for the diagonal elements
and a spherical shell for the off-diagonal ones. Then we
have

where

y„=K„cotE„a .

Substitution into Eq. (ASa) gives an equation for uo

(A9b)

$2
if r~a,

Vnn= . 2p
0, if r)a,

(A4a)
ko+ +foe(a —r) —gdr ~k„—y„

uo(r)=0 .

(A10)

and

V„o= Vo„=—(R /2p)$„05(r —a), (A4b) This equation describes the elastic scattering by an
effective potential consisting of the original ground-state
interaction plus a complex, energy-dependent "dynamic
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polarization potential, "

M(r;E) = —go6(a r)+—g ik„—y„
(Al 1)

an attractive real potential b, V (E).
Below the inelastic threshold, E (c, the imaginary part

w(E)=0 and the real part v(E) has the dimensionless
form

The resulting elastic wave and scattering are identical to
those obtained by solving the original set (A5) of coupled
equations.

Usually [2,4] this elimination, or projection, procedure
gives an effective potential that is nonlocal in the spatial
coordinates, but in our case the choice (A4b) of an inelas-
tic interaction localized on a spherical shell forces the po-
tential to be local.

The potential (All) is further simplified by setting to
zero the diagonal interactions (A4a), g„=0, so that
K„=k„. If, in addition, we limit ourselves to a system
with a single excited state, n = 1, for example, we have

v(E) e "sinhx
a x

x =~a,' (A15)

it decreases monotonically with decreasing energy. Ini-
tially the decrease is rapid, but becomes slow, —(Zi~a )

far below the threshold.
Above threshold, w (E) has the form

w (E) sin x x =ka, (A16)

which is always positive but oscillates, as k increases,
with period b, k =sr/a and with an amplitude damped by
the envelope (ka) '. The real part,

v(E) sin2x
2x

x =ka (A17)

= —
~ g, o~ 5(r —a)sin(k, a)e ' /k, . (A12)

M (r;E)= —m (E)
~ go, ~

5(r —a),
where

m (E)=k 'sin(ka )e'"',

(A13a)

(A13b)

with

If we set e, =e and k, =k, this becomes the result (3.2)
quoted in the main text,

oscillates about zero with period bi =@ /a, but with am-
plitude also damped as (ka) . This behavior is illustrat-
ed in Fig. 1. The zeros in w(E), which occur when
ka =nrem (with n integer), arise because at these energies
the matching condition (Aga) can be satisfied only if
B] =0 when k

&

=K ] ~ That is, the matching condition
prevents any Aux escaping in this channel.

The analyticity of m (E) which resulted in the disper-
sion relations (4.7) has another consequence. We may
write m (E)/a as

k = [2iM(E —e)/A' ]'~ (A13c) m (E) e2ika

a
The energy-dependent factor m (E) may be separated
into real and imaginary parts,

(e"—1)/i

m(E) =v(E)+iw(E),
where

(A14a) V +I&
(A18)

v(E) = '
sin(2ka)/2k, if E )e,
sinh(~a )e "/i~, if E & e,
sin (ka)/k, if E )e,
0, if E&e.

(A14b)

(A14c)
v'+iw'=e sinx+i(1 —e cosx ), (A19)

therefore, satisfy the Cauchy-Riemann condition

The oscillatory behavior as a function of E or k arises to-
tally from the numerator, which is analytic. Putting
z =x+iy, the real and imaginary parts of the numerator,

We note from Eqs. (3.2a) and (A14c) that the imaginary
part of M(r;E) is always negative, representing absorp-
tion, or zero. This results from our physical choice (A7)
of outgoing waves in the inelastic channels. The opposite
choice of incoming waves would have resulted in a polar-
ization potential that is the complex conjugate of (A12);
that is, it would be emissive.

The potential (A14) provides an example of a "thresh-
old anomaly" [12]; that is, the rise of the imaginary part
tie (E) from zero at the threshold E = e, is accompanied by
a real component v(E) which has its maximum at the
threshold. This feature is ordained by the dispersion rela-
tions (4.7) that v and ui satisfy.

Note that, because of the sign in Eqs. (3.2a) and
(A13a), this corresponds to an increase in the magnitude
of the imaginary potential W(E) being accompanied by

Bl8 Bv
Bx By

(A20)

as may be checked explicitly. Furthermore, because of
the exponential dependence on y,

Bl8 Bv =V
Bx By

(A21)

Thus, aside from the slowly varying z ' factor in Eq.
(A18), the real part of m equals the derivative of the
imaginary part. This relation is exact at the minima of
w (E), where ka =n~, n integer, and both v(E) and w (E)
are zero [see Eqs. (A14)]. The z ' factor slightly dis-
places the other zeros of v(E) from the maxima of to (E).
The displacement is largest at the 6rst maximum but rap-
idly becomes small as n increases.
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In general, we see that whenever the mean field

M(k) = V(k)+i W(k)

is an analytic function of k, the Cauchy-Riemann rela-
tions give us the exact relations

ov aw aw av
Bx Bg Bx Bp

(A22)

Evaluating these on the real axis will give relationships
between the real and imaginary parts of M.

The real part of m(E) is continuous at threshold,
where v(0) =1, but its slope dv(E)/dE is discontinuous.
Approached from below, the slope at threshold is positive
and infinite, while approached from above it is finite with
the value —2a /3. The energy dependence of the real
polarization potential is often discussed in terms of the
eff'ective mass, defined as [15]

APPENDIX B: DERIVATION
OF FOURIER TRANSFORM RELATIONS

Here we show explicitly that the Fourier transforms
v(r) and w(r) of the real and imaginary parts of the
energy-dependent factor m (E) of our model polarization
potential (3.2) satisfy the general relations (2.9), (5.12),
and (5.13).

It is convenient to work in k space, as in Sec. V. Using
the expression (A14c), the transform of the imaginary
part w (E) may be written

lE7

w(r)= f e '" 'sin (ka)dk,
7T 0

(8 la)

where we made use of the fact that w(E)=0 if E —E.
The transform of the full potential, m (E)=v(E)+iw(E),
1S

p*/p= 1 —d(ReM)/dE . (A23) m(r) =V(r)+iw(r)

(This is the E mass [15] in our case, since our M is local
in the spatial coordinates. ) From Eqs. (A13a) and (A14a),
this becomes

p*(E)/p= 1+ i/oil 5(r —a)dv(E)/dE, (A24)

which di6'ers from unity only on the shell r =a. Just
below threshold the p'/p becomes infinitely large, while
just above it is less than unity. This rejects the general
behavior observed for p*/p in more realistic models
[8,15], namely, p*/p ) 1 below and in the vicinity of the
threshold and p* /p ( 1 above threshold. The rather
singular behavior at threshold observed in our case re-
sults from the choice of a singular delta-function interac-
tion.

lC, F —Ek ika ~f e ' 'e'"'sin(ka)dk,
C

(82a)

1 —i
w(r) =e ™ e i' 'sin

harv'2

o

1 —i
pa dp (8 lb)

2

and

where we introduced the expression (A13b), and C is the
contour shown in Fig. 2.

For ~)0, we now deform the contour as was done in
Sec. V 8, but taking k = ( 1 —i )p/V2 for convenience so
that the straightened path C' is along the 0= 7'/4 line in
the complex k plane. Equations (Bl) and (82) then be-
come

m(r)=e'" — e i' ' sin
mv'2

1 l
pa cos

2

1 l
pa +i sin

2

1 l
pa dp (82b)

m(r)=V(r)+iw(r)=2iw(r), r) 0 . (83)

The first term in braces in Eq. (82b) is an odd function of
p and integrates to zero, while the second term is an even
function and integrates to twice the integral from zero to
infinity found in Eq. (Blb). Consequently, we have the
desired result

APPENDIX C: A THEOREM
FOR THE ASYMPTOTIC DEPENDENCE

ON TIME

In this appendix we derive a theorem that specifies the
asymptotic dependence on r of a function m(r) that is
the Fourier transform of a function m (E), under the con-
ditions that

We showed in Sec. V C that m (r) vanished for r & 0, so d "m(E) c
dE" E E (E—E)'~

(Cla)

m(r)=v(r)+iw(r)=0, r&0 . (84)

Equations (83) and (84) thus imply di'm (E)
)dEJ'

(Clb)

v(r) =iw(r), r) 0

= —iw(r), r &0,
(85)

in agreement with the general result deduced from
Titchmarsh's theorem [8].

where p=0, 1, . . . , n —1, and n is the lowest order of
derivative in which an (E—E)' infinity occurs. There
may be other terms with positive powers of (E—s)' be-
sides the singularity (Cla).

The Fourier transform m(r) is
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m(q)= f m(E)e ' 'dE1

277 00

m(E) — e
1

l7

1 f dm (E);E,e ' dE
dE

1 1

2& lV

n

f d
"m (E),E,
dE"

f g C (E E—) e ' dE
q= —1

(C2)

where m (E) has been written as a Laurent expansion.
Changing variables to k = (E —e)'~ gives the result

n

m(r)= — . g C kq+'e ' 'dk,1 1 + 1 —ik ~7-

7T l7
1

C
(C3)

where C is the familiar contour shown in Fig. 2. We de-
form the contour, as was done in Sec. VA, into a line
along the 7'/4 line, so that k becomes

The integrals for odd powers, q = —1, 1,3, . . . , are
1/2

f q+ le P ~d
+2q+1 q+2

while those for even powers, q =0,2, 4, . . . , are

f q+1 —
p ( /2)!

q+2

(C6a)

(C6b)

k =p exp(i7vr/4) =p exp(

iver/4—

) . (C4)
The leading term at large ~ is the term with the lowest
power of q, namely, q = —1. Thus, as z~ ~,

The exponential factor in the integrands of Eq. (C3) then
becomes

C
m( ) irz +ized(iq)"

(C7)

exp( —ik ~)=exp( —p r),
which results in Gaussian integrals,

In our case, m (E) has no infinity, but dm (E)/dE does.
Thus we have n = 1, so the use of C, =ia /2 gives

n

m(r) = — g C exp[

iver(q

+—2)/4]1 1

l7 = 1

x f pq+'e p 'dp .

3/2
ia 1

1/2

(C5) in agreement with Eq. (5.16).

(C8)
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