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The direct nuclear reaction (X,N'm ) on light nuclei is investigated using an intermediate isobar model.
Cross sections for this exclusive reaction are calculated in distorted-wave approximation, for an incident
nucleon of energy 300—800 MeV scattering from a closed-shell target, where the final nucleon and pion
are detected in coincidence. The residual nucleus is assumed to be in a particle-hole state of arbitrary
angular momentum and isospin. This reaction permits a small momentum transfer to the nucleus (1
fm ') so the nuclear structure is relatively well known. We study the dependence of these cross sections
on several factors. The greatest sensitivity is to the self-energy of the intermediate meson. By consider-
ing difFerent spin and parity nuclear final states, the nucleus is used as a spin-isospin filter allowing one to
select certain amplitudes and study them independently. As an example, a detailed numerical study of
the coincidence reaction on ' 0 is carried out. Such coincidence experiments may be useful for studying
various aspects of the production and propagation of mesons and isobars in nuclei.

PACS number(s): 25.40.—h

I. INTRODUCnOX

The (p, m. ) reaction for proton-induced pion production
has now been studied for over two decades [1]. Study of
this reaction was motivated by a desire to understand the
effects of the nuclear medium on the properties of the
b, (1232) isobar, and also to probe the high-momentum
components of single-particle wave functions [2]. At the
present time, only partial success can be claimed in un-
derstanding either the reaction mechanism or the nuclear
response. Originally, the reaction was analyzed using the
so-called "one-nucleon mechanism" [3]. This assumed
that the (p, vr) reaction occurred when the incident pro-
ton radiated a single pion in a process analogous to
brernsstrahlung. The one-nucleon mechanism has
difficulties in reproducing measured (p, m. ) cross sections
for at least three reasons. First, experimental cross sec-
tions for (p, n.+) reactions frequently show significant
population for two-particle —one-hole final nuclear states.
Such states cannot be populated in the single-nucleon
pion production mechanism. They could be excited by
the ensuing final-state interactions between the outgoing
pion and nucleus, but this excitation process clearly in-
volves another active nucleon. Second, the (p, rr ) reac-
tion on a nuclear target is particularly difficult to model;
as in the one-nucleon approach, it requires pion single or
double charge-exchange in the pion-nucleus interactions
which follow the pion production event. The discovery
by Jacobs et al. [4] that (p, n ) cross sections leading to
certain two-particle —one-hole final states were as large as
soine (p, m+) transitions was particularly difficult to ex-
plain in the one-nucleon picture. Finally, in the one-
nucleon mechanism the entire transferred momentum is
absorbed by a single particle. Thus the production ampli-
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tude is proportional to single-particle transition densities
evaluated at a very large momentum transfer, and should
lead to very small cross sections. This reaction mecha-
nism thus has difficulty giving quantitative agreement
with the variety of experimental results on these reac-
tions.

A more successful reaction mechanism has been the
two-nucleon model [5], in which two active nucleons (the
projectile and one target nucleon) participate. In such a
model, the above objections are at least partially resolved.
The two active nucleons can share the large momentum
transfer, leading to larger predicted cross sections and
naturally explaining the significant population of two-
particle —one-hole nuclear states. Similarly, this reaction
mechanism seems more natural to explain the observed
(p, ~ ) cross sections. However, application of these
models to the substantial body of experiments has met
with only partial success, and quantitative agreement
with all of the data has not been possible to date.

A second type of experiment which has been widely
studied is the production and propagation of the b, (1232)
isobar in nuclear reactions. For example, in
intermediate-energy pion reactions with nuclei, the
isobar-hole model [6—12] has proven quite successful in
confronting a wide variety of data. As the 6 is a spin-
isospin excitation of the nucleon in the constituent quark
model, it should be a prominent feature in spin-isospin
excitations initiated by baryons. As examples, studies of
charge-exchange reactions like (p, n) and ( He, t) have
proven very fruitful [13]. Clear evidence for isobar exci-
tation has been observed in these reactions and we now
have a semiquantitative understanding of these processes.
However, significant questions still remain in our under-
standing of 5-nuclear systems.

In this paper we study the (p,p'w+) reaction at inter-
mediate energies. This work is motivated from several
considerations. The first of these is to examine a reaction
which should be dominated by 6 excitation in the kine-
matic region studied. Thus measurement of the final pro-
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ton and pion in coincidence can focus on processes in
which a 6 is formed, propagates, and decays. In such re-
actions it is possible to isolate the kinematic region where
the Xm. pair arise from on-shell 5 formation. Thus this
reaction can study processes dominated by essentially
real 6 production and propagation in nuclei. Analysis of
the (p, m. ) reaction has proven difficult because the dom-
inant reaction process involves a pair of bound nucleons
in the final state. An advantage of the (N, N'~) reaction is
that the approximation involving only a single "active"
target nucleon should be rather accurate, particularly for
exclusive reactions leading to one-particle —one-hole final
nuclear states.

A second motive is to study pion production reactions
which may involve rather favorable kinematics for under-
standing the associated nuclear structure. Unlike the ex-
clusive (p, ~) reaction, which is necessarily a high-
momentum transfer process, it is possible for the (N, N'rr)
reaction to require reasonably small nuclear momentum
transfer for some geometries, while the reaction mecha-
nism for (N, N'n) is very similar to that previously stud-
ied in the (p, ~) reaction. In other kinematic regions the
(N, N'm)process .occurs at very high-momentum transfer.
Therefore, study of the (N, N'm ) reaction holds the prom-
ise of disentangling some of the uncertainties inherent in
the (p, ~) reaction. A goal would be to produce a model
capable of predicting these cross sections in the region of
small nuclear momentum transfer, where the only
significant uncertainty should be the reaction mechanism.
Once a satisfactory fit is achieved here, one could extra-
polate the model to the very high-momentum transfer re-
gime, where the nuclear response function is largely un-
known.

A third motivation for examining these reactions is the
spin-isospin character of the b, (1232) isobar. We shall
show that for a closed-shell target, the spin and isospin
amplitudes for the (N, N'm. ) reaction leading to specific
final states receive contributions only from certain of the
possible amplitudes in this transition. Therefore, if one
examines the excitation of particular configuration mixed
one-particle —one-hole states in such a reaction, the nu-
cleus can be used as a spin-isospin filter to study specific
transitions. In this way theoretical predictions for excit-
ing specific states (or groups of states) can be used to test
the adequacy of the assumed reaction mechanism.

The organization of this paper proceeds as follows. In
Sec. II we outline the assumed reaction mechanism. The
(N, N m ) reaction is calculated in the kinematic region
dominated by intermediate 6 formation. It is assumed
that the reaction proceeds via a single hard scattering be-
tween two active nucleons, the projectile and a nucleon in
the target. This hard scattering excites one of the active
nucleons to a 6 which propagates through the nucleus
and then decays to X+~. Optical distortions of the in-
cident and outgoing nucleons, and the outgoing pion, are
taken into account.

In Sec. II we also list and brieAy discuss representative
amplitudes which contribute to the (N, N'm)reactions on.
a closed-shell nucleus leading to a final state, which is as-
sumed to be a superposition of one-particle —one-hole nu-
clear excited states. Detailed formulas are collected in

Appendixes A —C. The reaction proceeds by exciting one
of the active nucleons to a 6 isobar, mediated by virtual
meson exchange. In our initial calculations we assume
this meson to be a pion. Later in the paper we consider
the possible contribution from intermediate p mesons.
We discuss eight possible amplitudes contributing to this
reaction, and show that, for the kinematics chosen, four
of these (the pion "preemission" amplitudes) can be negli-
gible. In Sec. III we apply this model to the
' O(p, p'm+)' N* reaction and obtain the differential
cross sections for the 0 ~0, . . . , 4 transitions. In
Sec. III, we also demonstrate the sensitivity of our results
to variation of the parameters in our model. In Sec. IV,
we summarize our results and suggest experiments on
light ( 2 ~ 40) targets which can provide relatively
stringent tests of the reaction mechanism proposed in this
paper.

II. FORMALISM

In this section, we outline the formalism adopted to
calculate the exclusive (N, N'm)reaction . on light nuclei.
Calculation of the full amplitude naturally divides into
three parts.

(a) We assume a single hard scattering of the projectile
nucleon with one of the target nucleons; the pion is pro-
duced through the reaction %+X—+%+%+A in the
nuclear medium. For the kinematic region investigated in
this paper it is assumed that this process is dominated by
the formation of an intermediate b,(1232) isobar. We dis-
cuss the parameters which appear in this scattering and
outline a procedure for incorporating intermediate 4-
nucleus interactions into this reaction model.

(b) We include optical distortions of the outgoing pion,
and both the incoming and outgoing nucleons, with the
residual nucleus. %'e discuss the parameters of the opti-
cal potentials for the hadrons in this model. In addition,
to simplify numerical calculations the various distorted
waves are expanded in a plane-wave basis, and this ap-
proximation is reviewed in detail.

(c) We consider exclusive reactions leading from the
ground state of a closed-shell nucleus to one-
particle —one-hole states in the final nucleus. We discuss
the nuclear structure model and single-particle orbitals
utilized for the initial and final many-particle nuclear
bound-state systems.

The hard scattering process which produces the pion
can be expressed schematically as the sum of several
terms. These may be collected into various groups. First,
there are two different time-ordered amplitudes for pion
production: the "postemission" amplitudes in which the
final pion is emitted when the intermediate isobar decays,
and the "preemission" amplitudes where the pion is emit-
ted in the initial vertex when the isobar is formed. An-
tisymmetrizing the continuum and bound nucleons in ini-
tial and final states leads to another set of amplitudes.

For example, the four distinct amplitudes, named
"postemission, " are shown schematically in Fig. l. We
assume that exchange of a virtual meson between two nu-
cleons excites one of them to a 6 isobar, and the outgoing
pion is emitted when the isobar decays. Figure 2 shows
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FIG. 1. The postemission diagrams for the (N, N'm) reaction.
(a) —(d) represent amplitudes A&, B&, Cl, and D, , respectively,
from Eq. (2.2). The dashed line represents a pion, solid lines
with (without) momentum labels represent continuum (bound)
nucleons, and the narrow rectangle represents a h(1232).

the four corresponding amplitudes for the "preemission"
process, where the outgoing pion is emitted at the initial
vertex and the isobar decays to a nucleon plus a virtual
meson. For the low energies involved in these calcula-
tions, the "preemission" amplitudes of Fig. 2 turn out to
be negligible compared to the "postemission" amplitudes
in the (p,p'sr+) reaction. For the dominant postemission
amplitudes (see Fig. 1) the basic picture is that of a pro-
jectile nucleon, whose energy is at or above threshold for
5 excitation, interacting with a target nucleon via the ex-
change of a virtual intermediate meson. This results in
the formation of an intermediate 4 which decays into a
pion and a nucleon. One of the two final nucleons is
detected (along with the pion), while the other nucleon is
left in an excited nuclear orbital. In the present simple
nuclear model we assume a closed-shell J= T =0 initial
target and a final nuclear excited state which can be writ-
ten as a linear combination of pure particle-hole states.

The incident nucleon-nucleus c.m. expression for the
exclusive (N, N'rr) differential cross section for an unpo-
larized initial nucleon can be written as

FIG. 2. Same as Fig. 1, except for the preemission ampli-
tudes A2, B2, C2, and D2.

0
d 0'd APE'

lo4 k'k E'E
2(2w) k (I+E/E„) T, l', (2.1)

where k (k') is the initial (final) detected nucleon momen-
tum, E (E') is the initial (final) nucleon energy, k is the
pion momentum, and Ez is the initial nuclear target en-

ergy in the c.m. system. The units for the cross sections
in Eq. (2.1) are pb/sr MeV, and we use units where
A=c =1. The amplitude Tf, contains effects due to dis-
tortions, the reaction mechanism, and the nuclear struc-
ture model adopted. A detailed listing of the contribu-
tions of the diagrams shown in Figs. 1 and 2 is given in
the Appendixes.

To evaluate the scattering amplitude, we consider a re-
action leading to a particle-hole state where, for example,
the quantum numbers of the final particle state are
(l~, s~,j~ ). We adopt j jc-oupling to describe the final nu-
clear particle-hole state. The selection rules for the vari-
ous amplitudes are most transparent in L-S coupling.
Thus we calculate transition amplitudes using L-S cou-
pling for the final particle-hole state and then transform
to the j-j basis using standard recoupling coeScients; this
yields the following form for the transition amplitude Tf ..

I

ITf;I'= —g g g g gjpjgL~ sp
LSj j& l, l&z, zf z ' p, p'

jp

2
lI, L

2

sq S .aj~'~" J g (A, B, —C, +—D, )
i=1

(2.2)

where we use the notation L =&2L + 1. In Eq. (2—.2), the
terms with i =1 correspond to the postemission ampli-
tudes shown in Fig. 1, and those with i =2 correspond to
the preemission amplitudes of Fig. 2. We use the term
"projectile excitation" to describe those amplitudes [e.g. ,
Fig. 1(a)] where the projectile nucleon is excited to an iso-

bar; those [e.g. , Fig. 1(d)] where a target nucleon is excit-
ed to a 6 are called "target excitation" amplitudes. Fi-
nally, those amplitudes where the outgoing continuum
nucleon is identical to the projectile are referred to as
"direct" amplitudes, and those where the incident nu-
cleon is captured into a bound orbital are called "ex-



48 DISTORTED-WAVE CALCULATION OF THE (p,p'm+) REACTION 1195

change" amplitudes.
The amplitude 2, of Eq. (2.2) is given schematically by

Fig. 1(a); it represents the direct projectile excitation
postemission amplitude, since the projectile nucleon is ex-
cited to a 5 which decays into a continuum nucleon. The
amplitude Ci is obtained from 3

& by exchanging the two
final-state nucleons, and is shown in Fig. 1(c); it is the ex-
change projectile excitation where the nucleon emitted
from 6 decay is captured in a bound nuclear orbital state,
and the target nucleon which participated in the hard
scattering process is ejected from the nucleus. Figures
l(d) and 1(b) show the direct target excitation and ex-
change target excitation amplitudes, respectively. Con-
servation of angular momentum and isospin results in nu-
clear final-state selection rules for some of the ampli-
tudes. These are discussed more fully in the Appendixes
and are briefly summarized later in this section. For il-
lustrative purposes, we undertake a detailed evaluation of
a single amplitude, the direct projectile excitation term
shown in Fig. 1(a). Calculation of the remaining ampli-
tudes follows rather directly and full equations are
presented in the Appendixes.

T~ =(q ) i2Mq . (2.6)

The quantity I in Eq. (2.5) represents the width of the
isobar in the nucleus. This could be modified from the
free isobar width by nuclear interactions and thus in-
cludes the imaginary part of the isobar self-energy in the
medium, which we parametrize by

We use the same cutofF mass A = 1200 MeV [16]for both
the pion and the p meson.

We next assume a propagator for a b, (1232) isobar
formed in the nucleus and propagating through the nu-
clear medium. The 5 propagator contains an energy
denominator which we parametrize as

D~(q, co )=co Tz ——M~ —Vz(q, co )+i I /2 . (2.5)

In Eq. (2.5), Vz(q, co ) is the real part of the nuclear po-
tential experienced by a 6 with three-momentum q and
energy co . We approximate this with an effective local
potential of depth —35 MeV, appropriate for an incident
nucleon energy of =400 MeV [8,14]. For the b, kinetic
energy Tz, we use the nonrelativistic form

A. Formalism for evaluating the amplitudes
I =PI +I (2.7)

Evaluation of the amplitude A, [Fig. 1(a)] is obtained
by combining the expressions for the relevant distorted
waves, reaction mechanism, and nuclear structure. Before
discussing the amplitude we briefly summarize the pro-
cedure used for obtaining these constituent parts.

1. The reaction mechanism

A —m,
F,(q)=

A —co +q
(2.4)

The basic features of the reaction mechanism assumed
were discussed by Jain, Londergan, and Walker [14],who
carried out a plane-wave calculation of this reaction. We
assume an effective nonrelativistic Lagrangian of the
form

f.xx f.x~
+NR XN~' VXN' P+ XAS qTXN

m m„

fpNN
X%(H X q )i TXN (pi, )

m

+ X~(SXq)iTX& (pi. )
fpNA

(2.3)
mp

where o and w are the Pauli spin and isospin matrices, S
and T are 2 X 4 transition matrices that connect the nu-
cleon and 6 spin and isospin wave functions, q is the
meson wave number, P is the pion field, pi is the A, th spin
component of the p field (which is a vector in both spin
and isospin), and m and m are the m and p masses, re-
spectively. For the coupling constants we use
f~~~ = 1.009, f~~q =2. 156, fp~~

—7.8 11,fp~~
= 16.694

[15,16]. The vr-nucleon coupling constants f » and

f ~z are multiplied by the form factor F (q), and the p-
nucleon coupling constants f ~& and f ~& are multiplied
by F (q), where we choose form factors of monopole type

Here I o= 115 MeV is the free width, P is a Pauli factor
that accounts for suppression of the decay 6~1V+~ due
to the Pauli principle, and I ~ is the absorption width
due to the 5-nucleus collisions. In this preliminary
study, we use the free width I =I o, because the com-
bined effects of including the Pauli factor and the absorp-
tion width tend to cancel somewhat [16,17]. A zero
range approximation has been utilized in treating the 5
propagation, which is equivalent to fixing the 6 momen-
tum. This results in no change of form for the postemis-
sion direct projectile excitation amplitude (amplitude
A, ), in the plane-wave approximation. However, we will
test and discuss this approximation when we carry out
the full distorted-wave calculation later in Sec. III.

Our model involves a virtual meson exchanged be-
tween nucleon and isobar. Initially we take this meson to
be a pion; the energy denominator for pion propagation
in the nucleus is given by

D„(q,co) =co q m —11(q—,co),— (2 8)

D (q, co)=co —q2 —m2+ie . (2 9)

where II(q, e) is the self-energy of a pion with three-
momentum q and energy co. To estimate this we have
calculated the pion self-energy in infinite nuclear matter,
assuming an effective Fermi momentum k+ =210 MeV/c
and a Landau-Migdal parameter g'=0. 7. Figure 3 shows
schematically the contributions to the intermediate pion
self-energy arising from the particle-hole, delta-hole, and
short-range repulsive terms, respectively. Explicit forms
of the self-energy contributions are given in Appendix 8
of Ref. [14]. In Sec. III we will discuss the dependence of
our results on the values chosen for kF and g'. For com-
pleteness we list here the form for the inverse of the p
propagator
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q,

(b)

()= g ooo

(c)

menta, with (complex) coefficients and expansion ob-
tained by a minimization procedure at each partial wave
and energy [18]. We obtain a general fit to the expansion
coeScients as a function of the asymptotic momentum of
the corresponding scattering particle [17]. The explicit
expressions for the distorted wave functions are summa-
rized below.

The incoming nucleon distorted wave can be written as

++(k r) —4 y y(&)lc/ t/2g C/ t/2g

l, rn j,v'

X Y'*(k)Y' +,, (r)UI (k, r), (2.10)

where the radial function UI (k, r) is the solution to the
Schrodinger equation

1 d l(l+1)
i . (+1

2p d 2p
FIG. 3. The contributions to self-energy of the virtual pion.

(a) shows the direct and exchange particle-hole contributions.
(b) shows the direct and exchange 6-hole contributions. (c)
shows the contribution from. the short-range repulsion in the
baryon-baryon interaction.

In this preliminary investigation we have not included
the nuclear self-energy of the p.

2. Distorted waves

We have used proton and pion distorted waves ob-
tained from standard optical potentials. The general
forms are the same as the ones used in an earlier (p, m )

theoretical study [1]. For completeness, we summarize
below and in Tables I and II the forms and parameters
adopted. The optical potential parameters are obtained
from fits to elastic-scattering cross sections at the ap-
propriate incident energies. These potentials are then in-
serted in the radial Schrodinger (Klein-Gordon) equation
for the nucleon (pion) which is then solved to obtain radi-
al distorted waves for each partial wave.

Expressions for the scattering amplitudes are obtained
by inserting the resulting nuclear wave functions into in-
tegrals containing various potentials and propagators.
These integrals are reasonably tedious to calculate but
can be done analytically in a plane-wave approximation
where the scattering wave functions are just spherical
Bessel functions. To expedite the calculation of these in-
tegrals (and because the plane-wave integrals have previ-
ously been evaluated), we expand the distorted wave
functions as a sum of Bessel functions of different mo-

X U&~ &+&/2(k, r)=0 . (2.11)

(2.12)

where V, ( IV2) is the strength of the real (imaginary) cen-
tral potential with V3 and 8'4 being the corresponding
strengths of the spin-orbit potential. The uniform charge
distribution Coulomb potential (Vc,„&) is nonzero for
protons only. The f, 's are the Woods-Saxon form factors

f;(r)= 1

I+exp[(r —R;)/a;]
(2.13)

with R; the potential well radius and a; the skin thick-
ness. The parameters utilized are listed in Table I, and
are taken from Refs. [19,20]. In this paper we consider
only spin-averaged cross sections; as the full distorted-
wave expressions take a great deal of computer time to
evaluate, we average the two spin wave functions for a
given angular momentum; hence, we define

Ul I+1/2(k, r)+ Ul I —1/2(k
it)(k, r) =

2
(2.14)

In Eq. (2.11), p, is the nucleon reduced mass, E is the en-
ergy, and k the wave number in the nucleon-nucleus c.m.
system; these are related by the relativistic expression
E =k +p . The nucleon-nucleus optical potential,
V(lj,r) has the form

2 df3 df4
V(l,j,r)= VI f, +iIV2'f2 ——Vs +iIV4 (1 tr)

r dr dr

TABLE I. The nonrelativistic p-'60 optical potential parameters at various proton laboratory kinetic energies [19].

Tp (MeV)

135
200
250
318
354
500

—10.897
—9.935
—4.00
—9.338
—1.100

—11.796

Rl

1.494
1.533
1.470
0.651
1.380
1.277

al

0.495
0.539
0.430
0.536
0.350
0.332

—19.897
—20.465
—17.500
—20.982
—18.500
—17.745

R2

1.151
1.153
1 ~ 190
1.328
1.240
1.186

0.594
0.573
0.590
0.570
0.630
0.682

—14.268
—13.893
—12.00
—14.830
—9.200

4.804

R3

0.877
0.889
0.930
0.959
0.960
0.903

0.433
0.463
0.490
0.523
0.560
0.556

6.181
6.104
8.800

19.000
14.400
21.906

R4

1.050
1.022
1.020
0.992
0.980
1.037

0.402
0.406
0.470
0.575
0.570
0.637
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TABLE II. The ~-' O optical potential parameters at varioUs pion laboratory kinetic energies
[19,20].

r. (MeV)

49.97
81.87
90.03
97.02

179.63

bo

( —0.0708,
( —0.0893,
(—0.0932,
(—0.0964,
( —0.1212,

0.0060)
0.0133)
0.0154)
0.0172)
0.0417)

(0.7131,
(0.8058',

(0.8236,
(0 8344
(0.0846,

0.0275)
0.1125)
0.1490)
0.1867)
0.7228)

(0.1481,
(0.3409,
(0.3783,
(0.4052,
{0.0000,

80
—0.0456)
—0.2844)
—0.3409)
—0.3885)

0.0000)

(0.6448,
{0.3940,
(0.3921,
(0 4205
(0.0000,

0.9766)
1.7322)
1.9697)
2.1982)
0.0000)

With this approximation, Eq. (2.10) for the incoming nu-
cleon distorted wave has the form

If we take the proton and neutron matter densities to be
the same then the optical potential of Stricker et al. takes
the form

(k, r) =4m g(i)'Y ~(k) Y~(r)g&(k, r),
l, m

(2.15) 2PU, , = 4~—[p, bop(r)+p2Bop (r)]
T

and for the outgoing nucleon distorted wave we have

'(k, r) =4~+( —i)'Y'*(k) Y' (r)g&(k, r ) . (2.16)
I, m

We now approximate the spin-averaged distorted wave
functions by expanding them in a basis of spherical Bessel
functions,

QI(k, r)=oaf";(k)j&(k/'r) . (2.17)

k~=k —1.5, k, k+1.5 fm (2.18)

This procedure and the computer program used to calcu-
late the expansion coefficients are based on the work by
Robson and Koshel, and Charlton [18]. Having chosen
the dispersion of Eq. (2.18), the expansion coefficients a/';
of Eq. (2.17) are obtained by minimizing the difference
between the plane-wave expansion and the distorted
wave, from r =0 out to a matching radius R =15 fm.
This procedure was followed for each partial wave (we
used up to 26 partial waves for the scattering nucleon
wave functions). The resulting approximation to the dis-
torted wave function is reasonable; we will show compar-
ison between distorted waves and the plane-wave expan-
sion in the following section.

Similarly, the outgoing pion distorted wave can be
written as

In Eq. (2.17) we used a three-term approximation for the
distorted nucleon wave function. The three wave num-
bers were centered about the asymptotic wave number k
with the dispersion in the proton wave number 5k~
chosen to be 1.5 fm ', i.e.,

co Co
+4m V. L (r) p(r)+ p (r) V, (2.21)

P& P2

4~/ co CoL(r)= 1+ p(r)+ p'(r)
P2

(2.22)

where A, is the Lorentz-Lorenz-Ericson-Ericson parame-
ter [22] taken to be 1.6. The values of the optical poten-
tial parameters for m-' 0 elastic scattering at various
pion energies are listed in Table II and are taken from
Refs. [19,20]. The parameters Bo and Co describe pion
absorption and bo, b &, co, and c

&
are related to the pion-

nucleon phase shifts.
We expand the pion distorted waves in a spherical

Bessel function basis just like the nucleon waves. For the
pion waves we chose a four-term basis with moments dis-
tributed about the asymptotic momentum k. We found
that a dispersion Ak =0.3 fm ' in the pion wave num-
ber gave a good fit to the pion distorted waves for the
partial waves we considered (up to ten), and for distances
out to R =10 fm. With this prescription the pion wave
function and dispersed pion momenta have the form

g&(k, r)=pa&";(k)j&(k; r),

where p, is the reduced mass of the pion in the pion-
nucleus center-of-mass system, and p& =1+m /M and
p2 =1+m„/2M are the kinematical factors arising in the
transformation from the pion-nucleon center of mass to
the pion-nucleus center of mass (M and m are the nu-
cleon and pion masses, respectively). In Eq. (2.21), L (r)
has the form

*(k,r) =4m+( —i)'Y'*(k) Y' (r)g&(k, r),
I, m

(2.19)
k; —k —0.3, k, 0+0.3, k+0.6 fm

(2.23)

where the radial wave function g& ( k, r ) satisfies the
Klein-Gordon equation

(2.20)

The pion optical potential is taken to be the potential of
Stricker et al. [21] obtained by fitting pion-nucleus elastic
scattering at pion lab energies in the range 50-180 MeV.

3. Nuclear structure

We used the Tamm-Dancoff approximation [23] to de-
scribe the initial and final nuclear states in our model.
That is, we assume the initial nucleus is a closed shell and
the final nuclear excited states are taken as a linear com-
bination of pure particle-hole states. We chose
harmonic-oscillator orbitals, P& I (r), for the bound
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single-nucleon states with b = 1.77 fm as used by Donnel-
ly and Walker [23]. The configuration admixture ampli-
tudes for the specific mass 16 calculation discussed in the
next section are taken from the same reference.

B. The postemission direct projectile
excitation amplitude ( A, )

Using the wave functions and propagators discussed in
the previous section, we can calculate the amplitudes
( A; D; ) ap—pearing in Eq. (2.2) by inserting the relevant
quantities and using standard angular momentum cou-

pling techniques. As an example, in this section we
present the full equations for the postemission direct pro-
jectile amplitude A, of Fig. 1(a). The remaining ampli-
tudes are given in Appendix A. Amplitude A& corre-
sponds to excitation of the projectile nucleon (k) to a b,
isobar through meson exchange with a target nucleon.
The isobar then decays into a final continuum nucleon
(k') and pion (q'), while the target, after exchanging an
intermediate meson with momentum (q), is excited to a
particle-hole nuclear state of angular momentum (J) and
isospin (T). The expression for amplitude A, has the
form

2 1/2 —s + Ih
—

mh

3

XI,Jd r& Jd r&(4n) g g g (i) ' 'Y' (k)Y2 (k')Y3 (q')
11,ml 12,m2 13,m3

exp[iq. (r, —r2)]XY ' (r, )Y'' (r, )g( (k, r, )g( (k', r() @i* (r2)@1" (r2)
D (q, ~„)D~(q„,~„)

X(s~lo".qlsz )(sJl[Y' ' (r, )gI (q', r, )](S V)(S q)ls, ), (2.24)

where P& (k, r, ) is the incident nucleon wave function,
1

g& (q', r, ) is the outgoing pion wave function, and A
&

is
3

the corresponding isospin factor

As described in the previous section, we expand the
proton and pion distorted waves in a spherical Bessel
function basis [Eqs. (2.17) and (2.23), respectively]. Using
the expansion for the gradient operator,

A, = g( —1)
1/2 —t,'"c»»~» « l [ Y~*(r)jI (Kr )]S.V

(2.25)

In Eq. (2.25) P (P') is the virtual (outgoing final) pion unit
vector field in isospin space and X' is a spherical index for
the detected pion isospin projection. For the (p,p'm+ ) re-
action A, =&25T,

=(i) 'IC+g(i) '—(S) C000C„'~p, (Kr) Y'„'*(r),
S,P v 5

(2.26)

and utilizing angular momentum recoupling algebra, am-
plitude A

&
may be written as

p2
A 64~2 ( l)4 1

( )i I.l ' ~NN ~eh 1|J
m Dg(qg, cog )

X X X&~, A, ,,1'i, ,a,'(&)
11 7 ~ ~ ~ $14L3 j 181,J,

A A A A A
lll2 3 3 4 )13L3 g JE4 11Co'o'0 Cooo[ [F '(k) Y '(k')] 'S F '(q') ]

8
9

2

X '1 1

2

x I "dq

14 ls 1.3 1 J l4
S' l 1 l l 1 S'

q f(q)
D Co 0 0 r2dr2~1 (r2) t (r2)JL(qr2Dm q, co~ 0 h

111218 L31418 M 2Co oo Co oo r, drA~(k, r, )J' (kjr, )J'I. (q,'r, )J'& (qr, ) (2.27)
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In Eq. (2.27) al; and pl i are Bessel function coefficients
(corresponding to angular momentum 1) for the initial-
and final-state proton wave functions, respectively [from
Eq. (2.17)], and yl; are the coefficients for the outgoing
pion [from Eq. (2.23)]. The factor A1 of Eq. (2.27) is re-
lated to the factor A, of Eq. (2.24) by

1/2 —s +J—
( 1 )

*f C1/21/2 S'CJ S' 9
1 s —s S' —J S'm 1z. zf z z z 1

(2.28)

=g' g IA1 B,' —Ci+—D1I
S 19,m9

(2.29)

Notice that in Eq. (2.27) selection rules require that am-
plitude A& only excite non-normal parity nuclear states
and from an initial closed shell with J =T =0 this transi-
tion can only excite S = T = 1 final states. These rules can
be easily deduced by requiring conservation of total angu-
lar momentum, isospin, and parity in Fig. 1(a). Analo-

I

We make this substitution since the Clebsch-Gordan
coefficients which appear in Eq. (2.28) are common to
every term in Eq. (2.2). We therefore redefine the ampli-
tudes A „B„C„andD, according to Eq. (2.28); sum-
ming these amplitudes and using orthogonality relations
for the Clebsch-Gordan coefficients in Eq. (2.2) allows the
replacement

g gIA, —Bi —C, +D,
I

gous selection rules also can be derived for other ampli-
tudes. Amplitude B& can only excite T=1 final states
and amplitude D, cannot produce a J=0 final nuclear
state (see Appendix A). The significance of this selectivi-
ty will become apparent later when we study the cross
sections leading to different final nuclear states.

After expanding the distorted waves in a Bessel func-
tion basis we obtain expressions for the final amplitudes
[cf. Eq. (2.27) and the equations in Appendix A]. These
depend upon integrals involving products of three or four
spherical Bessel functions. Analytic expressions for such
integrals were derived in Ref. [24]. The expressions cor-
responding to the remaining diagrams in Fig. 1 for poste-
mission amplitudes B'j, C'„and D', are given in Appendix
A.

C. Delta finite-range amplitude

The amplitudes derived thus far assume a zero-range
approximation for the isobar. With this approximation,
the 5 momentum is fixed and both production and decay
of the isobar take place at the same point. Allowing the 6
to propagate with finite range requires evaluation of an
additional six-dimensional integral (the 5 momentum and
an additional spatial coordinate). In plane-wave approxi-
mation, the finite-range and zero-range expressions for
amplitude A 1 reduce to the same form (see Appendix B).
For distorted incident and outgoing scattering particles,
the final expression for amplitude A

&
becomes

2 ', =( —1)" (i) ' 128 — l lq5s, S' Cp h S, 1 3

l1, i I2,g l3, e
1&, . . . , 15L3,18i,j,e

X [[& '(&)e & '(&')] 'e I' '(q')] '

l4 l8 L3 1 J l4 l4 l~ l5
X ' \ C i

1 — S l3 1 l9 l9 1 S l2 L3 l8

k'. +q'j c g (q ) 12L315
b, 2

X dq & Co o o r3drj3l (kj )rj3(Lq&r3)jl (q l'3)
Dl, (q, cu„) 0

X dq
q'f (q)

lk. —q~l D (q, co~ )

oo I

X Co o" o rzdr2Rl"*(r2)R1" (r2)jL (qr2)
0 h

ll 1415X Co o o r,dr,j l (k;r, )jl (qr, )j l (q r, ) (2.30)

D. Preemission amplitudes

Equation (2.27) corresponds to the process where the final pion is emitted following the formation and propagation of
the isobar. We have also calculated the contribution of the preemission amplitudes where the final pion is emitted when
the isobar is formed. For the energies in our calculations, such amplitudes produce isobars far off shell. We shall show
that the contributions from preemission amplitudes are much smaller than the dominant postemission terms and are
essentially negligible for the (p,p'm. +

) reaction. For this reason, we have calculated preemission amplitudes only in the
plane-wave approximation; these are listed in Appendix C. They can be compared directly to the plane-wave postemis-
sion results which are listed in Appendix B.
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E. Intermediate p meson amplitude

Thus far we have calculated excitation of a 6 arising from exchange of a virtual pion between the incident nucleon
and a target nucleon. We can also include contributions where a virtual p meson is exchanged between active nucleons.
Using the effective Lagrangian of Eq. (2.3) in plane wave approximation, the p meson contribution to amplitude 3, has
the form

Ifnnhf pNaf pNN

p 1
m„m

1/2 —s + Ih
—

mh +~
X X X XX(—1)

$,$ PRE, Plh L,S

exp[i(k'+q' —k —q) r, ] exp[iq. r2]
X d r, dr2 FP„(q)

(2m. )

XC,', s C~ "
L CL s J (s l(o Xq) ilsh )

p

x (sf l(s q )(s"xq)l„ls, )c,"* (r2)c,"' (r, ) (2.31)

This term, after extracting the appropriate phase and Clebsch-Gordan coe5cient, should be added to the plane-wave
pion contribution given in Eq. (B4). Note that in Eq. (2.31) only the tensor coupling of pNN appears since the vector
part yields zero. The vanishing of the vector contribution occurs because the vector part of the p» coupling is propor-
tional to q; taking the scalar product of this term with the factor S X q from the p&& term gives zero. After some angu-
lar momentum algebra we can write the p exchange amplitude as a product of a particle-hole term A' times a spin
piece A, e.g. ,

=Bi g CL s J A'(1., )A (S, ) . (2.32)
L,S

Since the p meson, like the pion, is an isovector, the isospin factor A, is the same as for the pion, e.g. , Eq. (2.25). In Eq.
(2.32) the particle-hole and spin factors are defined through

(2.33)

(S,)= —32m&2q'q„( —1) S' g g( —1) X'COOOC, M' s [Y'(q')Y' (q~)]M '1
X,X'M' Z

1 1 1 S' 1 1

1 1 X ~ 1 X si.

1 S'

(2.34)

In Eq. (2.33), the particle-hole matrix element Al"' l I is defined as

I oo I

~l, l, L('VA ) 2d 2~l ( 2)+I (r2)JL(VAr2)
p7 h' 0 P h

(2.35)

III. RESULTS AND DISCUSSION

In this section, we use the (X,X'n)amplitude. s derived
in the preceding section to make theoretical predictions
for the exclusive ' O(p, p'n. +)' N* reaction. All results
are presented in the overall center of momentum frame.
With at least three particles or clusters in the final state,
several energies and angles can be varied independently.
In this investigatory paper we examine certain sectors of
this parameter space. Here we limit our discussion to
cases where the incident proton, outgoing proton, and
outgoing pion are in the same plane. The outgoing pro-
ton and pion scatter on different sides of the beam, look-
ing down on the scattering plane. In the results present-

ed here the scattering angle of the outgoing proton is
fixed at 0 =10'.

Figure 4 shows the dependence of the momentum
transfer to the nucleus, q =

l

k'+q' —kl, with variation of
the kinematic variables of the detected particles. Figure
4(a) gives the dependence of the momentum transfer q on
the outgoing proton energy for incident proton energies
450 and 800 MeV, when the c.m. pion angle is fixed at
8 = 10 . For an incident proton energy of 450 MeV (a ki-
nematic region dominated by b, formation), fixing the
outgoing proton kinetic energy at 250 MeV gives the
momentum transfer to the nucleus its minimum value of
approximately 1 fm ', at this proton incident energy the
momentum transfer is close to this value, and relatively
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Fig. 4. (a) Momentum transfer to the nu-

cleus for the (p,p'~+) reaction on ' 0, as a
function of the outgoing proton energy in the
overall center of mass frame for c.m. energies
of 450 MeV (dashed curve) and 800 MeV (solid
curve). (b) Momentum transfer to the nucleus
as a function of the outgoing pion angle, for
c.m. energy 450 MeV, and for outgoing proton
energies of 100 MeV (dashed curve) and 250
MeV (solid curve).
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constant, for a wide range of outgoing proton energies be-
tween 100 and 300 MeV. Figure 4(b) shows the variation
of the momentum transfer with outgoing pion angle, for
incident proton energy 450 MeV and outgoing proton en-
ergies of 100 and 250 MeV. The nuclear momentum
transfer varies approximately linearly with the outgoing
pion angle. With these kinematics the nuclear momen-
tum transfer can change considerably as the pion angle is
varied: For a 100 MeV outgoing proton, the momentum
transfer varies from roughly 1 to 5 fm ' as the pion angle

is increased.
In Fig. 5 we evaluate the amplitudes of Eq. (2.2) to pre-

dict cross sections for the ' O(p, p'm+)' N* reaction. We
assume that ' O is a closed shell and calculate transitions
leading to one-particle —one-hole states in ' N. In this
figure and other calculations of cross sections, unless stat-
ed otherwise, we have calculated only the postemission
amplitudes: we will show later that the preemission am-
plitudes are generally negligible in comparison. We also
set the isobar width to its free value, and include only
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those amplitudes with an intermediate m meson ex-
changed between active nucleons (amplitudes involving
an intermediate p meson will be included later). In Fig. 5
we also neglect the self-energy II(q, co) of the exchanged
pion.

The most important kinematic variable turns out to be
the momentum transfer q to the nucleus. Figures
5(a) —5(c) show our results at different values of q. The en-
ergies and angles of Fig. 5(a) correspond to nuclear
momentum transfer q =1.05 fm ' (corresponding to an
outgoing pion angle of 5 ). At this momentum transfer

the 1 state at approximately 13 MeV excitation energy
dominates the spectrum. This is understandable since an-
gular momentum matching conditions generally ensure
that low spin transitions are excited more strongly at
lower momentum transfer than are high spin transitions.

As we have previously mentioned, the reaction ampli-
tudes shown in Fig. 1 have difFerent angular momentum
selection rules; therefore, we expect the relative contribu-
tions of the amplitudes A &, 8I, and D', of Eq. (2.29) to
vary greatly; indeed, for transitions to some states we ex-
pect some amplitudes to vanish. The rectangles in Fig. 5
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15 20 FIG. 5. Excitation energy spectrum for the
' O(p, p'm+ )' N reaction leading to one-
particle —one-hole final states, for c.m. energy
450 MeV and outgoing proton energy 250
MeV. Rectangle: full calculation with all am-
plitudes; +: contribution from amplitude A

&

only; X: amplitude 8', only; 0: amplitude D',

only. (a) outgoing pion angle of 5', which cor-
responds to nuclear momentum transfer

q =1.05 fm '; (b) pion angle 100', correspond-
ing to q =1.68 fm '; (c) pion angle 130, corre-
sponding to q =2.04 fm
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show the full predicted cross sections; + denotes results
using amplitude 3 ', only; X shows results using only am-
plitude 8'„' and C' refers to amplitude D', only (amplitude
CI is relatively small for any value of L, S, and J). For
many of the states, a single amplitude tends to dominate
the transition; for some transitions, a single amplitude
can produce cross sections which are considerably larger
than the full result (due to destructive interference be-
tween the dominant amplitude and the others). For ex-
ample, in Fig. 5(a) the transition to the 1 state at 13
MeV is dominated by amplitude D1, with no contribution
from amplitude A1 since this is a normal parity transi-
tion.

Figure 5(b) shows the same calculated cross sections at
nuclear momentum transfer q = 1.68 fm '. At this
higher momentum transfer the higher angular momen-
tum states have larger cross sections, and indeed the
highest available angular momentum state, the 4 transi-
tion at about 9 MeV excitation, dominates the predicted
cross sections. For the 4 transition the amplitude A', is
predicted to interfere destructively with the other ampli-
tudes. The amplitude B', dominates the 3 excitation at
15 MeV. This 0 —+ 3 transition exhibits an interesting
selectivity in that it is completely dominated by ampli-
tude B', . Provided this transition is strong enough to be
isolated experimentally, the selectivity of the reaction
process could be used to study this individual amplitude.

In Fig. 5(c) we show the same cross sections at momen-
tum transfer q =2.04 fm '. The general trend observed
in Figs. 5(a) and 5(b) is continued here. The overall mag-
nitude of the cross sections tends to decrease with in-
creasing momentum transfer. However, some cross sec-
tions vary more rapidly than others; for example, com-
paring Fig. 5(b) and 5(c) we note that as q increases the

4 state at 9 MeV loses strength compared to the rela-
tively constant strength of the 15 MeV 3 excitation.

In Fig. 6 we repeat the calculations which were carried
out for Fig. 5; however, in Fig. 6 we have included the
self-energy of the intermediate pion exchanged between
the active nucleons; these self-energy amplitudes are
shown schematically in Fig. 3. Comparison of Figs. 5
and 6 shows that inclusion of the pion self-energy in-
creases the predicted cross sections somewhat; however,
the self-energy contributions to the amplitude A1 are
much larger than to the other amplitudes. This is be-
cause the energy and momentum carried by the inter-
mediate meson are quite different for the amplitudes of
Fig. 1. For transitions to relatively low lying states in the
final nucleus, the intermediate pion 'in amplitude 3

&
has

reasonably large momentum but quite small energy. This
corresponds to the so-called "acoustic mode" for the pion
[16,22,25]. In our model, the pion self-energy is predict-
ed to be quite large for these kinematics. The other am-
plitudes correspond to different kinematic regions for the
virtual pion and we predict relatively small medium
enhancement for these terms. From Fig. 6(a) we see that
at the relatively low momentum transfer q =1.05 fm

—1

the 13 MeV 1 state (which is a normal parity state with
no contribution from amplitude A', ) still dominates the
spectrum. Moving to higher momentum transfer we see
from Fig. 6(b) that the strength of the 4 state, which is
dominated by amplitude 3 1, is enhanced by a factor of
=5 when we include the pion self-energy. In Fig. 6(c) at

q =2.04 fm ', the 4 state still dominates the spectrum.
In our calculations the pion self-energy contribution to

certain amplitudes is significantly enhanced. For exam-
ple, two of the largest calculated cross sections are to the
4 state at 9 MeV and the 3 state at 15 MeV excitation.
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For momentum transfer q = 1.68 fm ', the ratio of these
states is roughly 1.5 without the pion self-energy [Fig.
5(b)], but a factor of 5 when the self-energy is included
[viz. Fig. 6(b)]. Similar comparisons at q =2.04 fm
predict the ratio of the 4 transition to the 3 transition
will be 1.1 without self-energy, but 3 when self-energy
effects are included.

Inclusion of the pion self-energy enhances different
transitions in varying degrees, depending on whether
selection rules allow amplitude A to contribute. The de-
gree of expected enhancement clearly depends on the
model chosen for the medium effects on the virtual
meson. Our calculation assumed a Fermi gas for the nu-

clear medium. Previous calculations of medium effects
on propagating pions [16,26—28] demonstrated that
infinite-medium models for meson propagation (such as a
Fermi gas) can sometimes significantly overestimate
medium effects, relative to more realistic nuclear models
like a large-basis random phase approximation (RPA)
calculation. Because we predict a marked medium
enhancement of transitions with large contributions from
amplitude A and only small enhancement from other am-
plitudes, and since the selection rules pick out different
amplitudes in various transitions, then measurement of
the relative strengths of transitions to different final states
can be used to isolate and study the size of medium
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effects.
For example, for q =1.68 fm ', the ratio of two of the

largest cross sections (the 4 state at 9 MeV and the 3
state at 15 MeV) is roughly 1.5 (5) without (with) in-
clusion of the pion self-energy [see Figs. 5(b) and 6(b)].
The ratio is 1.1 (3) without (with) the self-energy for
q =2.04 fm ' [see Figs. 5(c) and 6(c)]. Although there
are many uncertainties in our theoretical calculations, the
ratios of transitions to different final states are relatively
insensitive to other variables (such as distortions and nu-
clear structure), provided these ratios are measured at
fixed momentum transfer q. Experimental studies of such
transitions may be particularly useful in testing predic-
tions for medium effects in isobar production reactions.
Such studies will be the subject of a future report (see Sec.
IV).

In Fig. 7 we examine the predicted cross sections to
some of the dominant states in the pion production reac-
tion. We assume a proton incident energy of 450 MeV,
fix the energy of the outgoing proton at 250 MeV, and
plot cross sections versus the c.m. angle of the outgoing
pion. In Fig. 7(a) we plot cross sections to the 4 state at
9 MeV, and in Fig. 7(b) we give cross sections leading to
the 1 state at 13 MeV. The dashed curves give plane-
wave calculations with no pion self-energy; dotted curves
show plane-wave results when the pion self-energy effects
are included; dot-dashed curves show distorted-wave cal-
culations with no pion self-energy effects, and the solid
curve shows results when both hadron-nucleus distor-
tions and pion self-energy effects are included.

In Fig. 7(a) we compare these results for the stretched
4 state. For all four cases the cross section peaks at
0„=100, corresponding to a nuclear momentum transfer
q = 1.7 fm '. Inclusion of distortions decreases the
plane-wave cross sections by about a factor of 3. In-
clusion of the pion self-energy increases the plane-wave
cross sections by a factor of 4, and the distorted-wave cal-

culation by a factor of 5. The shape of the predicted
cross sections is relatively constant; including distortions
tends to decrease the cross sections and adding in the
pion self-energy increases the cross sections by roughly
the same amount. Thus at this energy and for this final
state, the distortions and self-energy corrections tend to
cancel, giving a final result within about 30%%uo of the origi-
nal plane-wave calculation.

Figure 7(b) shows the cross sections for the transition
to the 1 state at 13 MeV. The calculated cross sections
have a peak at small pion angle 0„=30,corresponding to
momentum transfer q =1 fm '. The cross section also
shows a dip in the cross section at 0 =100', which origi-
nates from a node in the transition density integral
Az"( ((q„), in the plane-wave approximation [see Eqs.
(2.35) and (89)]. For the distorted-wave calculation this
node has not been completely filled in, although its loca-
tion has been slightly shifted. For the 1 state in this ki-
nematic region, inclusion of distortions decreases the
plane-wave cross sections by a factor of =2 for the peak
cross sections. Inclusion of self-energy effects increases
the cross sections by a factor of 2. Once again, for transi-
tions to the 1 state the competing effects of nuclear dis-
tortions and pion self-energy effects tend to cancel. The
extent of this cancellation is highly dependent on kine-
matic conditions and the particular final state. However,
for all of our calculations we find that inclusion of distor-
tions decreases calculated cross sections and self-energy
effects tend to increase them. The shape of the predicted
cross sections does not differ significantly from plane-
wave calculations (except for zeros in plane-wave calcula-
tions, which get filled in when distortions are included).

In Fig. 8 we compare the magnitude of the preemission
amplitudes of Fig. 2 with the postemission amplitudes.
We show this comparison only for the single amplitude D
of Figs. 1(d) and 2(d); however, the other amplitudes yield
similar results [17]. In Fig. 8 we show plane-wave cross
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sections for transitions to a final ( ld)( lp) ', L =1,5 = 1,
J=2 state. The dashed curve of Fig. 8 includes only the
postemission amplitude D& shown schematically in Fig.
1(d); the dotted curve shows the cross section from the
preemission amplitude of Fig. 2(d); the solid curve shows
the full result with both preemission and postemission
contributions. The preemission contribution is about one
order of magnitude smaller than the dominant postemis-
sion term. This occurs because the 6 propagator is far-
ther off shell for the preemission amplitudes; this arnpli-

tude also has a smaller isospin factor for the (p,p'm+ )

cross section compared with the postemission amplitudes
(see Appendix C). Hence, the preernission amplitudes are
relatively unimportant for the (p,p'm+) reaction (they are
never much larger than 10%%uo of the total cross sections)
and we therefore neglect them in subsequent calculations.

In Fig. 9 we show the effect of including the exchange
of an intermediate p meson between the two active nu-
cleons. To give some idea of the importance of this term
we have calculated plane-wave cross sections leading to a
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FIG. 8. The differential cross section for the
' O(p p'm+)' N reaction as a function of out-
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( 1d)( 1p) ', L = 1, S = 1, J =2 final nuclear
state. Calculations have been carried out in

plane-wave approximation including only am-

plitude D. Dashed curve: only postemission
amplitudes included; dotted curve: only pree-
mission amplitudes; solid curve: both post-
and preemission amplitudes included.
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final nuclear (ld)(lp) ' state with L =3, S= 1, and
J =4, including only the amplitude 31. The solid curve
shows the cross section including only intermediate pion
exchange, the dashed curve shows the result including
only the p meson contribution, and the dotted curve
shows the result including exchange of both mesons. For
momentum transfers q (1.1 fm ', the p meson makes a
negligible contribution to the cross sections. For q & 1.3
fm, the p meson contribution is comparable to the pion
amplitude; in fact, inclusion of p meson exchange in-
creases the peak cross section by a factor of 2. Thus the
contribution from the p meson can be neglected only for

the smallest momentum transfers, and this contribution
should be included in subsequent calculations of this pro-
cess. Some angular momentum selection rules can be de-
rived for p exchange; for example, in amplitude A, an in-
termediate p meson cannot contribute to transitions to a
final J =0 state.

The dependence of the cross sections on the range A of
the hadronic form factor [see Eq. (2.4)] is shown in Fig.
10. This figure shows cross sections leading to a final
(ld)(lp) ', L =3, S= 1, 1=2 nuclear state, using dis-
torted waves including only the amplitude A ', . The solid
curve shows results for A = 1.2 GeV, the value used
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throughout this paper; the dotted curve is the result for
the harder form factor A=1.6 GeV, and the dashed
curve results from the softer form factor A=0. 8 GeV.
Increasing the form factor from 1.2 to 1.6 GeV increases
the calculated cross sections by about 10% without
changing their shape; however, reducing A to 800 MeV
decreases the calculated cross sections by about 40%. In
this figure we overestimate the sensitivity of the calculat-
ed cross sections to the range of the hadronic form factor;
we have changed the form factor range without making
compensating changes in the strength of the bare cou-
pling constant, which would be necessary to keep the
strength of the AN ~NÃm. reaction constant.

Next we investigate the dependence of our results on
the nuclear interactions of the intermediate pion and iso-
bar. In order to simplify the numerical calculations we
examine transitions only to a single nuclear final state,
and have included only the largest single amplitude
which contributes to this state. We have chosen the tran-
sition leading to a ( ld)( lp) ', L = 1, S = 1, I =0 nuclear
final state, including only amplitude 3 ', .

Our estimate of the self-energy of the intermediate pion
was made by assuming the nucleus could be approximat-
ed by a Fermi gas with effective Fermi momentum kF, to
which we assigned the value k~=210 MeV/c (this ap-
proximation is discussed in Ref. [14]). The short-range
repulsion in the baryon-baryon interactions which enter
into the pion self-energy were accounted for with a
Landau-Migdal term, g'=0. 7. In Fig. 11 we investigate
the dependence of our reaction cross sections on the pa-
rameters chosen for the pion self-energy. Figure 11(a)
shows the dependence on the parameter kF. Reducing
(increasing) the magnitude of kz by 100 MeV/c results in
a decrease (increase) in the cross section by about a factor
of 2. Figure 11(b) shows the effect of varying the Landau
parameter g' (we assumed gz~ =g~z—=g'). As expected,

the cross section increases substantially (by a factor of
about 4) when g' is reduced to 0.3, since for values
g'&0. 4 an unphysical pion condensate appears [15,16].
Only the amplitude 3, is sensitive to changes in g'; the
other amplitudes are less sensitive to inclusion of the pion
self-energy. The cross section is not appreciably changed
when g' is increased.

In order to simplify numerical calculations we assumed
a zero-range approximation for the intermediate isobar.
Figure 12 shows the effect of including finite-range 6
propagation for amplitude A', . There is essentially no
difference between the zero- and finite-range calculations
for the isobar, except near the deep minimum at
0 =100'. This suggests that the zero-range approxima-
tion for 5 propagation gives reliable predictions for this
reaction.

Our earlier results assumed that nuclear interactions of
the intermediate isobar could be incorporated by a down-
ward shift of the b from its free position; this downward
shift is chosen to be —35 MeV, in agreement with
isobar-hole calculations in this energy region [8]. Figure
13(a) shows the sensitivity of the cross section to the b-
nucleus potential, Vz. the solid curve shows results
when Va = —35 MeV, the dashed curve Va = —70 MeV,
and the dotted curve gives results when V&=0. As V~
becomes more attractive the cross section is enhanced for
0 &100.

One expects two competing nuclear effects on the
width of the isobar. The intermediate decay 6~%+A
will be suppressed in medium, due to Pauli principle
effects which require the nucleon in this decay to be an-
tisymmetrized with those in the nucleus. We have ap-
proximated this by the Pauli factor P in Eq. (2.7). Previ-
ously we have set P =1, which corresponds to ignoring
Pauli effects. Figure 13(b) shows the effects of varying
the Pauli factor, P. The solid curve corresponds to P =1
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and the dashed curve to I' =0.7. The resulting cross sec-
tions are quite similar, and cross sections differences of
more than 10% occur only where the overall cross sec-
tion is very small; this effect decreases the width of the
isobar in the nucleus and hence tends to increase the cal-
culated cross sections.

While the Pauli effects tend to decrease the width of
the isobar in the nucleus, collision broadening will tend
to increase the 6 width. This effect has been neglected in
our calculations to date. We have estimated this effect by
adding a constant collision width I z to the isobar. The
solid curve in Fig. 13(c) corresponds to I „=0; the

dashed curve corresponds to I ~ =30 MeV. For the
values we have chosen, the Pauli effect and collision
broadening almost exactly compensate one another, e.g. ,
compare Figs. 13(b) and 13(c). This suggests that we
have overestimated the magnitude of the Pauli effects
since isobar-hole calculations [8] predict a net increase in
the 6 width in medium due to nuclear effects. However,
our crude estimates suggest that the energy and angle
dependence of the resulting cross sections will not change
much when collision broadening is included.

In our model we have approximated the isobar-nucleus
interaction in terms of an effective interaction which is
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the same for all intermediate states. This differs from the
isobar-hole model [7,8, 16] where the nuclear Hamiltonian
is diagonalized to find isobar-doorway states. In such cal-
culations the resulting effective interaction of the isobar
is state dependent. Although our model gives a realistic
average nuclear interaction for the isobar, there are some
aspects of pion scattering for which this state dependence
is quite important [8]. In subsequent calculations more
reliable results could be obtained by replacing our isobar
term by a sum over the dominant isobar-hole states in
this reaction.

In our numerical calculations we have approximated
the proton and pion distorted wave functions for a given

angular momentum as a sum over spherical Bessel func-
tions. Having chosen the number of basis states and the
dispersion in momenta (as discussed in Sec. II), the ex-
pansion coeiticients are obtained by fitting exact and ap-
proximate wave functions from the origin out to 15 fm
for the protons, and out to 10 fm for the pion. It is im-
portant to test the validity of this approximation. As one
test of this method, we vary the matching radius, refit the
Bessel function expansion, and recalculate reaction cross
sections. We apply this to model calculations containing
only amplitude D

&
of Fig. 1(d), which should be the am-

plitude most sensitive to this fitting procedure. Radial in-
tegrals involving amplitudes B', and C& converge rapidly
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FIG. 13. Dependence of reaction cross sec-
tions on parametrization of 6-nucleus interac-
tion. Differential cross section as a function of
outgoing pion angle for transition to
(1d)( 1p) ', L = 1, S = 1, J=0 final nuclear
state in plane-wave approximation, using am-
plitude A& only. (a) Dependence on real part
of 6-nucleus interaction; assumed constant
shift Vz. Dotted curve: V&=0; solid curve:
V& = —35 MeV; dashed curve: V& = —70
MeV. (b) Dependence of reaction cross sec-
tions on isobar width in nuclear medium. Pau-
li principle corrections to isobar width. Solid
curve: Pauli factor P =1 [see Eq. (2.7)]; dashed
curve: Pauli factor P =0.7. (c) Effects of
isobar-nucleus spreading width. Solid curve:
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MeV.

25 50

e„(deg)
100



~~+) REACTIONA~CUI ATION QF TH (P PDISTOR TED-WAVE CA 1211

1.01
1

1.10 1.30 1.B1
I

2.04

1OO

'~o(p, p'vr )

E =45
= 250P

Pa
C4

10 2

b

L=1, S=1

0 3

25 50

e„(deg)
100 125 FIG 13. (Continue@.

1.05
i

(c)
1O0

1.01
i

1.10 ] .30 1.B1 2.04

10—1

"o(p,p'~')"
= 45

T, = 25OP

Cl

"
1O 2

b

L=1, S=1,

P5 50

e„(deg)
100

ence of bound-state wave functions, as
1 d (A3) ith (A5).

1 ol
b corn aring Eqs. (Al) an
de A, the radial integra s inv

e d h ucleus and destruce oint inside t e nucpo o p
tion of the meson atat another point. is or e

d lated by nuclearnal hadrons are rno u a ethe incident and fina
it' . Therefore, relative ot the center of

f he distorted waves isr a roximation or t e ithe nucleus, our app
sition density is non-here the nuclear transi ion"f th B lf t'o
h fhtchin radii or e

pansions o our if distorted waves are c osen
condition.

F' . 14 show calculated cross sec-The three curves in g
'

d g is varied
~

e D' as the matching rations for ™plitud
&

'
calculated to a state

unchanged exc pe t at the eep minim
f our distorted wavessu ests that expansion o our

of
tion. This sugges s

t ons is not a source oherical Besse unctions
'

in a basis of sphe
taint in our ca cu a e r1 1 t d results.considerable uncerta' y

'

'
n we further discuss eth implicationsIn the next section we

u est future ex-mmarized above, and suggesof the results summa
'

the (N, N'rr) reaction.perirnenta an1 d theoretical work on t e



1212 R. MEHREM, J. T. LONDERGAN, AND G. E. WALKER 48

1.05
I

1.01
I

1.10 1.30
I

q (fm ')
1.81

I

2.04

0

10
b

FIG. 14. Dependence of reaction cross sec-
tions on spherical Bessel function approxima-
tion to distorted-wave functions. Distorted-
wave differential cross section as a function of
outgoing pion angle for transition to
(ld)(1p) ', L =1, S =1, J=2 final nuclear
state, using amplitude D

&
only. Distorted

waves for protons are expanded in a spherical
Bessel function basis as given in Eq. (2.18). Ex-
pansion coefficients are obtained by least-
squares fit of approximate wave function to the
distorted wave function from the origin out to
some distance R. Solid curve: cross section
when R = 15 fm; dashed curve: R = 16 fm; dot-
ted curve: R =17 fm.

I I I I I I I I I I I I

25 50 75 100 i25

8„(deg)

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a two-nucleon model
to describe the exclusive (X,X'n. ) reaction. The model is
applied in a region which should be dominated by forma-
tion of an intermediate b,(1232) isobar. The reaction is
assumed to proceed by exciting a nucleon to an isobar,
which propagates and then decays to nucleon plus pion.
Antisymmetrizing this amplitude with respect to both
initial- and final-state nucleons leads to four distinct am-
plitudes, which are shown schematically in Fig. 1. These
"postemission" amplitudes produce the pion at the isobar
decay vertex. Four additional amplitudes, shown in Fig.
2, result when the pion is produced at the isobar forma-
tion vertex.

The resulting eight amplitudes have been calculated
and applied to the (p,p'~+) reaction on ' 0 leading to
one-particle —one-hole states in ' N. Differential cross
sections to these states were obtained in a distorted-wave
calculation using the dominant postemission amplitudes.
The four preemission amplitudes were shown to be negli-
gible in plane-wave approximation, because of adverse
isospin coupling coefficients, and also because the 6 prop-
agator in preemission amplitudes is far off shell at these
energies. We expect the same results in distorted wave
calculations.

The calculations shown in this paper assumed ex-
change of a virtual pion between active nucleons in the
hard scattering process NN~XNm. We also calculated
the contribution for an intermediate p meson in addition
to the intermediate pion. At low momentum transfers
q ~ 1 fm ' the contribution from p exchange is
insignificant, but at higher momentum transfers the p
meson contribution can become quite important. This
amplitude should be included in subsequent calculations
of this process, which involve large momentum transfers

to the nucleus.
We are encouraged by the promising development of

experimental techniques that now allow coincidence ex-
periments to be performed with high-energy resolution
(=1 MeV) at high beam intensity (=10 nA). Given a
typical Indiana University Cyclotron Facility (IUCF) or
TRIUMF target thickness of 50 mg/cm, and with
cross-section magnitudes predicted here (= 1

ILIb/sr MeV), one can expect to measure counts on the or-
der of 1 count/min MeV. Thus the predicted strengths of
the possible transitions make it feasible to experimentally
measure and isolate some of the dominant transitions.

The spin-isospin selectivity provided by the nuclear
response allows one in principle to isolate individual am-
plitudes in this reaction. For example, Fig. 5(b) shows
that the 15 MeV 3 normal parity transition is complete-
ly dominated by amplitude BI of Eq. (2.2). Provided one
could experimentally extract the reaction cross section
leading to this state, measurement of this transition
would allow one to isolate and study amplitude B &.

The results of our calculation depend on values as-
sumed for the medium dependence of both mesons and
isobars. These have been parametrized in terms of
effective widths and potentials, form factors, and other
parameters, for which we have taken values consistent
with other theoretical investigations in the same energy
and momentum transfer regime. We investigated the sen-
sitivity of our results to variation of these parameters;
this should provide some "theoretical error bars" of in-
herent uncertainties in our calculations. For example, we
used a zero-range approximation for the 6 in our calcula-
tion. Removing this approximation makes small changes
in the calculated cross sections except in the vicinity of a
deep minimum in the theoretical results.

We also showed the dependence of our results on the
parameters used to define nuclear effects in 6 propaga-
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tion, the intermediate pion self-energy, and the hadronic
form factors. In some cases our cross sections are ex-
tremely sensitive to these assumptions. In particular, the
cross sections appear to be highly sensitive to the form of
the pion self-energy, at least for one of the reaction am-
plitudes. While this amplitude contributes only to cer-
tain final nuclear states, the shape of excitation functions
for such transitions might be sensitive to the form chosen
for the pion self-energy. In fact, if we examine the cross
sections to a particular final state (as a function of pion
angle for fixed outgoing proton energy), the self-energy
contributions tend to change the magnitude of these cross
sections while leaving their shape invariant.

There are several advantages to the present proposed
study of the (p, p'm. +) reaction. We used nuclear wave
functions whose momentum transfer dependence was ob-
tained from inelastic electron scattering studies. Such
wave functions are realistic for momentum transfers

q (200 MeV/c, so our angular distributions should be
most reliable in this kinematic region. One minimizes the
uncertainties in the distorted wave functions (obtained
from proton- and pion-nucleus scattering data) by work-
ing in an energy regime for which the distortion effects
are small (200—500 MeV for protons and 50—100 MeV
for the pion). We assumed the reaction could be de-
scribed by a single hard scattering modulated by nuclear
(optical) distortions of the outgoing particles; this as-
sumption could be invalid if the reaction proceeds via
multistep direct processes. If that is the case, then our
theoretical cross sections would not fit either the magni-
tude or shape of the experimental results. However, it is
reasonable to expect that the model is adequate (at least
in this energy-momentum regime) so that it can provide a
theoretical guide for interpreting the data. Of course,
there are sufticiently many degrees of freedom in this cal-
culation that quantitative prediction of cross sections to
individual states may not be feasible. We are currently
examining processes where one could extract information
about individual amplitudes and contributions by com-
paring transitions to different final states, or to the same
final state at different mornenturn transfers. Our results
suggest such comparisons may be much less sensitive to
theoretical uncertainties. We are also investigating ways
to extract useful information in this reaction even in the
presence of substantial experimental backgrounds.

We observed earlier that amplitude A, shows a strong
dependence on the form of the self-energy of the inter-
mediate pion. Amplitudes which have no contribution
from this term (e.g. , normal parity transitions) are only
weakly affected by the self-energy term, while in our

model abnormal parity T =1 states should be increased
by factors of 5 —10. Comparison of experimental strength
to normal parity states with cross sections to abnormal
parity T = 1 states should show directly whether our pre-
dicted enhancement is present. Another test of our pre-
dictions is to take ratios of the same isobaric transition
for different (N, N'~) isospin channels, i.e., the cross sec-
tion ratio of (p,p'm. +) to (p, nor+), in transitions to nu-
clear states with T =1.

We continue to study the theoretical cross sections as a
function of nuclear momentum transfer and energy. It
may be possible to extract individual amplitudes in much
the same way that the Rosenbluth plot has been useful in
electron scattering [29, 30]. Siciliano and Walker [31]
have previously discussed the promise of such techniques
in hadronic interactions. If the (q, E) separation predict-
ed by our calculations is not confirmed experimentally,
this would provide strong evidence that the reaction
proceeds through a more complex mechanism.

The goal. of this present study is to isolate those
features of the model which fix the qualitative behavior of
reaction cross sections in this kinematic region. If the re-
action mechanism is shown to be adequate from such
combined theoretical-experimental studies, then one can
hope to investigate other interesting features associated
with the (N, N'm ) reaction such as the nuclear response at
higher momentum transfer and the description of meson
and baryon propagation in nuclei.
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APPENDIX A' AMPLITUDES B
&

C ] AND D ]
IN DISTORTED-WAVE APPROXIMATION

1. Amplitude B ~

The amplitude 8', shown in Fig. 1(b) represents the
post-emission exchange target excitation process; i.e., an

amplitude where a target nucleon is excited to a 6, which
propagates and then decays to the final continuum proton
and pion, while the incident proton is captured into a
particle-hole final nuclear state. When we remove the
overall Clebsch-Gordan angular momentum coefFicients
[cf. Eq. (2.28)], the expression for 8 i has the form

I
Bi =( —1)" 64&6vrl lhLSJS'

Da(qa ~a)

I)). . . ) l8112)L3S2)S4l)g) 6
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The coordinate radial integrals all involve products of
three spherical Bessel functions, or two Bessel functions
times a harmonic-oscillator wave function, and hence can
be evaluated analytically [17]. The nuclear isospin factor
B1 has the form

BI Q2( 1) zCl/21 3/2

f
XC",' ', ",' (yg), .S„, (A2)

l

which has the value B1=3/25T1 for the (p,p'n ) pro-
cess. Isospin conservation requires that this amplitude
excite only T=1 final states for an initial state with
T =0.

2. Amplitude C&

The amplitude C'„shown in Fig. 1(c), is the postemis-
sion exchange projectile excitation term. This term is ob-
tained from Fig. 1(a) by interchanging the two final-state
nucleons. It represents the hard scattering amplitude
where the projectile nucleon is excited to an isobar which
then decays to a bound nucleon and free pion; the initial-

ly bound nucleon which participates in the hard scatter-
ing is ejected in the final continuum state. When the an-

gular momentum Clebsch-Gordan factor is removed the
reduced amplitude C1 may be written as
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1 S4 . L ll, l

S' l7 l6 l5

q f(q)4

Co oo f rldrlj& (kI"r, )j, (qr, )R1" (rl)
D~ q pic 0 J h

15 14 11 L3 14X Co oo Cp p p r2dr2j& (qr2)R~"'(r2)j& (k;r2)jL (q,'r2)
0 5 P 1 3

(A3)

The isospin factor, C, in Eq. (A3) is given by
1/2 —t, +A,

CI 2+6( 1) h Cl/21/2 T Cl/2 11/2
2 Zg Z Zf ZP

1 1 3

Xg'f"C', T, ', C'
3.

'
2.T, '1, T, '(P'f)2.

T p Z I 2

(A4)

which has the value of —3/2/3 for the (p,p'm. +
) reaction.

3. Amplitude D
&

The amplitude D'„shown schematically in Fig. 1(d), is

the postemission direct target excitation term. In this

amplitude a target nucleon is excited to an isobar which

decays to the final pion and a bound nucleon; the projec-
tile interacts with the virtual meson and produces the
final continuum proton. The expression for the reduced
amplitude D1 may be written as
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2
D', =( —1) p 64&2mlplhESJ5s 1

'
1

X g g ga&1,P12 J1'11 ~,'( 1)
'

ll, . . . , 15L3 18''j, ~

1
2

1

S
. D~(qD ~D)

—
12 L3+14 18

—1 1 2 3 3 4 5 113L3 11415 1151~l I l f l l
000 000 000

8

L S J
XI[Y'(k)e Y''(k')] 'e Y'(q' ] I l

.L, 1 t, .

l4 1 I5

f q f(q) '112'11 " 2dq Co oo ri«ij, (k;r, )j~ (k,'r, )j~ (qr, )
/k, . —k'.

/
D q, 602) 0 I 2 ~ 8

00 I

X Co o o~Co o o rzdr2J'I (q', r2)J1 (qr2)R1 (r2)+1„(r2) (A5)

1

X
2

3

A.

T (P't)k, (A6)

As with the other amplitudes, all coordinate space ra-
dial integrals in Eq. (A5) can be done analytically. The
resulting isospin factor D, is given by

A.'+t, +1/2
DI 4~2( 1) f Ci/21/2 1C1 1 T

As was done in Sec. II, we extract a common factor
1/2 —s

( 1) f( 1/21/2 S'

Zf Zf Z

from every amplitude. When we square these amplitudes,
sum over angular momenta and use the orthogonality of
the Clebsch-Gordan coefficients, the expression in Eq.
(2.29) can be replaced by an equivalent expression for the
reduced amplitudes,

and has the value of —+2/3 for (p,p'n. +). Note that,
using conservation of parity and angular momentum, the
amplitude D1 cannot excite a J=0 final state when the
initial closed-shell nucleus has J =0.

—g Ql Ai B,—Ci+—D, I

s', s,' J.
(B3)

APPENDIX B: POSTKMISSION
AMPLITUDES A I B I C I AND D I

IN PLANK-WAVE APPROXIMATION l~.~ b1 (B4)

We write the reduced amplitude 3, as the product of
three factors,

1. Amplitude A I

q~ =k'+q' —k,
qg=k +q

(B1)

(B2)

In this paper we derived distorted-wave expressions for
the exclusive (N, N'n)process. It .is useful to present
plane-wave expressions for this process, for two reasons.
First, plane-wave results have been obtained previously
by Jain, Londergan, and Walker [14]; in plane-wave ap-
proximation many of the resulting integrals can be done
analytically. In the present calculation the wave func-
tions are decomposed into individual angular momentum
states. If the distorted wave functions for each angular
momentum are replaced by spherical Bessel functions
then an independent check can be made of the plane
wave results. Second, as we expanded all distorted waves
in a plane-wave basis, the plane-wave results provide a
check for our distorted-wave calculations. In this subsec-
tion we derive plane-wave results for the direct projectile
excitation term.

Replacing the scattering wave functions in Eq. (2.24)
by plane waves, the resulting delta functions fix the mo-
menta of the intermediate pion, qz, and delta, qz,

lh .I. 3 p h fnNNf ~NA
C p LC&1&' J

I Jg
+"( )

X Ai"'& L (q„)Yz' (qz )

(B5)

and

A h = —2(ger/3)'/'q'q' [ Y'(q') Y'(q„)] ~

1X'I
2

1

2

S'
~S, 1 ~

2

(B6)

I

where the particle-hole matrix elements A 1"'1 L are

defined in Eq. (2.35). Since we are using harmonic-
oscillator nuclear basis states, we can evaluate analytical-
ly the particle-hole matrix element integral; using the re-
sults of Ref. [30] we obtain

where AI is defined in Eq. (2.25), and where we define
the quantities
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2L
t (qA )= Q(n —1)!(n' —1)!I(n +/ + —,')I ( n'+/z+ ,')(—qA/2po)

X exp
q n —1 n —' 1( 1)m+m'

4p0 p» p m iPl o

1 I [ —,'(/ +/&+2m +2m'+L +3)]
(n —m —1)!(n' m—' —1)! I (m +/ + —,')I (m'+/z+ —', )

'2
1 3XF (L——/ —

/h
—2m —2m ');L + —;

p h 2 2pp
(B7)

where po = 1/b, b is the harmonic-oscillator length parameter chosen to be 1.77 fm [23]. F(a,;p;y) is the confluent hy-
pergeometric function given by

F(a;/3;y)=1+ —y+ +a a(a+1) y
+1 2!

(BS)

For a nonpositive integer a the series appearing in Eq.
(BS) terminates and F(a;P;y) is a polynomial of degree
—a in y. For the calculations in this paper, the series ter-
minates; for the particle-hole states we consider the over-
lap integrals A1"'

& I (qA ) take the following forms:

2. Amplitude 8I

To obtain plane-wave results for the exchange target
excitation amplitude, we again write the reduced ampli-
tude 8, in expression (B3) as the product of three terms,

g11 ( )2 I 1 qA 3/360
10—

po

2

exp
2

4p 2 B,=B, g B„(t„t2,m2)B, &(t„t2,m2),I (B10)

HO~I 1(q„)=—
12 pp

(q )= 1
213 A 3/36O

3

exp

po

2

4po
'2

exp
2

4p 2

(B9)
where B, is defined in Eq. (A2). The expression for
8„(t„t2, m 2 ) is calculated separately for the diFerent
nuclear basis states, due to the complication of the ex-
pression. For the 1d( lp) ' basis state we obtain

fn~~f ~» 1»+'" /»/1, L& exp[ —(k'+ Ik'+q'I')/2pO]

Dt, (qB, COB )

1 1„
I +1 +L+J+J 2lp+ 1 2lh+ 1

1I =0 1~ =0 13, . . . , 6 m 5
I 2

'Z '5XIB(/1 /2 /6)CO 00 CO 00 C J

ls L t,
S t J

L l4 l3

l6 t~ Is

lh L

/ —
/1 /j, /2 /4 .

I [Y» '(k) Y" (k'+q')] e Y (R)]
I] l2 I3

and for the 2s ( lp) ' state

B'""'»' (t t m )la I~ 2~~2

~f ~»tf'„~t, LJ L, +J+J, exp[ —(k'+ Ik'+q'I')/2pO]
pl pp

L

12=015,m5 16

(B1 1)
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X ( —1) 'Iz (12,16)C0'0'0'[Y '(k'+q')I31 Y '(R)] ', '

1 m5 l6 t, ls

'8 3

9uo

ti
I I I

I I
5

13,14 l'
3

Is

I4 (812)

The expressions R and III (1i, 1z, 16 ) are given by

R:—k+k'+q',
11+12+4

I&(li, 12, 16 ) = f dq F&(q)e
o D„(q,cps )

Xi) (qR/po),

(813)

(814)

gauss-Legendre quadrature for the integration points.
The form of the final term, B»(t„t2,m, ), is independent
of the nuclear basis state, so we obtain

Bib(ti, tq, m2)

m1

where i„(x) appearing in Eq. (814) is the modified spheri-
cal Bessel function which is related to the modified Bessel
function I„(x) [32] through

i„(x)=(m/2x)' I„.+» (2x).

In addition, we have

1

X
2 2

s
1

23
2

3
2

S . . (817)

I

q
' [(2/3po)(q +k ) —1]

II'I (12,16)—= dq
1 0 D (q, to&)

XFJ(q)e 'i, , (qR /po ),
6

'2+S
II'I (12,16)=—f dq Fg (q)e

o D (q, coti)

Xi, , (qR jpo) .
6

(815)

(816)

We calculate the above integrals numerically using

3. Amyhtude C1

A11 of the other postemission amplitudes impose spin
and/or isospin selection rules on the final nuclear state
(for reactions on a T =0 closed-shell target); however,
there are no selection rules accompanying the amp1itude
C&. To proceed, we write the reduced amplitude C& as
the product of three terms, in analogy to Eq. (810) for
amplitude B,. The isospin part, C„ is given in Eq. (A4).
Just as for amplitude B&„, we evaluate the term
C„(t„t2,m2) separately for the two basis states
(ld)(lp) ' and (2s)(lp)

(11 }(11~}
C,.' " (t„t„m, )

fvrNNf +Nb i I IhI.J
=8m

m +h+ Ql(l +—')l(l +—')
Po p I h 2

exp[ —(k' +ik —q'i )/2po]

Dt (qc, circ )

11 =012=0 13, . . . , 16 m5

2l +1 2l +1
p h

2l2

, l~
—l2 l112l3 1316t1 I t2 l~

X k Ic(/1~12~16)CO 0 0 Co 0 0 C —J m m

Is

S t2 J l6

I4 l3

t l
'

~ lp
—l, lh

—l~
1 s

l4

l~ l3

X [[Y' '(q' —k)e Y " '(k')] 'e Y '(R')] ', (818)
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and

C'""'p' («m )la i~ 2~~2

L, +3 (
.~f NNf'Nz LZ L, +J+J expI: —(k'+ Ik —q'I')/2po]

Po D.(qc' ~~c)

L 2L +1
X g g g( —1)' ' 'l6

12 015,m5 16

I l5
kL —12CJ l2 lg c

Jz m2m,' S
L ti

L t, l5

X g l3l4Coo'z'Co'0'o'I
I

Y '(k') Y '(R')] ' Y'(q' —k)} ', L —l2 l6 l& .
I I
3' 4 l' l' 12 3

(B19)

where

R' =—4+k' —q',
I

&
+12+4 2 200 /Ic(l„l„l,)—: dq Fc(q)e 't'i (qR '/p', ),

0 D (q, coc)

Ic (l2, 16)

(B20)

(B21)

I

g 2 3p g + q k 1
dq Fc(q)e 'i, , (qR '/po ),

0 D (q, coc) 6

l2+5
oo qIc, (12,l6)=— dq Fc(q)e iI, (qR'/Po) .

0 D (q, c) 6

(B22)

(B23)

As in the case of B these integrals can be evaluated numerically using Gauss-Legendre quadrature The quantity
C»(t, , t2, m2), which is independent of the detailed nuclear structure, is given by

C „(t,t, m )=16nv 2q'g+y( —1)s+s g"2t2C iCi 2 s Yi (~') .
S"m&

1 S S"
2 1 tl

1'
2

3
2

S"
1

S' . .
1

2

(B24)

4. Amplitude D&

In analogy with the previous amplitudes discussed in
this Appendix, we write the reduced amplitude D

&
as the

product of three factors,

l l
D . g4 (

~ )L( 1)ih+~+I+Jz fmNNf vrNh. P h 1 Ihr7T l 000L

XFD(qD )
D (qD, coD )Dt, (qn, coD)

(B27)

D, =D iD „D» I Y (q„) I Y'(qD ) Y'(q') ] }J, (B25)

where q„ is defined in Eq. (Bl), and

and

Dih =2(8'/3) q'qD( —1) +'Y' (q )
z

qD =k —k' . (B26)

The isospin factor for amplitude D&, D&, is given in Eq.
(A6). D „and D» refer to

1X'i
2

1 S
S', 1 ~

2 2

where Ai" I L is defined in Eq (B7).

(B28)
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APPENDIX C: PREEMISSION
AMPLITUDES A2, B2, C2, AND D2

IN PLANE-WAVE APPROXIMATION

1. Amplitude A2

In principle, we should calculate both the preemission
and postemission amplitudes for the (N, N'vr) reaction.
However, as we shall see the preemission amplitudes for
(p,p'm. +) are negligible for energies appropriate to this
calculation. As a result it is sufficient to evaluate the
preemission amplitudes only in plane-wave approxima-
tion, where they can be compared with postemission am-
plitudes listed in Appendix B.

We define the preemission amplitudes analogous to the
postemission amplitudes, breaking each amplitude up
into a produce of isospin, spin, and angular momentum
factors. We use the same form as in Appendix 8 for the
preemission amplitudes A2, B2, C2, and D2. For exam-
ple, we write the first such term as

The corresponding isospin factor is

g I —2C1/21 3/2C3/21 1/2(A'f)
T, t, t, A, 's, Y' A,

' T, 1 ~

with the value of (3/2/3)5T, for the (p,p'm+) reaction.
Also,

(C2)

3 2
= —2(8m. /3)'/'( —1) q'q& I &'(q') &'(q~ )]S.

Z

1 1 S'
1 1 3 ~g]
2 2 2

(C3)

2. Amplitude B2

From the discussion in the previous subsection, we
need only give formulas for the isospin and spin
coeKcient for this term. The isospin factor, B2, is given
by

t, +T, +1/2BI—4+2( 1) i ( 1/21/2 1 Cl 1 T

I~.~b
2 2 2 (Cl)

The term A 2 can be obtained from A 1 of Eq. (85) with
the substitutions q z ~ ~

k —q'
~

and ii3 z ~E E. All-
such preemission terms can be obtained from the analo-
gous postemission amplitudes with the same substitution.

I

31

X '1 (C4)
2

and has the value of 3/2/3 for (p,p'm+ ).
The preemission expression for B,z is given by (the

only difference from the postemission amplitude is a
change in phase)

1 S S"
B, (bt„t m2)2=16m. /32q'Sgg( —1) + +'S" t2COOO'C' ',Y' (q') '

1

m S" Z 2 2 2
1

1 S S"
1

1

2

3
2

S" t 2

2
S' . , (C5)

1

with

q~ =q', co~ =m& —E (C6)

3. Amplitude C2

The isospin factor for the preemission amplitude Cz
reduces to

qP= /k —q'/,

=E —E
(C9)

CI 2+6( 1 )
z QC3/2 T 1/2 C3/21 1/2

2 —t T —t f

4. Amplitude D2

The isospin factor for the preemission amplitude D2 is

1

X ', , ~ '(P'f)~, ,
. 2 2

and has the value of 3/2/3 for (p,p'~ ). The spin factor
C 1b has the form

A,
' —t, +1/2

DI 43/2( 1) I Cl/21/2 lCl 1 T
(C7)

(C10)

C,b(t„t2, m2)

( 1)S+lt2( 111( 1 2 S y ( )
Z

ml
3/2

1 1 S
q'qDF', (qD) .

1 1 3 5S. ,
Z 2 2 2

8m'
D1b = —2

3
(Cl 1)

S' - 1 1 t1
2

1 1

2 23
2 2

2 2
3 1

(Cg) withX '
1

2

qD q
(C12)

1

X '

1 1 y '(P't)2.
2

and has the value of —3/2/3 for (p,p'~+). The preemis-
sion expression for D, b is

with ~D mX
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