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Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective
motion, the dynamic response and correlation functions are introduced within the general theory of nu-
clear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dy-
namics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing
the complex structure of the TDHF manifold. A systematic numerical method for calculating the dy-
namic response and correlation functions is proposed. By performing numerical calculation for a simple
model Hamiltonian, it is pointed out that the dynamic response function gives important information in
understanding the large-amplitude dissipative collective motion which is described by an ensemble of

trajectories within the TDHF manifold.

PACS number(s): 21.60.Ev, 24.10.Cn, 24.60.Lz

I. INTRODUCTION

The large-amplitude nuclear collective motion, such as
the low-energy fission process and deep inelastic heavy-
ion collision, have been quite successfully described phe-
nomenologically with Fokker-Planck or Langevin type
equations [1-4]. In these descriptions, one usually intro-
duces some assumption; the reaction process is assumed
to be described by a few shape parameters put in by hand,
and some kind of statistical hypothesis like an existence
of thermal bath, random matrix, etc., are employed.

The basic theoretical problems underlying this kind of
research are twofold. How does the self-sustained and
self-organizing system, the nuclei, determine its evolution
path? And, why does the nucleus governed by the deter-
ministic equation exhibit some probabilistic and stochas-
tic aspects? Since we are interested in the dissipative
large-amplitude collective motion whose characteristic
energy per nucleon is much smaller than the Fermi ener-
gy, the above basic problems ought to be studied within
the time-dependent Hartree-Fock (TDHF) theory. Con-
cerning the first problem, it has been studied under the
adiabatic assumption [5] how to dynamically extract the
collective path described by a few relevant degrees of
freedom. Recently, a general method capable of extract-
ing the collective submanifold out of the TDHF mani-
fold, and capable of disclosing an exceedingly rich struc-
ture of the TDHF manifold far from the stable mean field
has been developed [6] without introducing any adiabatic
assumption. Based on recent enormous progress in the
general theory of nonlinear dynamical system [7], the first
basic problem is achieved by defining the most natural
coordinate system for a given collective trajectory whose
characteristic property in the small-amplitude region
near a certain stable mean field is only known in advance.
According to the self-consistent collective coordinate
(SCC) method [8], it is always possible to introduce an
optimal coordinate system called the dynamical canoni-
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cal coordinate (DCC) system for a given trajectory, where
the whole system is optimally divided into the relevant
(collective) and irrelevant (intrinsic) degrees of freedom.
This separation in the degrees of freedom is very impor-
tant not only for introducing some coarse graining pro-
cedure [9] to the irrelevant degrees of freedom, but also
for exploring the nonlinear dynamics between the collec-
tive and single-particle modes of motion.

To investigate the second basic problem, one has to
study the dynamical evolution displayed by an ensemble
of TDHF trajectories. Here it should be noticed that an
understanding on the time evolution of an ensemble of
trajectories is not necessarily obtained from the topologi-
cal structure of the TDHF manifold, which is studied in
terms of many individual trajectories with different initial
conditions. Namely, an appearance of the chaotic sea in
the TDHF manifold does not always justify an introduc-
tion of some statistical treatments. Aiming at clarifying
what is happening during the time evolution of an ensem-
ble of trajectories, especially at clarifying the validity of
statistical ansatz employed in the conventional nuclear
transport theories, a general theory of nuclear coupled-
master equation for the relevant and irrelevant partial
distribution functions was proposed [10], by exploiting
the full knowledge obtained by the first basic problem.
By performing the numerical calculations of the
coupled-master equations for a simple soluble model [11],
it was pointed out that the dynamical fluctuation of the
coupling between relevant and irrelevant degrees of free-
dom plays an important role for the diffusive property of
the distribution function, and for a dissipation of the
large-amplitude collective motion. At this stage, there
arises a more fundamental question: How do the relevant
and irrelevant subsystems interact and respond with each
other through the dynamical fluctuations?

In order to carefully examine the above question, in the
present paper, a new approach of using a dynamic
response function is proposed. The linear response func-
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tion describes various behaviors of the system which
slightly deviates from a state of equilibrium under the
influence of external force [12], and has been applied to
the nuclear dissipative motion [9,13]. However, it is less
known (even not known) how to define and evaluate the
response function in a region far from the state of equilib-
rium and how it behaves. Starting with the general
coupled-master equation defined in the DCC system, we
introduce an instantaneous dynamical response and
correlation functions without introducing any statistical
hypothesis. In Sec. II, the general definition of dynamic
response and correlation functions is presented. In Sec.
III, a systematic method for calculating the dynamical
response function is proposed. In Sec. IV, a feasibility of
the theory is shown by applymg it to a simple soluble
model Hamiltonian.

II. DEFINITION OF DYNAMIC RESPONSE FUNCTION

A. Coupled-master equation

Aiming at introducing various notations used in this
paper, we briefly recapitulate the theory of nuclear
coupled-master equation [10]. We start with the TDHF
theory, because we are interested in the low-energy dissi-
pative large-amplitude collective motion. The basic equa-
tion of the TDHF theory is known to be formally
equivalent to the classical canonical equations of motion
with K degrees of freedom [14],

.'_aH .'*__aH.
i Tacr 9T e

j=1,...,K

, @0

=1 .

where K stands for a total number of particle-hole pairs.
With the aid of distribution function p(t), a time evolu-
tion of ensemble of TDHF trajectories is described by the
Liouville equation

plt)y=—ilp(t), (2.2)
where £ denotes the TDHF Liouville operator defined by
0H 9 0H 0
=_ 2.
! 2 9C; aC} ac; aC; @3

‘In order to understand the microscopic dynamics
displayed by the distribution function p(¢) in Eq. (2.2), it
is decisive to introduce the most natural coordinate sys-
tem for a given collective motion. With the aid of the
SCC method, it is possible to introduce the DCC system
where the whole system is divided into the small number
of optimal relevant (7,,75;a=1,...,L <<K) and the
large number of irrelevant (£,,&%,a=1,...,K—L) de-
grees of freedom for a given collective motion. A de-
tailed discussion on choosing the most natural coordinate
system is found elsewhere [6,8]. The DCC system is
defined in such a dynamical way that the collective sub-
manifold described by the relevant variables (7,,7})
alone satisfies a stationary condition with respect to small
variations toward irrelevant variables. In the DCC sys-
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tem, the Liouville equation is expressed as
pn,m*;6,8%:1)=—iLp(n,m*;§,6%1)
={H,p(n,m*;§,E":t)}pp , (2.4)

where the symbol { 4, B }pg stands for a Poisson bracket

_ .« (84 3B 34 3B
[ArB}PB" lg ana a"]: an: ana
d0A OB d0A4A OB

o4 62 o8 2% (2.5)
TI2 13g, aer  oer 06,

The Hamiltonian in the DCC system is divided into three
parts; H n depends on the relevant, H g on the irrelevant,
and H,,, on both the relevant and irrelevant variables,
ie.,

H=H,+H,+H (2.6)

coupl *

The dynamical relation between the relevant and ir-
relevant degrees of freedom during the time evolution of
an ensemble of trajectories is studied by introducing a
pair of reduced distribution functions

po(msn* ) =Trep(n,m*;8,6%:)
pel§, 6 )= Trpln,n™;6,8%:1)

when the total distribution function is properly normal-
ized,

2.7

Trp(n,n*;&,6%:1)=1, (2.8)
with
L
Tr=Tr,Tr;, Tr,= [] f fdnadn: ,
o (2.9)

Tr,= i[;[f [ [ae.ae: .

Using the partial distribution functions in Eq. (2.7), the
coupling term H ., in Eq. (2.6) is further divided into
three parts, the average term, fluctuation term, and con-
stant term as

H oup = Hoye (8)+H p (1) — E(2) ,
H,oo()=H, (1) +H1) ,

H, ()=TreH ouppelt) » He(£)=Tr H oupp, 1)
H\(1)=H o5 — Hoyer (1) + Eo(2)
Eo(6)=TrH ;5P 1)pe(2)

(2.10)

By exploiting the time-dependent projection operator
P()=p,()Tr, +pt)Tre—p,(t)p()Tr, Tre ,  (2.11)

which was first proposed in Ref. [15] and was used in Ref.
[16], one may introduce separable and correlated parts of

the distribution functions as
P(t)p(t) , p)={1—P()}p(2) ,

(2.12)

s()=p,(tp )=
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respectively. After integrating by parts, the Liouville
equation (2.2) is reduced to the master equation for p,(¢)
given by

ps()=—iP(t\Lp,(t)— [ 'dt'P(1)Lg(1,t")
[¢]
X {(1—P(t')}Lp,(t')—iP(1)Lg(t,t0)p.(to) »
(2.13)

where g(t,t’) represents a propagator,
. t
g(t,t')=T exp —zft [1—P(r)]1LdT !, (2.14)
0

I
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with T being the Dyson time-ordering operator. As an
initial condition at ¢=t¢,, one may choose a stationary
bundle of trajectories satisfying

p(to)zp.,](to)[)g(to) , pc(to)=0 , (2.15)

which states that there is no correlation between the
relevant and irrelevant degrees of freedom at the initial
time ty. Here it should be noticed that the initial choice
in Eq. (2.15) is only possible under our proper definition
of the DCC system [11].

From Eq. (2.13), one gets a coupled-master equation
for the partial relevant and partial irrelevant distribution
functions given by

Po()=—i[L,+L,(1)]p,(t)— ftthTré.,CA(t)g(t,T).,CA(T)pTI(T)pg(T)—iTrgP(t).Lg(t,tI pAtr)
1

pelt)=—i[ L+ L1)]pt)— ft;dfrTr,,LA(t)g(t,T)LA(T)pn(T)pg(T)—iTr,lP(t)Lg(t,tI oAt

where t; takes any value between the initial time ¢, and
the present time ¢. If one chooses ¢;=t, and applies the
initial condition in Eq. (2.15), the last term in the right-
hand side (rhs) of Eq. (2.16) disappears. The Liouville
operators L,, L, L,(t), Lt), and .L,(¢) appearing in
Eq. (2.16) are defined by using the quantities in Egs. (2.6)
and (2.10) as

.,L,]* =i{Hn,*}PB s ,Lg*:i{Hg,*}PB s

L)« =i{H, (1), *}pg, L{t)* =i{H(t), *}pp,

“LA(t)*=i{HA(t) H *}PB ’ Lcoupl(t)*zi{Hcoupl’*]PB .
(2.17)

In the rhs of the first equation in Eq. (2.16), the first term
expresses the mean-field effects, i.e., the effects coming
from H, as well as the average effects of the coupling
H,(¢). The third term depends on a correlated part of
the distribution function p.(¢;) at a separation time ¢;
when the total system is divided into the relevant and ir-
relevant subsystems described by p,(z;) and pg(t;). On
the other hand, the second term represents the dynamic
fluctuation effects H, (¢) which start to act at ¢;. The cor-
responding terms in the second equation of Eq. (2.16) are
also understood in a similar way.

B. Dynamic Response and Correlation Functions

The coupled-master equation (2.16) is still equivalent to
the original Liouville equation (2.2). To discuss whether
the total system is reasonably divided into two subsys-
tems, and whether some coarse graining procedure is
safely introduced or not, one has to start with asking
what is happening in the ensemble of trajectories during
its time evolution process. To this aim, we retain the
third term in the rhs of Eq. (2.16) with explicit ¢, depen-
dence, and will exploit it in studying dynamical change of
the distribution function. As is clearly seen from Eq.
(2.16), the instantaneous dynamical property of partial

(2.16)

r
distribution functions at the separation time ¢; ought to
be studied by evaluating an influence of the fluctuation
term just after ¢;.

Let us introduce the mean-field propagator

gme(t,t') =T exp

—ift’th[l—P(T)]_me(T)} ,

(2.18)
Lofdt) =L+ LAL () +L(2) .
The propagator in Eq. (2.14) is then expressed as
gt,t")=g ¢(t,t")+O(L,(2)) . (2.19)

By further introducing the following propagator

Gult, 1) =Texp | —i [ drL (1) | =G, (t,1)G(1,1")
y
(2.20)
with
1y — ] t
G,(t,t")=T exp —zftldr[.Ln-FL,]('r)] ,
(2.21)

G (t,t")=T exp

~iftde[L§+L§(r)]’ :

one may prove that there holds a relation
8me(t,8" ) LA )p, (1" )p(t') =G (2,8 )LA )p, (1" )pe(2t’) .
(2.22)

Since the propagators G ,(¢,2') and G,(z,t’) in Eq. (2.21)
satisfy

G, (t,,1,)=G,(1,,t)G,(t,t,) ,

(2.23)
Gg(ta,tb)=G§(ta,t)G§(t,tb) ,
and since
Trg[ig—h&g(t)]:o , Trn[,LT,+.,Ln(t)]=O , (2.24)
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Eq. (2.16) is then rewritten as
po()=—i[L,+ L, ()]p,(t)—iTrP(t)Lg(t,t;)p.(2])
~Tr [ t:dT[Gg(T,t),Lcoupl]

X[G,(t,7)LA(T)p,(TIpeT)] (2.25a)
pelt)=—i[ LA+ L 1)]pt)—iTr, P().Lg(t,t)p (t])
~Tr, [ t;dT[G,,(T,t)mel]

X[Gelt, LTI, (T)peT)]
(tZt21t,),

(2.25b)

where the fluctuation effects are retained up to the second
order in L (¢).

Without any loss of generality, H,,, in the DCC sys-
tem is expressed as

Hpp= 3 A'(m,m*)BYE,E*) , (2.26)
!

where A'(m,m*) and BY&,£*) are functions of relevant
J

po()=—ilL,+ L, (1)]p,(t)—iTrP(t)Lg(t,t;)p (1)
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and irrelevant coordinates, respectively. The fluctuation
term is then given as

Hy(t)=3 [A'n,n*)— (4", 1[BU&E)—(B,],
1

(2.27)
where
(4", =Tr, A (n,m*)p, (1), (B'), =TrBEE* )pglt) .
(2.28)

Using Eq. (2.28), the average term in Eq. (2.10) is ex-
pressed as
H, ()= ; Al(m,n*)(B"),,

p . . (2.29)

With the aid of Egs. (2.26)-(2.29), the coupled master
equation (2.25a) is finally expressed as

t—t
— fo A1 3 X (1,6 =TV AL[G (8,6 =7) (A= A™),_)p,(t—T)]}pp
Im

t—t
—fo Id‘rz ¢1m(l,t—7'){Al,[Gn(t,t—T){ Am,pn(l‘_T)}PB]]pB ’
Im

(2.30)

where the dynamic response and correlation functions are defined by

X1m(t,t—T)ETr§[G§(t—*r,t)Bl,B”'}pog(t——T) ,

Ui (1,8 —T)=Tre[Ge(t —7,8)B'(B™—(B™),_ plt — 1) .

In the same way as Eq. (2.30), Eq. (2.25b) is expressed as
Pelt)=—i[ L+ L) ]pt)—iTr, P(2)Lg(t,t;)p (2))

(2.31a)
(2.31b)

t—t
— fO IdTEle(t,t“T){BI,[GE(I,I—T)(B'""'(Bm>t_.,-)P§(t—T)]}pB
Im

t—t
-J, "dr W, (1,6 —7)(BL[Gglt,t =) (B, plt =)} ps ]} b »
Im

where

X (2,8 —T)=Tr, (G, (t—7,1)A', A"} pgp, (1 —7) ,
(2.33a)

\Iflm(t,t—T)ETrn[G.,,(t—T,t)A1]

X(A™—=(A™),_ Jp,(t—7) . (2.33b)

Here, it should be noticed that the usual response func-
tion is defined for the system which is not far from the
state of equilibrium. In this case, the response function
tells us how the system slightly deviated from the state of
equilibrium evolves, under an influence of external force.
Thus, the response function depends on the time-
independent property of the system.

(2.32)

r

On the other hand, the dynamic response functions in
Egs. (2.31) and (2.33) have instantaneous information on
the relevant and irrelevant subsystems at the separation
time ¢;, whose time evolution has been governed by the
original Liouville equation (2.2) up to ;. Namely, they
describe how the subsystems respond to the “‘external
force” H,(t) which starts to act at ¢;. Since there
remains the second term in the rhs of Egs. (2.30) and
(2.32), and since the higher-order fluctuation effects have
been neglected in deriving the dynamic response and
correlation functions, the dynamic response functions
may have a sense in a short period just after ¢;. However,
they still have a lot of information on the subsystems, be-
cause the remaining effects are evaluated by the ¢; depen-
dence of the dynamic response and correlation functions.
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Consequently, important information on the instantane-
ous dynamical structure of distribution function, on an
effect coming from complex topological structure of the
TDHF manifold, and on the applicability of separating
the total system into the relevant and irrelevant subsys-
tems ought to be studied through the ¢;-dependent
dynamical response and correlation functions.

III. HOW TO EVALUATE THE
DYNAMIC RESPONSE FUNCTION

Let us rewrite the dynamic response function in Eq.
(2.31) as follows:

Xim (8,6 —7)=Trg{Fe(t,t —7)B,B™}pppt—7),  (3.1)
Fett,t)=Texp [i [ drlL+Lyn)] . (3.2)
By introducing ¢; =t — 7, one obtains

Xim (11 + 7,8 =Trg{Fe(t; +7,t))B, B} pgpelt;) . (3.3)

Here, t; takes any value between the initial time ¢, and
the present time ¢, and 7 runs from O to t—¢;. The ¢;
dependence of x,,(t; +1t,t;) strongly reflects the dynami-
cal evolution process of p.(¢) which is not considered in
the usual linear response function. In order to evaluate
the dynamic response function in the DCC system, one
has to calculate

BL=BL(E,EX)=Fy(t;+7,1;)BUEEY) , (3.4)

where the phase space point denoted by
(&,=&(t;+71),E*=E*(t;+7)) is the image of the phase
space point (£,£*) at ¢;. Thus the Poisson bracket in Eq.
(3.3) is expressed as
3B gpm 3B} 3pn
%, 0g% &L o |
It should be noticed that the quantities £,,£%, and B™ are
defined at time ¢;, whereas B is defined at z;+7. In or-
der to evaluate the Poisson bracket of two quantities B/
and B™ with different time arguments, one has to consid-
er the following term:
3BL dBL(E,E%) Ayt + 1)
9, G | 9pletT) o9&,
OBL(E,EX) AEH(t,+7)
aé‘E( tI + 7') aga

{(BLLBpp=—i 3, (3.5)

a

(3.6)

Since &£,(t; +7) and &}(¢; +7) are generated by the propa-
gator F(tz;+7,¢;) in Eq. (3.2), they are described by the
Hamilton’s equations of motion,

. O[H +H(1)]
=

which is organized by the mean-field Hamiltonian
Hg +H(t). From Eq. (3.7), one has

, (3.7)

tl+T-
Eoty )= t)+ [ Euedr’ (3.8)
I

The time integral in Eq. (3.8) is evaluated numerically by
introducing a discretized small time step At. The sim-
plest way to evaluate Eq. (3.8) is given by the following
formula:

r
N+1~’

N
Efty+T)=E 1)+ 3 E(t;+nAt)At , At=

n=0

(3.9

which is valid in the first order of Az. If the above ex-
pression does not give a sufficient accuracy, one may use
the first-order result as preevaluated value for the formu-
la which is valid in (At)%. The expression in Eq. (3.9) is
calculated iteratively. The nth step equation is given by

EftyHnAt)=E,(t;+(n—1)A1)+E 1, +(n—1)At)Ar ,
(3.10)

where the functional form of £, (¢;+(n—1)At) with
respect to £,(¢;) and &%(¢;) is supposed to be known by
the preceding (n — 1)st step equation, whereas the second
term in the rhs of Eq. (3.10) is also expressed as the func-
tions of the quantities £,(¢;) and £%(¢;) through

Eft;+(n—1)At)

O[Hg+H(1)]
=] .
& t=t;+(n— DAt E=E(1;+(n—1At)

(3.11)

In this way, the quantities £,(¢;+7) are expressed as
functions of the quantities at t=¢;. By using the resul-
tant functional forms, one calculates the rhs of Eq. (3.6)
so as to get an explicit expression of the Poisson bracket
of two quantities with different time arguments.

The dynamic response function in Eq. (3.3) is calculat-
ed numerically by using the pseudoparticle method where
the distribution function is simulated by a set of represen-
tative pseudoparticles as

1
N,

N
pl)=—1 3 B(E—E,(1)B(E* —EX(1)
n=1

X&8(n—mn,(£))8(n*—n¥ () . (3.12)

In Eq. (3.12), the coordinates 7,(t), n%(¢), &,(¢), and

E¥(t) for the nth particle are determined by the
Hamilton’s equation of motion given by

.. _OH .. OH
m= a'r]* ) lg:@ . (3.13)

The resultant distribution function p(z) in Eq. (3.12)
simulates the solution of the original Liouville equation
(2.2). In order to calculate the dynamical response func-
tion Y, (¢; +¢,t;) for a specific time ¢;, one has to calcu-
late p(¢) up to a time t =¢;.
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IV. DYNAMIC RESPONSE FUNCTION FOR A
SIMPLE SOLUBLE MODEL

A. Model Hamiltonian

The adopted model is a modification of the SU(3) Ham-
iltonian introduced by Li, Klein, and Dreizler [17], whose
property in the TDHF manifold has been well studied.
The model Hamiltonian is given by

2
A= gK;+1 S ViK,Ko+H.c.). @.1)
i=0 i=1,2
There are three levels with energies €, <¢g,; <¢, and each
level has N-fold degeneracy. The fermion pair operators
K;; are defined as
s cf
Ki= 3 CnCim » (4.2)
m=1
where C,-’:,, and C;, represent the fermion creation and
annihilation operators, respectively. In this paper, we

consider a system with N particles, whose lowest energy
state |@,) in a case with ;=0 is given by

N
ldo>= [T Cin.10) (C,pl0)=0) . 4.3)
m=1
The TDHF equation is expressed as
8(p(t)|{id/3t—H}|$(2))=0, (4.4)

where |¢(¢)) is the general time-dependent single Slater
determinant given by

lp())=exp |i 3 (f;Kjo+H.c.)|ldo) .
j=1,2

(4.5)

With the aid of the canonical variable representation of
the TDHF manifold [14], the TDHF Eq. (4.4) is known
to be expressed by the canonical equation of motion with
two degrees of freedom which is organized by the follow-
ing Hamiltonian:

H(q,,p13q2,p:)=S ¢ H|$p()) =H,+H,+H_,,, ,

H;= %(Ei _EO)(qi2+pi2)+ % Vi(N—1 )(qiz—Piz)

N—tU Vi e
N 4(q,- pi),i=12,
Hcoupl= 2 AiBia
i=1,2
172
V.(1—N) .
il Iy g7 +(—1)pi],
V.(1—N) 172 i .
T [g2—(=1)p3]. (4.6)

Regarding (g,,p;) as the relevant degree of freedom and
(g,,p,) as the irrelevant degrees of freedom, one notices
that the coordinate system (q;,p;;9,,P,) corresponds to
the DCC system, because there exists a stationary condi-
tion called the maximal-decoupling condition [8],
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OH ~SH —0; %)
99, |p,=49,=0 9P, |p,=g,=0

i.e., there are no coupling terms which have linear depen-
dence on irrelevant degrees of freedom. In other words,
there exists a two-dimensional stationary collective sub-
manifold 3%{q,,p,;} which is embedded in the four-
dimensional TDHF manifold M*:{q,,p ;q,,p,}. With
the aid of the maximal-decoupling condition (4.7), the
trajectory starting from any point on 3? is described by

= sy P1=— , (4.8)
9p, P 9q,

q;

which is organized by H, alone and is specified by the en-
ergy E ), of the trajectory.

Following Eq. (2.10), the coupling term is divided into
three parts,

Hcoupl=Haver(t)+HA(t)_E0(t) ’
H,o()=H, () + H(1) ,
H (= 3 AXB"),, H(n= 3 (4B,

i=1,2 i=1,2
Hy(t)=3 (4'—=(A4"),(B'—(B"),),
i=1,2
Eo(t)=3 (4, (B",.
i=1,2
. . via=m |,
(A’),ETrlA'pl(t):- 4N [q1+(—1)P1] s
172
. ) V:(1—N) )
(B'),=Tr,Bp,(t)= —’—4—17]—— [ga—(—1)p3].
4.9)
In Eq. (4.9), we use the notation
N, N
_ 1 2 _ 1 3
1= X din>Pi=% 2 Pin>
NP n=1 NP i=n
N N (4.10)
B=— 3 a3 Pi= 3 p3
Np n=1 " NP n=1 "

where q, ,, P1,n> 92,,> and p, , denote a phase space point
of the nth pseudoparticle described by Eq. (3.13) at time
t.

The response function in Eq. (3.3) is expressed as

3B: B/ 9B} 3B/
dq, dp, 9p, 9q,

Xij(ty+7,6)=Tr, palty) .

4.11)

Here, B’ are functions of g,(¢;+7), p,(t;+7), g,(¢; +7),
and p,(t;+7) at time ¢, +7, whereas B’ are functions of
q:(t;), pi(t)), g,(2;), and p,(t,) at the separation time #;
when the fluctuation term H,(z) is switched on. Since
the distribution function p,(¢;) in Eq. (4.11) is simulated
by a set of many representative pseudoparticles, it is ex-
pressed as
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N
P

A= 3 8(py—pyu(1)8(a,—a,,(1) . 4.12)
Np n=1

Using Eq. (4.12), the dynamic response function in Eq.
(4.11) may be written as

N, i P
1 & |9B:(n) 3Bi(n)
Xiiltr+r,t))=— —_
i ! Np n2=’1 aqz,n aPz,n
dBi(n) aBi
~ 2" 3Bln) , (4.13)
a1’2,n aql,n

where Bi(n) is the functions of coordinates g, ,(t;+7)
and p, ,(t;+7), whereas B‘(n) depends on ¢, ,(¢;) and
P2,n(2p) of the nth pseudoparticle.

B. Numerical result

In order to study how the system evolves in time, one
has to introduce a specific form for the initial distribution
function in Eq. (2.15). Since we are interested in how the
stationary bundle of trajectories accumulating around
32{q,p;} at the initial time ¢, evolves in time, we start
with briefly summarizing a specific property of
>2%{q,,p1}. By using the parameters with £,=0, g,=1,
£,=2, N=10, V;=—1/15, and V,=—1/3, it has been
clarified that the collective submanifold ¥2:{q,,p,] is di-
vided into three characteristic regions [18] by means of
collective trajectories described by Eq. (4.8). The numeri-
cal calculation has shown that the trajectories with
E_ ;=38, 5, and 1 are traveling in the collective, dissipa-
tive, and stochastic regions of 3 2.

The initial distribution function p(¢,) is chosen to be
the stationary bundle,

P(tg)=p,(15)pelty) , 4.14)

where an initial form of the relevant partial distribution
function is given by

pn(to):an(Hl(ql,pl)_Econ) . (4.15)

Here 8 represents a delta function and E_, denotes a
given collective energy carried by the relevant degrees of
freedom at the initial time #,. N, is a normalization con-
stant determined by the condition (2.8). Since there holds
a relation

Pplt=ty)=—iL,p, (t=1,)=0, (4.16)

which is justified by Eq. (4.7), the initial ensemble of tra-
jectories described by Egs. (4.14) and (4.15) represents a
stationary bundle sticking around 32 An initial form of
the irrelevant partial distribution function p(t =¢,) is as-
sumed to be a uniform distribution in a region
(—0.5<¢,<0.5, —0.5<p, <0.5).

In evaluating the dynamic response function, a time
step in Eq. (3.9) is taken to be At =7 /400, where 7
denotes a characteristic periodic time of the trajectory
described by Eq. (4.8). We also checked the accuracy of
Eq. (3.9) by comparing the result with those obtained by
using the formula which is valid in (A¢)2. It turned out
that the first-order approximation in At already gives a

sufficient accuracy. In calculating the Poisson bracket of
two quantities with different time arguments, we made
the following approximation:

OH (1)

98, |t=t,+nAnE=gt=1t,+nAr)

(A, o PEUBET)

of, E=&t=1,+nAr)
dB%&,E*)
~S (40),_, IBUEET) . @1
g ( )1—31 aé‘a E=E(t=1,+nA1)

The dynamic response function y;;(¢; +7,¢;) with i=1
and j =2 is calculated numerically. Here, i and j denote
the superscripts B’ and B/ appearing in Eq. (4.6). In Fig.
1, the characteristic behavior of the dynamic response
function for the collective case with E ;=8 is shown.
Figures 1(a)-1(f) illustrate how the dynamic response
function depends on the separation time ¢;. From Figs.
1(a)-1(c), a slight growth of the dynamic response func-
tion with increasing ¢; is observed, which may be caused
by the initial sampling. Namely, the structure of the bun-
dle changes in time at the initial period. After a short
time, as is seen from Figs. 1(d) and 1(f), the dynamic
response function shows the almost same shape irrespec-
tive of the time t;, illustrating an establishment of sta-
tionary bundle. Namely, the irrelevant subsystem is not
strongly affected by the fluctuation term, after the ir-
relevant distribution function reaches to the stationary
structure. As was shown in Ref. 11, the mean field effects
L ¢ play a dominant role, whereas the fluctuation term
L (¢) has minor importance in a case with E_;=8.

0.04 t=0.0 0.04 =40

0.02 0.02

0.00 /\V/\ 0.00 V/\\/[\V/\\//\\/
-0.02 —-0.02
-0.04 @ —0.04 @

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
t(Teon) t (Tean)
0.04 =04 0.04 = 6.0
0.02 0.02
N A\ A A JAWANRVANWAN

0.00 7 N 0.00\/ V \/ v

-0.02 -0.02 ©
— (b) e
Riad IR Bt od S
0.0 0.5 1.0 15 0.0 0.5 1.0 15
t (Tea) t (Teon)
0.04 0.04
=20 =120
0.02 0.02 A A
R VAV AV VAN BT VAVEVENS
-0.02 -0.02 ©
-0.04 © -0.04
00 05 1.0 15 0.0 05 10 1.5
t(Teon) t(Teom)

FIG. 1. Dynamic response function y;-; ;=,(t;+¢,¢;) with
various separation time ¢; in the regular case with E_;; =8. The
time ¢ is measured in units of 7.
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Therefore one may draw the conclusion that the dynami-
cal fluctuation may be neglected when the dynamic
response function does not depend on the separation time
1.

Figure 2 shows the dynamical response function in the
dissipative case with E_;=5. Comparing Fig. 2 with
Fig. 1, it is recognized that the magnitude of response is

4 4
2 t;=0.0 2 /\ y=04
0 /\Vl\v/\ o VAN A I
-2 -2
4 @ @
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
t(Teon) t(Teon)
; t=0.2 : 4=05
) 4[\/\\/ \//\Wf\
-2 -2
—4 (b) —4 ()
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
t(Teom) t(Teon)
: =03 : 4=06
0 V4 0 /\V V/\
-2 -2
—4 © —4 ®
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
t(Teon) t (Teon)

X =23 ,
0 koA NN ok—1-
2 -2 .
-4 (® -4 v
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
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4 =24 ¢ y=27
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[ [ e T ¥ i S
-2 -2
- —4 m
0o V os 1.0 1.5 0.0 0.5 1.0 1.5
H(Teon) t(Teon)

FIG. 2. Dynamic response function x;-; ;-,(¢;+¢,t;) with
various separation time #; in the dissipative case with E ., =5.
The structure of response function at #; =(2.5-2.6)7,,; has al-
most the same shape as in the case with ¢, =0.47_,;. The time ¢
is measured in units of 7.
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quite large, suggesting an important effect of H,(¢) in the
dissipative case. As is clearly seen from Fig. 2, the
characteristic behavior of the dynamic response function
strongly depends on ?;. In the case of t; <0.47,, the
response of irrelevant subsystem to the fluctuation term
becomes large as ¢; increases. At time f;=~0.47_, a
large response appears. After T;=0.47.,, the response
becomes smaller as the separation time ¢; increases. The
structure of the response function returns back at
ty=1.17.y, 2.07op, (2.5-2.6)7., and so on to the almost
same shape as in the case with ¢; =0.47.;, periodically.
In Fig. 2, only a case with ¢;~(2.5-2.6)7_,; is shown.
From the above analysis, one may easily see that the dy-
namic response function for the dissipative region exhib-
its a clear structure depending on ¢;.

In order to understand the specific feature of the
dynamical response function in Figs. 1 and 2, and to un-
derstand what happens in the time evolution of the en-
semble of trajectories, the time-dependent structure of
variance {p2—{p,)?), evaluated by using the original
distribution function p(¢) organized by Eq. (2.2) are illus-
trated in Fig. 3 for both the collective and dissipative
cases. As is recognized from Eq. (4.9), this quantity is
directly related with the fluctuation term H ,(¢). Its mag-
nitude is very small in the collective case with E_; =8,
which is consistent with the negligibly small effect of the
fluctuation term shown in Fig. 1. On the other hand, it
oscillates and takes a very large value in the dissipative
case; its magnitude becomes large continuously and
seems to reach some saturated value after a long period.
The oscillation with nearly constant periodicity (it takes
maximum values at ¢=O0.47.y, 1.17.y 2.07.,;, and
2.67,,, etc.) shows characteristic feature of p&(t), indi-
cating a new microscopic dissipation mechanism of a
finite many-fermion system. Reflecting this dissipation
mechanism which is embraced in the ¢ dependence of
p(1), the dynamic response function also shows a periodic

10
1
g 8-1§
! i
£ et}
m o
z
< 0.001
&~
<
>
0.000! E
1E_005 i FPTY PETTE TS FTRTY N 1 1 1 1. 1
e 2 4 6 8 18 12 14 16 18 20
TIME (r )
coll

FIG. 3. Time dependence of variance {p3—(p,)?),. The
periodicity of the variance is clearly seen. It reflects on a
periodic property of AH(z) as well as that of the dynamic
response function. The time ¢ is measured in units of 7.
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structure depending on ¢;. Here it is worthwhile to men-
tion that a characteristic structure of dynamic response
function periodically observed at t;=0.47.,, 1.17.y,
2.07, and (2.5-2.6)7,;, looks like that of the usual
linear response function. From the above numerical re-
sult, it is clearly stated that the energy dissipation of col-
lective motion in a finite system such as the nucleus is a
periodic process characterized by both the short oscillat-
ing period and long saturating period.

V. DISCUSSION

On the basis of the general coupled-master equation in
the DCC representation, the dynamic response and corre-
lation functions are introduced, and a systematic numeri-
cal method for calculating these quantities is proposed.
In this paper, we mainly focus our attention on analyzing
what is happening in the time evolution of the ensemble
of trajectories p(t) by means of instantaneous behavior of
the dynamic response function. With the aid of a simple
soluble model Hamiltonian, it is illustrated that the dy-
namic response function gives important information in
understanding the dynamical evolution process of p(t) or-
ganized by Eq. (2.2), and important information on the
ensemble of trajectories whether it spreads out over some
region in the TDHF manifold and reaches to some time-
independent object, or it still contains some time-
dependent structure. Indeed, we have already shown
some interesting and even surprising features, such as the
period structure in the dynamic response function for the
dissipative collective motion.

Recently, a new systematic method [6] has been pro-

posed capable of exploring an exceedingly rich structure
of the TDHF manifold, i.e., an infinite series of island
structure representing a regular motion and many sto-
chastic sea in between various islands. These complex
structures of the TDHF manifold certainly reflect the
complex nonlinear relation between the collective and
single-particle modes of motion, which has been dis-
cussed in terms of a dynamical role of the adiabatic vs di-
abatic single-particle states, that of the adiabatic vs non-
adiabatic collective motion, the level slippage dynamics,
the level crossing, and pseudo-level-crossing dynamics,
etc. [19-21]. It seems quite promising that the dynamic
response function may give us important information on
the microscopic origin of the dissipation mechanism, and
on the role of the single-particle dynamics, e.g., the level-
crossing dynamics of the TDHF manifold where the en-
semble of TDHF trajectories exists. In order to explore
these interesting subjects, the present calculations are too
simple and too coarse. A more detailed analysis is under-
taken by using more fine-tuned initial conditions for en-
semble of trajectories, by calculating the Fourier decom-
position of the dynamic response function and the
higher-order moments of the distribution function
(p/"—{p;>™), with m =3, and by relating them with the
energy dissipation mechanism.
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