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Electron-positron pair production in time-dependent potentials is considered. We find that the parti-
cle production distribution probability shows interesting resonance structures. Some numerical applica-

tions to heavy ion collisions are made.
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I. INTRODUCTION

The usual way to treat scattering problems is to consid-
er potentials that vary in a given region of the space. For
example, a flux of particles is incident over a region of lo-
calized potential, the target, and after the interaction,
particles are scattered in all directions. In this paper we
wish to concentrate instead on time-dependent potentials
for which production of particles can occur. It is hoped
that the calculations presented here may be useful for a
better understanding of electron-positron production in
situations (such as the scattering of ions) where the
effective potentials are strongly time dependent.

The resonance pattern for pair production in a strong
time-dependent electric field has been discussed in 1989
by Cornwall and Tiktopoulos [1] and later by Balantekin
and Fricke [2]. These authors, using methods in field
theory, showed that a time potential of a general “bell”
shape (corresponding to a time-dependent electric field
that changes its direction in a given interval of time) gen-
erates a resonance structure in the electron-positron pair
production. Cornwall and Tiktopoulos have worked out
an explicit calculation for a two &-function electric field
configuration (square-well potential). Balantekin and
Fricke have generalized their results, considering a dou-
bly pulsed electric field.

In this work we want to show how an elementary
“quantum mechanics method” can give origin to a reso-
nance pattern not only for a two 8-function electric field
configuration with opposite directions, but also for a con-
stant electric field, applied for a time period 7. The finite
time period gives rise to resonant structures. In the limit
of infinite 7, the model reduces to standard nonresonant
results [3].

The Dirac equation for an electron in a time-dependent
potential is

Y _

lat Hy, (1)
with H given by

H=[p—eA(t)]-a+mp . )

Since p here is a constant of motion, we may choose the
momentum along the z axis, so that the Hamiltonian can
be written as
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H=[p—eA(t)]Ja,+mp . (3)

If we write ¢ in terms of its components u, u,, u;, and
u4, the Dirac equation can be written as

i, =mu,+[p—eA(t)]u,, (4a)
i,=mu,—[p—eA(t)]u, , (4b)
iny=[p—eA(t)]ju,—mu, , (4c)
in,=—[p—eAt)u,—mu, . (4d)

Equation (4a) is coupled to Eq. (4c) and Eq. (4b) to Eq.
(4d), hence if we fix the spin we can simply consider, for
example, Eqgs. (4a) and 4(c); that is the same as to consid-
er the two-dimensional Hamiltonian

H=[p—eA(t)]o,+mo, . (5)

In Sec. II we discuss the pair-production probability
for the Hamiltonian given in Eq. (5) for two different
time-dependent potentials (cited above). In Sec. III we
apply our Hamiltonian for a qualitative understanding of
pair production in the collision of heavy ions.

II. EXAMPLES OF TIME-DEPENDENT POTENTIALS

As the first example we consider the square-well poten-
tial

A (0<t<7T)
AN=10  (1<0,t>7) . (©6)
For ¢t <0 and ¢ > 7, Eq. (5) becomes
H=po,—mo, . (7a)
Equation (7a) has eigenvalues
E.=+Vm2+p?, (7b)
and eigenvectors
JEE —— (70)
Viim+E?+p* | P
m—E
lp,— )= \/_(_r;z———ll_f—__w p (7d)
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For 0 <t <, Eq. (5) is given by

H,=(p—eA)o,+tmo, . (8a)
It has eigenvalues
E ,=+Vm?+(p —eA)?, (8b)
and eigenvectors
o+ )= ! m_tf,; ] . (0
V (m+E;?+(p —eA)? P
lp, =)= 1 m__ej . (8d)
V(im—E;)?+(p—eA)? P

The probability that a pair is produced after the in-
teraction can be calculated as follows [4].

Suppose that for ¢ <0, the exact wave function is in the
state

lY)=Ip,—), t<0; 9
then the wave function for 0 <t <7 can be expanded in

terms of |p, +); with constant coefficients

i

W=a_lp— ) +alp,+)e ", 0<t<r (10

and for ¢ > 7, in terms of |p, +)

lp)=b_I|p,— YeB'+b_ |p,+)e E t>r. (11

The coefficients in Egs. (10) and (11) are obtained by im-
posing the condition that the wave function be continu-
ousatf=0and t =7.

The pair-production probability is

P=|b,|?; (12)

b can be obtained by equating Egs. (10) and (11) at t =7
and upon forming the scalar product

i(E.+E)
b+=a—<P’+|p7_>ie ! ’
+a,{p+lp+)e T (13)
where
a_=Ap,—Ip,—), a,=p,+lp,—) (14)

are obtained by imposing the continuity at ¢ =0.
The pair-production probability is given by
E;T
#i

2)2 2
P=|b+‘2= (mc*)(eA) sin2

2 (15)

If we express E; as a function of E and A and write the
probability in terms of the adimensional variables

E eA Tme?
x = s = , T = , (16)
mc? Y me? #i
we get for P
2
P= Y

x2[x2—2y\/x2—l+y2]
X sin?[(x2—2pV x2—1+yH)12T] . (17)
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In Figs. 1 and 2 we show graphs for P versus the kinet-
ic energy of the electron (or the positron) for different
values of the parameters y and T.

Equation (17) has the meaning of a pair-production dis-
tribution probability as function of the energy and clearly
shows a resonance structure.

We notice that if we increase the value of the parame-
ter y, A gets bigger. This means that if we supply more
energy to the vacuum, the kinetic energy of the particles
produced also increases. Similarly, if we increase the
value of the parameter 7, for a given value of y, we in-
crease the time available for interaction and we produce
more resonances.

We consider as the second example the case of a con-
stant electric field &,

The probability of electron-positron pair production in
a constant electric field per unit time per unit volume is
given by [3]

17'm2

e6,

P~ exp (18)

For a constant electric field, we compute below the
probability that at t =7 a pair with a given energy is pro-
duced.

For this case, Egs. (4a) and (4c) are changed to

in,=mu,;+(p—ebthu, , (19a)
iny=(p—ebt)u;—mu; . (19b)
Let
z=—(%6)t), y=m2/eé€ , (190)
y=20T= 6.0
i T T T | T T T T I T T T T I T T T T T T T T l:
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FIG. 1. Probability of pair production as a function of the
electron kinetic energy in a square-well potential: y =2.0,
T =6.0.
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FIG. 2. Probability of pair production as a function of the
electron Kkinetic energy in a square-well potential: y =2.0,
T =10.0.

so that Egs. (19) become
(20a)
(20b)

u,=iyu,+tiyzu, ,
Uz3=iyzu,—ivyus .

We can reduce the system of Egs. (20) to a second order
differential equation by making the following two
separate transformations. First define

u,tus;=a,;, (21a)
u;—u3;=b,, (21b)
and then
22
a,= exp iy—z— a, (22a)
22
b,=exp ~i7/7 b. (22b)

After eliminating b, we obtain a second order equation
for a which reads

d+2Bza —fF% =0, (23a)
with
g=im> (23b)
e6
If we set
a=yx(2)¢(z), (24a)

with
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22

#(z)= exp —37 , (24b)
and

§=Az , (24c)
Eq. (23a) can be further reduced:

d*y £

—_ + =

A € 1 x=0, (25a)

with
1 .m?
€= 5 1+ v (25b)

Hence the general solution to the system of Egs. (19) is

(5]
i =%ei722/2{ A[M,+2z(e—1)M,]
+B[e™*2V2yM;+e TNV 2y M, 1},
(26a)

uy=Le"’ 2 A[M,—2z(e— 1M, ]

1
2

+B[eiw/4z\/'2—,}/M3_e*irr/4‘/2/,yM4]} ,

(26b)

with
M, =M(—le+1 1, —iyz?), (26d)
M2=M(—%e+%,%,—i7/zz) , (26¢)
My=M(—le+3,3,—iyz?), (26f)
M,=M(—Le+3,1, —iyz?). (26g)

The constants 4 and B are obtained imposing the con-
dition that at ¢t =0 the wave function ¥ is in the state of
negative energy |p, — )

¥,(0)
with
1-V1+w?
(0)= — ) (27b)
i [2(1+w?—V1+w?)]?
w
(0)= —_— , (27¢)
O i w—ViT w2
where w =p /m.
The coefficient A4 is given by
2
,yle*lyw /2
A=—7-—7—, (28a)
b4
with
Y1=¥1(0)+¢,(0)—6,[¢,(0)—¢,(0)] , (28b)
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eiﬂ/Z,},wM3
GI—T , (28¢c)
6 =M, —2w(e—1)0M, . (28d)
The coefficient B is given by
2
yze—zyw /2
B=————, (29a)
¢,
with
v2,=[¥1(0)+1,(0)16,— [¢,(0)—1,(0)] , (29b)
o — 2w(e—1)M,
27 Ml N (290)
b, =0,V 2ywM,—e "IN 2 /Yy M, . (29d)

To find the probability that at time ¢ =7, an electron
which was at time ¢ =0 in a state of negative energy is
found to be in the state of positive energy, we need

d;
—eb ,+ = s
lp—eér,+) d, (30a)
with

1+w

d,= L, (30b)
wy

d2= w—v , (3OC)
wy

w, =V 1+(w—v), w2=\/(1+w1)2+(w—-v)2 ,

(30d)
¥ =13v =5.0
P T T T T | T T T T ’ T T T T T T T
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0.00 Lt
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FIG. 3. Probability of pair production as a function of the
electron kinetic energy for a constant electric field: y=1.3,
v=3.

and w=p/m,v=e6T/m.
Finally the pair-production probability can be ex-
pressed as

P=|u,d;+usd,|*. (31)

In Fig. 3 we show P versus the kinetic energy of the
electron or positron for y =1.3 and v =5.0. As we see in
Eq. (18), ¥ must be of order one to have a significant pair
production.

III. APPLICATIONS TO HEAVY-ION COLLISIONS

In the past decade heavy ion-atom collision experi-
ments at energies close to the Coulomb barrier (5.7-6.2
MeV/nucleon) have revealed a narrow resonance struc-
ture at about 300 keV c.m. energy in the positron spec-
trum of various supercritical and subcritical collision sys-
tems [6—9]. These lines occur in all collision systems
with combined charges Z,=Z,+Z, from 164 up to 188
with similar energies. Moreover there is strong indica-
tion of more than one line per system and that the posi-
tron lines are in coincidence with electron lines of the
same energy [10,11]. (General reviews on the subject may
be found in Refs. [12-15].)

In a crude picture when one uranium ion and one
uranium atom approach closer than a critical distance
R, a quasiatom is transiently formed and pair produc-
tion becomes feasible. If we do not consider the pair-
production process due to nuclear excitations, we can dis-
tinguish two principal pair-production mechanisms: (i)
dynamically induced positrons, created by the vacancies
in the negative energy continuum; (ii) spontaneous posi-
tron emission, a process that occurs when the preionized
lowest electronic level enters the negative energy continu-
um and becomes a resonance that might eventually de-
cay.

However, if we require Rutherford trajectories for the
collision systems (the scattering is quasielastic), the dive
time 7 is of order 102! sec, whereas the spontaneous de-
cay width corresponds to a time of the order 10~ !° sec.
Thus the measured spectrum is expected to be mainly
dominated by the distribution of the dynamically induced
positrons.

A variety of theoretical explanations have been sug-
gested as a source of these lines. The most popular ones
are the following: (i) spontaneous positron emission
[16,17] (supercritical systems), (ii) decay of a neutral par-
ticle (“‘axion”) [18-22], (iii) a new quantum electro-
dynamics phase [23-28], and (iv) interference effects
among different amplitudes [29,30].

We want to point out here that also the dynamically
induced positron process (specifically transitions between
negative and positive continuous energy states) can give
origin to a resonance structure and not only to a broad
structureless background.

Obviously the potentials we have examined are only il-
lustrative and perhaps too simple to be able to “explain”
the e Te ~ peaks in the heavy atom collision experiments.
However, it is interesting that the approximate numerical
values using these simple potentials hint rather strongly
that the observed resonances may indeed be due to the in-
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tense electromagnetic fields created by the colliding nu-
clei [1,31]. For example, when we solve the Dirac equa-
tion for the square-well potential, the values for the criti-
cal range R and the time duration 7 needed to obtain
resonances at ‘‘correct” energies are consistent with other
estimates.

R, is expected to be much less than 135 fm and the
calculated values are in the range 30—-50 fm in different
approximations (Ref. [13], p. 310). The characteristic
duration of a heavy-ion collision, i.e., the time 7 the nu-
clei spend together closer than the critical distance, is
found to lie between 10~2° and 107 2! sec for different
models (Ref. [13], p. 330).

In our first example—square-well potential —we get a
resonance structure in the energy interval between 0 and
1000 keV when y =2.0. If we assume

_ (Ze)?
AR’

cr

eA (32)
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where for uranium atoms Z =92 and 4 =238, we get
R . ~50 fm, a number consistent with other estimates re-
ferred to above. Figure 1 is obtained for T =6.0 which
corresponds to a duration time 7 of the order 7.5X 102!
sec; Fig. 2 where T =10 gives a 7 of order 1.25X1072°
sec, once again consistent with other estimates.

In our second example—constant electric field—we
have very wide resonances in energy.

y=1.3 gives an electric field &, of the order 10!
V/cm, that substituted in the expression for v =5 gives a
T of the order 7.9X 10~ %! sec. If we assume

(Ze)*
AR’

cr

eGycT= (33)

we get for uranium R ~21 fm, again not far from the
other estimates.
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