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Resonance structures through time-dependent potentials
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Electron-positron pair production in time-dependent potentials is considered. We find that the parti-
cle production distribution probability shows interesting resonance structures. Some numerical applica-
tions to heavy ion collisions are made.

PACS number(s): 23.20.Ra, 25.75.+r, 11.80.—m

I. INTRODUCTION H = [p eA—(t)]a, +mP . (3)

The usual way to treat scattering problems is to consid-
er potentials that vary in a given region of the space. For
example, a fIux of particles is incident over a region of lo-
calized potential, the target, and after the interaction,
particles are scattered in all directions. In this paper we
wish to concentrate instead on time-dependent potentials
for which production of particles can occur. It is hoped
that the calculations presented here may be useful for a
better understanding of electron-positron production in
situations (such as the scattering of ions) where the
e6'ective potentials are strongly time dependent.

The resonance pattern for pair production in a strong
time-dependent electric field has been discussed in 1989
by Cornwall and Tiktopoulos [I] and later by Balantekin
and Fricke [2]. These authors, using methods in field
theory, showed that a time potential of a general "bell"
shape (corresponding to a time-dependent electric field
that changes its direction in a given interval of time) gen-
erates a resonance structure in the electron-positron pair
production. Cornwall and Tiktopoulos have worked out
an explicit calculation for a two 5-function electric field
configuration (square-well potential). Balantekin and
Fricke have generalized their results, considering a dou-
bly pulsed electric field.

In this work we want to show how an elementary
"quantum mechanics method" can give origin to a reso-
nance pattern not only for a two 6-function electric field
configuration with opposite directions, but also for a con-
stant electric field, applied for a time period w. The finite
time period gives rise to resonant structures. In the limit
of infinite ~, the model reduces to standard nonresonant
results [3].

The Dirac equation for an electron in a time-dependent
potential is

i =Hg,
at

If we write li in terms of its components u „u2, u3, and
u4, the Dirac equation can be written as

iu, =mu, + [p —eA(t)]u3,

iu 2
=mu 2

—[p eA ( t ) ]—u 4,
iu3=[p —eA(t)]u, —mu3,

iu~= —[p —eA(t)]u~ —mu4 .

(4b)

(4c)

(4d)

Equation (4a) is coupled to Eq. (4c) and Eq. (4b) to Eq.
(4d), hence if we fix the spin we can simply consider, for
example, Eqs. (4a) and 4(c); that is the same as to consid-
er the two-dimensional Hamiltonian

II. EXAMPLES OF TIME-DEPENDENT POTENTIALS

As the first example we consider the square-well poten-
tial

A (0&t &r)
0 (t &0 t&r) .

For t &0 and t & r, Eq. (5) becomes

H =pa„—mo,

Equation (7a) has eigenvalues

E+ =++m +p

(7a)

(7b)

and eigenvectors

H=[p eA(t)]o +m—o, .

In Sec. II we discuss the pair-production probability
for the Hamiltonian given in Eq. (5) for two different
time-dependent potentials (cited above). In Sec. III we
apply our Hamiltonian for a qualitative understanding of
pair production in the collision of heavy ions.

with H given by

H =[p—eA(t)] a+m/3 .

Since p here is a constant of motion, we may choose the
momentum along the z axis, so that the Hamiltonian can
be written as

1 m+E
lp, +&=

+(m+E) +p

Ip,
—&=

+(m E) +p—
(7c)

(7d)
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For 0 & t & r, Eq. (5) is given by

H =(p —eA)o +mo,t

It has eigenvalues

2E; =++m +(p —eA)i+

and eigenvectors

m +E,.
1

7

p —eA.+E; ) +(p —eA )

m —E;

p —eAQ m E;) +—(p —eA)

(8b)

(Bc)

(8d)

!P&=Ip, —&, t &0; (9)

or 0 & t & ~ can be expanded inn the wave function for &t
terms of p, +g; wit cons a

iE,. t
+&,e

' ', 0&t&rIq&=a p, —
&, e '+a+(p, , e

+&and or t)~, in termsof p,

(10)

f
—iEt

I q& =b Ip,
—&e' '+b+ Ip, + e

at a air is produced after the in-The probability that a pair is pro u
lculated as followst raction can be ca cue

f &0 the exact wave function is in theSuppose that ior t
state ~m 2P- exp

e

thent electric e, wfi ld we compute below
thprobability that at t =~ a pair wit a giv

4a) a d (4c) h d toFor this case, Eqs. 4a an

iu =mu, +(p —erat)u3,iu i
—mui

lu3 =3=( erat)u, ——mu3 .

(19a)

(19b)

show raphs for P versus the kinet-'g. g p
f the electron (or the positron oric energy o

eters and T.
od io d'-

tionofth d 1 1tribution probability as function o t e en

if we increase t e va
i er. This means t a i

Qf th t 1acuum, the kinetic energy
1 if '

thincreases. Simi ar y, i
1meter T, for a given v
ndcrease the time available for interac ion

more resonances.
le the case of a con-We consi er as the second examp e

0'field 8 .
The probability of electron-posit p

a constant e ec ric1 t ic field per unit time per uni v
given by [3]

E s. (10) and (11) are obtamed by Un-

bposing t e conh dition that the wave unc
sat t =Oand t =~.

~ ~ ~

ob b'1 yThe pair-production p

(12)

E s. (10) and (11) at t =ran be obtained by equating qs.b+ can eo
and upon forming the scalar pr ro duct

i(E,. +E)~b+=a (p, +Ip, —
&, e

Let

(p —e 6't)Z— m
m

y = 2.0 T = 6.0
I I I II I I I I I

(19c)

where

—i (E,.—E)~
+a+(p, +Ip, + &, e

+I, —
&a+=; p

(13)

(14)

0.8

b im osing the continuity at t —0.
b'1 ' '

bThe pair-productio p
'

n roba iiyi

z (mc ) (eA) . ~
Eir

P =
I b+ I' E'E—

l

(15)

0.6

0.4

2E eA. ~mc
2mc mc

we get for P

ex ress E; as a fu
' f E d A, and write theex ress E; as a function o an

probabilit in terms of t e a ime

(16)

0.2

o.o I ' '

0 250 1000
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1250

+ 2x2[x2 2y+x~ 1+y ]

X sin [(x —y x~x 2 —1+y 2 )I ~2T] (17)

n of thef air roduction as a functioFIG. 1. Probability of pair pro uc
'

t ntial: y =2.0,e ec r ' '
in a square-well po enelectron kinetic energy in a

T =6.0.



il80 E SASSAROLI, Y. N. SRIVASTAVA AND A WIDOM 48

2.0 T = 10.0
Z

p(z) = exp P 2
1.0

and

(24c)
0.8

0.4

F . (23a) can be further reduced:

d'X, +&' ~=0,
dg2 4

with

.I
l. +i

e

(25a)

(25b)

0.2

0 250 500 750 1000

K.E. (keV)
1250

the s stem of Eqs (19) "Hence the general solution to y
[5]

r~'~&
j g [Mi+2z(+ —,)M2]2

+~[,i~i4, ~2yM, +e ' "&2&yM4]]

(26a)
roduction as a function of theFIG. 2. Probability of pair produc io

ell otential: y ==20electron Ine ic ek t' nergy in a square-we p
T =10.0.

u =—'e'r'
I A [M, —2z(e —

—,')M2]Q3 —2e

+8 [e' z/2yM3 —e '" V2/yM4] I

(26b)
with

so that Eqs. (19) become

0I —

lpga

( +lgZQ3

Q3 =lfZQi lfQ3

(20a)

(20b)

1 . 1 m (p —e6't)

M =M( —
—,e+ —„—„—iy z2)

1

(26c)

(26d)

Q&+Q3 =ai (21a)

the s stem of Eqs. (20) to a second orderWe can reduce y

separate transformatio
'

ns. First define

5 3 ' 2M =M( —
—,'e+ —,', —'„iyz—2

M =M( —
—,e+ —„—„—iy z~)

3

3 1M =M( —
—,'e+ —,', —,', iyz—4

(26e)

(26/

(26g)

Qi Q3 —bi

and then

Z2
a = exp iy1 2

Zb&= exp —iy b .

(21b)

(22a)

(22b)

(27a)

with

0

nd 8 are obtained imposing the con-The constants 3 and
dition t at an t t =0 the wave function g is m e s
negative energy!p, —)

Qi(0)
'» ~=

q, (0)

e obt
'

second order equationAfter eliminating b, we o tain a sec
for a which reads

1 —+1+w

[2(l+w —+1+w )]'
(27b)

with

a+2/3za —P a =0,

. Pl=l
e6

(23a)

(23b)

W

[2(1+w —+1+w )]'
where u =p/m.

The coefficient A is given by
—iym /22

y, e

(27c)

If we set (28a)

a =y(z)P(z), (24a) with

y =q](0)+yp(0) —&i[pi(0) —qp(0) ], (28b)
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e' "ywM
M4

P, =M, —2w(e —,')—g,M~ .

The coefficient B is given by

E'EN

/22

2B=

with

(28c)

(28d)

(29a)

and w =plm, U =eh"T/m.
Finally the pair-production probability can be ex-

pressed as

& = lu, d, +u, dpi' . (31)

III. APPLICATIONS TO HEAVY-ION COLLISIONS

In Fig. 3 we show P versus the kinetic energy of the
electron or positron for y =1.3 and U =5.0. As we see in
Eq. (18), y must be of order one to have a significant pair
production.

y =[/ (0)+q,(0)]&,—[y,(0)—y,(0)],

0
2w(e ——')M

2 2

(29b)

(29c)

$~=82e' &2ywM3 —e ' &2/yM4 . (29d)

To find the probability that at time t =~, an electron
which was at time t =0 in a state of negative energy is
found to be in the state of positive energy, we need

Ip
—err, +)= d 2.

with

1+wi
W2

(30a)

(30b)

d2= W U

W2

w, =+1+(w —v), w2='1/ (1+w&) +(w —U)

(30c)

(30d)

y = 1.3 v = 5.0
P I I I I I I I I I I

0.06

0.04

0.02

0.00
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FIG. 3. Probability of pair production as a function of the
electron kinetic energy for a constant electric field: y = 1.3,
U =5.

In the past decade heavy ion-atom collision experi-
ments at energies close to the Coulomb barrier (5.7—6.2
MeV/nucleon) have revealed a narrow resonance struc-
ture at about 300 keV c.m. energy in the positron spec-
trum of various supercritical and subcritical collision sys-
tems [6—9]. These lines occur in all collision systems
with combined charges Z„=Z&+Z2 from 164 up to 188
with similar energies. Moreover there is strong indica-
tion of more than one line per system and that the posi-
tron lines are in coincidence with electron hnes of the
same energy [10,11]. (General reviews on the subject may
be found in Refs. [12—15].)

In a crude picture when one uranium ion and one
uranium atom approach closer than a critical distance
R„, a quasiatom is transiently formed and pair produc-
tion becomes feasible. If we do not consider the pair-
production process due to nuclear excitations, we can dis-
tinguish two principal pair-production mechanisms: (i)
dynamically induced positrons, created by the vacancies
in the negative energy continuum; (ii) spontaneous posi-
tron emission, a process that occurs when the preionized
lowest electronic level enters the negative energy continu-
um and becomes a resonance that might eventually de-
cay.

However, if we require Rutherford trajectories for the
collision systems (the scattering is quasielastic), the dive
time ~ is of order 10 ' sec, whereas the spontaneous de-
cay width corresponds to a time of the order 10 ' sec.
Thus the measured spectrum is expected to be mainly
dominated by the distribution of the dynamically induced
positrons.

A variety of theoretical explanations have been sug-
gested as a source of these lines. The most popular ones
are the following: (i) spontaneous positron emission
[16,17] (supercritical systems), (ii) decay of a neutral par-
ticle ("axion") [18—22], (iii) a new quantum electro-
dynamics phase [23—28], and (iv) interference effects
among different amplitudes [29,30].

We want to point out here that also the dynamically
induced positron process (specifically transitions between
negative and positive continuous energy states) can give
origin to a resonance structure and not only to a broad
structureless background.

Obviously the potentials we have examined are only il-
lustrative and perhaps too simple to be able to "explain"
the e+e peaks in the heavy atom collision experiments.
However, it is interesting that the approximate numerical
values using these simple potentials hint rather strongly
that the observed resonances may indeed be due to the in-
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tense electromagnetic fields created by the colliding nu-
clei [1,31]. For example, when we solve the Dirac equa-
tion for the square-well potential, the values for the criti-
cal range R„and the time duration s needed to obtain
resonances at "correct" energies are consistent with other
estimates.

R„ is expected to be much less than 135 fm and the
calculated values are in the range 30—50 fm in different
approximations (Ref. [13], p. 310). The characteristic
duration of a heavy-ion collision, i.e., the time r the nu-
clei spend together closer than the critical distance, is
found to lie between 10 and 10 ' sec for different
models (Ref. [13],p. 330).

In our first example —square-well potential —we get a
resonance structure in the energy interval between 0 and
1000 keV wheny =2.0. If we assume

(Ze)
e CocT=

cr
(33)

where for uranium atoms Z=92 and A =238, we get
R„-50 fm, a number consistent with other estimates re-
ferred to above. Figure 1 is obtained for T=6.0 which
corresponds to a duration time ~ of the order 7.5 X 10
sec; Fig. 2 where T =10 gives a ~ of order 1.25X10
sec, once again consistent with other estimates.

In our second example —constant electric field —we
have very wide resonances in energy.

y=1.3 gives an electric field Co of the order 10'
V/cm, that substituted in the expression for U =5 gives a
T of the order 7.9X 10 ' sec. If we assume

(Ze)'
AR„

(32) we get for uranium R„-21 fm, again not far from the
other estimates.
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