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Quantum theoretical approach to meson production in nuclear media via Cherenkov mechanisms
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(Received 9 June 1992)

In this paper a quantum theoretical approach to single scalar and pseudoscalar meson production via
mesonic Cherenkov mechanisms in homogeneous nuclear media is presented. The quantum mesonic
Cherenkov coherence condition as well as the quantum rate of emission for Cherenkov mesons are de-
rived. Some numerical estimates of these characteristic quantities as well as their semiclassical limits are
discussed.

PACS number(s): 25.40.Ep, 25.40.Qa, 25.70.—z

I. INTRODUCTION

The availability of relativistic hadron accelerators has
revived the interest in the theoretical description of the
production of photons and pions during the passage of
relativistic hadrons through nuclear media via Cheren-
kov mechanisms [1—3]. Recent work [1] about Cheren-
kov ~ production is based on a field-theoretical calcula-
tion of the ~ propagator in nuclear matter. Our own re-
cent work concerns Cherenkov y production [2] and a
semiclassical treatment of Cherenkov w production [3].
We refer the reader to the reference lists in our papers
[2—4] for a collection of earlier work on the subject of rr

production in nuclear media through Cherenkov process-
es.

Our semiclassical approach to the Cherenkov ~ pro-
duction [3] was based on a modified Klein-Gordon equa-
tion with a classical pointlike source term. This semiclas-
sical treatment cannot account for the pseudoscalar or
pseudovector character of the ~-nucleon coupling since
intrinsic parity is in fact a quantum concept; it has, how-
ever, the advantage that absorption effects can be taken
into account in a simple and consistent way. In the
present paper we present a quantum approach of the
spontaneous single pseudoscalar meson production via
the mesonic Cherenkov effect for nonabsorptive nuclear
media. Then the single pseudoscalar meson emission, in-
cluding both pseudoscalar and pseudovector couplings, is
investigated. The absorption of pions is taken into ac-
count properly by the inclusion of a semiclassical absorp-
tion factor.

II. THE REFRACTIVE INDEX OF MESONS
IN A NUCLEAR MEDIUM

The scattering of a meson M with rest mass mM and
energy co in a nuclear medium composed of nucleons can
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Here f(MN+ MN) is the —configurational average of the
elastic meson-nucleon scattering amplitude in the for-
ward direction (even inelastic scattering might be
present); y(r) is the coherent stationary mesonic wave in
the medium. The factor C is defined as the ratio between
of the effective and the coherent mesonic field. If the
scatterers are distributed completely at random, this fac-
tor C will be unity. Hence, from the Foldy-Lax approach
the following dispersion relation for the meson in a medi-
um is obtained,

k =co —m~+4rrpCf (MN~MN),

or, equivalently the following energy-momentum relation

k =n (co)(ro —mM)'

with

n (co)=1+ Cf (ru) . (2a)

Here (since we have chosen iri=c&=1) co, k, and mM are
the energy, momentum, and the rest mass of the physical
meson inside the nuclear medium, respectively.

Some remarks have to be added. First, we emphasize
that the scattering amplitude in Eqs. (1)—(2a) must be
evaluated at the wave number k inside the medium rather
than at the free wave number (cu —mM )' . Second,
more detailed considerations show that some conditions
have to be fulfilled such that the scattering of a meson
from one of the constituents of the nuclear medium can
be treated as a two-body rather than a many-body prob-
lern. Those problems as well as the conditions for the
adiabatic approximation for the motion of the nuclear
scatterers have been systematically discussed by Fesh-

be described in terms of a refractive index n (co) which re-
lates the meson wave number k in the nuclear medium to
the free wave number (co —mM )' by the relation
n (co)=kl(cu —mM)'~ . We apply here the Foldy-Lax
multiple-scattering theory [5,6] the essential result of
which is that the mesonic coherent scalar (or pseudosca-
lar) wave equation in a medium can be written as

[V +(ro mM )+4—irpCf (MN~MN)]q&(r) =0 .
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bach [7] in connection with the justification of the nu-
clear optical potential. The reader should consult the
literature quoted above and also the references Gold-
berger and Watson [8], Johnson and Bethe [9], and Er-
icson and Weise [10].

III. QUANTUM THEORETICAL APPROACH TO
THE MESONIC CHERENKOV MECHANISM

AND SEMICLASSICAL LIMITS

u h(co) k —co +M2 —Mi
cosOik = +

v) 2pik

u h(co) 1+0
v] Pi

p2 +p2 k2
COSOi2 =

2P &F2

(5a)

(5b)

The quantum theory of the usual electromagnetic
Cherenkov radiation in a dielectric medium was original-
ly developed by Ginsburg [11]. Later, other authors also
treated this problem (see references quoted in the text-
book of Zrelov [12]). We use in the following an analo-
gous procedure for developing a quantum theoretical ap-
proach of the nuclear mesonic Cherenkov radiation
(NMCR) from spin- —,

' particles moving as sources in a nu-

clear medium.

u h(co) is the mesonic phase velocity defined as
u h =co/k. Therefore, the interacting system (nuclear
medium plus initial hadron plus physical meson) can in
general make real transitions from the initial state
I A, p, ;0—0—0) (the state without physical mesons)
to other states, e.g. , a final state
I A, p2', 0—. lk lk . —0) with some physical
mesons present in the nuclear medium. Our interest is in
the emission of a single real meson by the initial hadron
without the excitation of the medium,

A. Quantum NMCR conditions
IA, p, ;0—0—0~ IA, p;0 —

1&
—0) . (6)

First, we investigate the radiation condition. In Fig. l
we display schematically the Cherenkov emission process
of a meson M (with energy co and momentum k) that is
radiated from an incident baryon 8 i (with energy E i and
momentum p, ) that itself goes over into a final baryon Bz
(with energy Ez and momentum p2). The energy-
momentum relation in the nuclear medium requires

F. ] =E2+co, P] =P2+k .

The transition (6) will be identified as the lowest order
process for the Cherenkov emission of a meson. This can
be seen from Eqs. (5) since from the condition of the an-
gle 8,k to be real ( lcosO, k I

~ 1) we get

u i, (co) ~u, (1+O(1/p, )) .

This is (except for the quantum correction which is very
small for high energies of the incident hadron) just the
classical coherence condition for Cherenkou radiation.
More explicitly we have the quantum coherence condition

For initial and final baryons B, and B2 we assume that
the usual mass-shell relations

u„h(co) n (co)(co m~) —co +—M2 —M,

2p, n (co)(co —m~)'~
(8)

E; lp, l=M, , i—=1,2, (4)

are also valid inside the nuclear medium, while for the
meson M we take the energy-momentum relation (2). We
are interested in the angles 0&k and 0&2, for which one ob-
tains (lp; =p;, lkl =k)

The second term can be seen to take into account recoil
effects of the initial and final baryons with masses M, and
M2. It is straightforward to see that the conditions (7)
and (8) cannot be fulfilled in the vacuum where n (to) = 1.

Now, the threshold velocity v „i.e., the lowest projec-
tile velocity for which the condition (8) is fulfilled, is
given by

M( ) [uM( )]21—
(I+/2) ~

where F is given by

F:— k
2M I

M2 M)M
( )]2+

k
(8b)

Bi (Ei. pi )
(The second possibility for u, is unphysical. )

B. Transition probability for NMCR

B2 (E2 ~ P2)

FIG. 1. Diagram for single meson production (B&~B2M)
via Cherenkov mechanism.

The transition probability (per unit time) from the ini-
tial state (6) to the final state (6) of the NMCR process is
given in first order perturbation theory by the golden
rule,
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=2~f III&I2 p(cv)5(E, E, —
CV )—,

dco
(10)

where p(cv) is the density of final physical meson states,

p(co) = k
1 2dk

dQ)

and dQ=dysinB, k ddik is the solid angle element into
which the Cherenkov meson is emitted. From Eq. (10)
and the relation [see Eq. (5a)]

co —v 1 k ( cv )c0s 01k

we obtain after integration

(12)

W&=2m Ill 6(E1 E—
2
—cv),

where H& are the (averaged) matrix elements of the Ham-
iltonian describing the interaction between the initial ha-
dronic meson source and the e6'ective quantized mesonic
field. The number of mesons emitted per unit time by the
Cherenkov process into the energy interval (cv, co+dcv) is
then given by

G2
MB I B2

IH~I2= S(E„CV),
n (cv) 2'

where

1 g [u2(P2)1'5u 1 (pl)][u 1(PI)Y5u2(P2)]' f
k —

CV +(M, —M2)

2E1(E1—Co)

where we used the Dirac spinors

u;(p;)=N; 'PIXS

E, +M;

E;+M;
) l =1,2

2E;

to get the equivalent two-component matrix elements

(16)

(17)

H~ k O(1 —v „(cv)/v, ),dN I — 2 dk M

dc' 27Tv i

dt's

(13)
0'P i

u 2(p2)y 5u, (p, )=N, N2y,
+

1 1

~'Pz
XS

where 0 is the Heavyside step function. The matrix ele-
ment has to be taken at cos8, k defined by Eq. (5a).

(i) Single pseudoscalar meson emission via NMCR 1vith

pseudoscalar coupling GMB B . Now, we calculate explic-
1 2

itly the matrix element H& for the Cherenkov emission of
a pseudoscalar meson from a spin- —,

' baryon that moves in
a nuclear medium (see Fig. 1). In this case the matrix ele-
ment H& is given by

Hp=&GMB B ( A, P2;0 —lk 0 l'5& A, P1, 0—0—0),
(14)

where GMB B is the coupling constant for the pseudosca-
1 2

lar coupling between meson M and the baryons B, and
B2 in the nuclear medium, y5 is a Dirac matrix, and y is
the coherent pseudoscalar mesonic field in the medium.
The possibility of the nuclear medium changing its state
was excluded in the NMCR model from the beginning.

Next, the matrix element (14) is evaluated by using the
plane wave spinors u;(p;)exp( —ip r), i =1,2, for the ini-
tial and final baryon as well as the Fourier decomposition
y= g (Qkcp1, + Qk yk ) in the nuclear medium where

yk =n '(co)exp( ik r) and Q&
—and Qk are respectively

the annihilation and creation operators for a pseudosca-
lar meson M with momentum k in the nuclear medium.
Then, by introducing the standard normalized matrix ele-
men«Tklgk lo& =(2cok) and (lglgg I0& =0 we ob-
tain after integration in Eq. (14)

GMB |B~
Jr u2(P2) Y5u 1(P1)

co v 2CL1

Then, summing over the final spin states of the baryon
and averaging over the initial spin states, we get

Here cr =(cr1,o2, o 5) are the usual Pauli matrices and

g, :—
[ (0),(, ) ] are the two-component Pauli spinors.

Using now Eqs. (13), (16), and (17) it follows for the
production rate, i.e., the number of mesons emitted per
unit time into the energy interval (cv, co+ d CV),

d~PS (PS)

dc'

IGMB, B, I'
dk

4~V, n (co) d cv v „(CV)

[n (cv) —l]co mMn (co—)+(M, —M2)

4E, (E1 —cv )

(18)

where fMB B is the pseudovector coupling constant for
1 2

the meson M and the initial and final baryons B, and Bz
(see again Fig. 1). y„and y5 are the Dirac matrices, and

y denotes the coherent mesonic field corresponding to
the meson M in the nuclear medium. Therefore, by a
procedure similar to that carried out in the pseudoscalar
coupling case we obtain the production rate

2
4MiM2 dk

dcv 41rv1 mM n (cv) de v h(cv)

[n (co) —1]cv mMn (co)+(M—, —M2)

4E, (E, —co)

(19)

(ii) Single pseudoscalar meson emission via NMCR and
pseudovector coupling fMB B . The matrix element H& in

1 2

Eq. (13) for the Cherenkov emission of a pseudoscalar
meson with the pseudoscalar coupling are given by

fMB(B2
H&=i' (w, p, ;I I7„) a„q w, p„o),
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and evaluating it as in the preceding coupling cases (i)
and (ii) we obtain the following production rate:

de'
dc'

~GMa, a, ~

47tvt n (tv) dc' u h(ru)

[n (tu) —1]ru min—(ru)+(M, +M2)
4E, (E, —cu)

(20)

The essential difference between the expressions (18)
and (20) for dN~'/de and dN'/dry comes from the fact
that in the last term of (18) the mass difference of the ini-
tial and final baryon occurs whereas (20) has the sum of
these masses.

From comparison of Eqs. (18) and (19) we see that the
pseudoscalar and pseudovector couplings are equivalent
if and only if GMa a =ftIta a 2(M, M2)' /mM, also in

the nuclear medium.
(iii) Single scalar meson emission uia NMCR F.or com-

parison we present now the rate for the single scalar
meson emission via a NMCR mechanism. Starting with
the matrix element of the form

H~=iGMa a ( A, p2, 0—lk —
O~y~ A, p), 0—0—0),

2
&/2 2 MBB

y(ru) =21 ' '(cu), G', tr
=— (26a)

for the single pseudoscalar meson emission as NMCR
with the pseudoscalar coupling,

'2 2

( )
—t /2( ) G 2 — 2M tItaa

mM 4n
(26b)

for the single pseudoscalar meson production as NMCR
with the pseudovector coupling, and

—1/2
~G~aa ~

4~
y(ru)= tl(ru)+n (co)—k dk

co d co

(26c)

IV. NUMERICAL ESTIMATION

for the scalar meson emission as NMCR.
Now, from Eqs. (25)—(26) it is easy to see that the

quantum approach where the pseudoscalarity of pions
can be taken into account explicitly in fact modifies the
semiclassical spectrum dN/dro obtained in Ref. [3] for
Cherenkov pions by a "quantum factor" 21(cu)(1—
ru/E& )

' [cf. Eqs. (18) and (24a)].

C. Semiclassical limits of NMCR

PS (PS)
1 V

2 GMBB
21(ru ),dc' v 4~

(21)

Now, it is interesting to present here Eqs. (18)—(20) in
the semiclassical limit: v, = v 2

——v, M, =M2 =M. We get p+' Sn w +p+' Sn,

+208Pb 0+ + 208Pb

(27a)

(27b)

As an example, let us now consider the m production
as NMCR in the nuclear reactions

dN~s' '
1 —u' fMaa 2M

21(ru),
dc' v 4' mM

(22)
1 I I I I I I I I t

1 —u' [GMaa ]'
v 4m

1 [dk/dry]
YJ Ci) +

n (ru) u „(ro)

(23)

where

2 2
mM . 2 ~» [dk/dcu]

21 co) —= sin 0, '"
4M u„q(cu)

sin 8, '"= sin 9, ( u = 1)= 1 —
[ u p„(ru) ]

(24a)

(24b)

1.3

1.2—

I I I I I I I I I I I:

(1—u) 2 1
efr

/
( )/2

(25)

for the nonabsorptive nuclear medium case. Then, we see
that the energy behavior, which is essentially given by the
factor (1—u ), is the same for all types of couplings con-
sidered in Eqs. (21)—(23) and (25). Moreover, we see that
the semiclassical limits (21)—(23) of the mesonic Cheren-
kov quantum spectra are in agreement with the semiclas-
sical result (25) (for a =0) if and only if

Now, the results (21)—(23) can be compared with the
semiclassical result [3] on NMCR [see also Eq. (I.52) in
Ref. [4] or Eq. (3.6) in Ref. [13]for a =0]

—1,1—
~e

C l.assicct9—
.8— ~/

200
e (MeV)

I I I:
300

FIG. 2. The refractive index n (co) and the classical and
quantum mesonic Cherenkov thresholds T,h, (co) calculated for
pions from Eqs. (2a), (8a), (8b), and (28) by using the experimen-
tal data of Pedroni et al. [14] (see text).
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Th =mp[[1 v h (co)] 1] (28)

where u, h, =uph(cu) for the classical NMCR threshold,
and v,h, =u, (co), given by Eq. (8a), for the quantum
NMCR threshold. Numerical values for the m emission
as NMCR in ' Sn and Pb are displayed in Fig. 3 in
both absorptive and nonabsorptive cases. The absorption
was taken into account in a standard way. We used the
relation

where

dO

de b
dc' nonabs

(29a)

(F,b, ) = f exp( —Ax)dx =
2R 0 2AR

the absorption coefficient is given by

2 =2 Imk (co) =2(co —mM )'~ Imn (co)

(cu —m )' Imn (cu)

Ren (co)

(29b)

I I I i I i I
i

I i i

C=1
M:—&

1:
10 Ic:T =3

C=10
X

10 =

I I I i:

pre' on' Sn, NMCR
~ ~ ~ ~

10 =
I I i

200

pre' on Pb, NOR
i I I I i i i i I i i

300
m(MeY)

FIG. 3. The NMCR cross sections do. /den for m production
on ' Sn (solid and dashed lines) and for Pb (dotted and dash-
dotted lines) for both nonabsorptive and absorptive cases, re-
spectively, and dk/der in upper part of figure (see text in Sec.
IV).

at the proton kinetic energy T =3 GeV.
The differential NMCR cross sections do. /den for ~

mesons can be obtained from the expression (18) by mul-
tiplying with the factor V/v „where V is the "collision
volume" V=(4mro/3)(1+ Az ), r0=1. 12 fm, and Az
is the number of target nucleons. Numerical values for
the refractive index, used for the calculation of do /dco,
are obtained from Eq. (2a) and the experimental data of
Pedroni [14], and are displayed in Fig. 2. In Fig. 2 we
also give the classical and quantum kinetic energy thresh-
olds T,I„calculated according to the relation

R is the radius of the target nucleus. The factor dk/d~
in Eq. (18) was also estimated numerically, and is present-
ed in Fig. 3.

Now, the results of Fig. 3 can be compared with the
constant (co-independent) values of the semiclassical
NMCR spectrum (d o

/den�)„,

„»,=54. 9 mb/MeV and
(do/dco)„, „,b, =87.3 mb/MeV for pions produced in
'20Sn and ~ Pb (see Ref. [3]), respectively, by protons
with T =3 GeV. Thus, we see that the quantum efFects
on NMCR for pion production are important and that
the NMCR cross sections remain large enough to be ex-
perimentally accessible. However, a special experimental
technique is necessary in order to extract the NMCR
yield from the background produced by other mecha-
nisms.

V. DISCUSSION AND OUTLOOK

The main results and conclusions may be summarized
as follows.

(i) The theory of NMCR as an important collective
effect in a nuclear medium is described by a quantum ap-
proach for the emission of scalar and pseudoscalar
mesons from spin- —,

' baryons.
(ii) Some numerical results for the n emission as

NMCR are presented in Sec. IV. They show that the
NMCR spectrum estimated in the quantum approach is
sufficiently large to be measurable. However, an experi-
mental investigation of this effect needs special methods,
such as coincidence measurements of B, , m, Bf, for the
separation of NMCR from the background produced by
other mechanisms.

(iii) Our results can also be used as ingredients in
different phenom enological models for the coherent
meson production in inclusive or exclusive nuclear reac-
tions. But, then many other ingredients such as form fac-
tors, distorted wave corrections, final state resonant in-
teractions, etc. , have to be added in a consistent way.
Here we restricted ourselves to the estimation of NMCR
as a nuclear medium effect that can be experimentally in-
vestigated.

It is important to note that in all considerations above
the inAuence of the nuclear medium on the propagation
properties of the Dirac particles Bi and B2 (see Fig. 1)
was neglected. This seems to be justified only for high
primary energy E, and Ez ——E, , when the refractive in-
dices of the B

&
and Bz particles can be approximated by

unity. For the final baryon B2 the medium modifications
[introduced by the energy-momentum relation

p z
=ns (Ez )(Ez M2 ), n~ (E2 ) th—e baryonic refractive

index] can be very important even for the mesonic spec-
trum at very high mesonic energies co (a&=E, —Mz),
beyond the mesonic Cherenkov band, where a transition
of type (6) in the nuclear medium can also take place.
But in this case the transition can be identified with the
process of single meson emission via "baryonic" Cheren-
kou eQects [4]. This can be proved by using the first part
of Eq. (Sb) and the energy-momentum relations for final
particles in the nuclear medium, when one obtains the
quantum baryonic Cherenkov coherence condition
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p~ E—z ™M
icosO, t, i

= +
V) 2P &Ps

which at high projectile energy goes practically over into
the classical baryonic Cherenkov coherence condition
vpt, (Ez) v, , where ups(Ez)=Ez/pz is the phase veloci-
ty of the final baryon in the nuclear medium. Moreover,
the quantum theory for the Cherenkov mechanisms must
be developed in a more general way in order to take into
account absorption effects as well as the finite size effects
even in the definition of the density (11) of final states (see
Ref. [15]). All these improvements of the quantum
theory of the mesonic Cherenkov mechanism should be

worked out in future investigations.
Finally, we note that all above investigations [e.g. , Eq.

(18)] can be extended to the estimation of the r) and K
meson production rates, via Cherenkov mechanisms, in
the nuclear reactions as, e.g. , A (p, gp) A,
A(p K+A (X ))A, A(p K X )A or A(p K X+)A,
A(p, K A ).
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