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Problem of parity nonconservation in "Fe and 119sn nuclei
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Budker Institute of Nuclear Physics, 690090 Novosibirsk, Russia
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We consider parity nonconservation effect for the Mossbauer transitions in Fe and Sn nuclei.
To simplify the calculations we use contact approximation for nucleon-nucleon weak interaction. A
corresponding parity nonconserving effective Hamiltonian is presented. The result of the calculation
of p-quantum circular polarization degree P 3 x 10 strongly contradicts the experimental value
P 10 . One may consider this huge disagreement as an indication of the unknown nuclear
phenomena which leads to the enhancement of parity nonconservation. We stress the importance of
a new independent measurement of the effect.

PACS number(s): 21.10.Hw, 21.30.+y, 33.45.+x

I. INTRODUCTION

Parity nonconservation (PNC) for low frequency Moss-
bauer transitions in Sn and Fe have been observed
in Refs. [1—4]. The measured values of the circular polar-
ization of p quanta are P = (0.90 + 0.1) x 10 for the
23.9 keV transition in ~~sSn and P = (0.58+0.12) x 10
for the 14.4 keV transition in Fe. These are transitions
between very low-energy levels in the spherical nuclei.
Therefore neither the high density of the spectrum [5]
nor the accidental closeness of the opposite parity states
can enhance the eKect. Due to these reasons it is widely
believed that the experimental values of P are too large
to be explained in the standard picture of the weak inter-
action in nuclei. It should be mentioned that there is an
old theoretical paper [6] which gives the values of P con-
sistent with experiment. However, we do not agree with
the results of this work. Actually in Ref. [6] the value of
the regular M1 amplitude is underestimated almost by
2 orders of magnitude which is evident from a compari-
son with the experimental value of the level lifetime. On
the other hand, in our opinion the weak interaction is

substantially overestimated in the above work. Unfortu-
nately only the result of the numerical calculation of the
PNC amplitude is presented in [6]. Therefore we cannot
point out the reason for this overestimation. Thus in the
present paper we perform an accurate calculation of the
PNC eEect in Sn and Fe.

II. EFFECTIVE HAMILTONIAN OF THE WEAK
INTERACTION

The standard parametrization of the parity noncon-
serving nucleon-nucleon weak interaction corresponds to
the one-boson-exchange approximation with vr-, p-, and
w-meson exchange taken into account [7]. The u-meson
contribution is small and we neglect it. There are terms
of diferent structure in the contribution corresponding
to the p-meson exchange. However, the term propor-
tional to the constant h (see Ref. [7]) is dominating and
therefore we neglect other terms. Thus we will consider
only the 7r-meson contribution and h term from p meson
contribution. In this approximation the Hamiltonian of
the nucleon-nucleon PNC interaction is of the form [7]

H = z (~1 X 72)z(trl + o2)[pl2)Fm]
4~2m„

(7.z . &z) ((a.z
—o.2) (pq2, F~) + z(1 + tz) (crz x tr2) [p&2, p]) &

gph',

2mp
mcz&

4vrr
P~2 = Pi —P2.

Here cr and a are spin and isospin Pauli matrices; p is
the momentum operator, m„ is t;he proton mass; m, m~
are the zr- and p-meson masses; [, ] is a commutator;
and (, ) is an anticommutator. tz = 3.7 is an isovector
anomalous magnetic moment of the nucleon. The strong
nucleon-meson constants are g = 13.45, g~ = 2.79. The
estimates for the weak nucleon-meson constants f and
h are presented in Refs. [7,8]. So-called "best" values
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are f„= 12x (3.8x10 ), ho = —30x (3.8x10 )
[7,8]. We would like to stress that "best" does not mean
that we really know the values. Information on these
const;ants is still incomplete.

The one-boson-exchange Hamiltonian (1) is nonlocal
(nonzero range) and therefore it is not convenient for
simple nuclear calculations. More convenient is the local
(zero range) effective interaction between the nucleons a
and b. The zero range (contact) approximation is rather
crude, but it allows one to do an analytical calculation.
This approximation is very convenient if we do not need
high accuracy and therefore we use it. To first order in
the momenta the contact; interaction is of the form

0556-2813/93/48(3)/1069(5)/$06. 00 48 1069 1993 The American Physical Society



1070 O. P. SUSHKOV AND V. B. TELITSIN 4&

((g bo —gb orb)(p~b, b(r~b)) +ig~b(rru x ~b)[pabc ( ~b)]).
G 1

b r
~2 2m„

(2)

Here G is the Fermi constant. Any exchange matrix element of the local Hamiltonian (2) can be reduced to the
direct one by the Fiertz transformation. We define an effective interaction (2) in such a way that only the direct
matrix elements have to be considered. The exchange terms are taken into account by appropriate definition of the
dimensionless efFective constants g. In the limit F (r) +,8(r) the Hamiltonian (1) can be easily transformed to
the form (2)

gPh'', (@+2)((~ —~b)(p- ~(r b))+ ( - x ob)[p b ~(r b)])

Hp„—— , ( + -)( - ( -)f
2 2mpm.'

((2p, + 1)(cr„—cr„)(p„,8(r„))—i(p —1)(cr„x cr ) [p„,8(r„)]).

Let us stress once more that only the direct matrix ele-
ments of (3) have to be considered. This is the standard
way of defining the effective interaction in the Fermi liq-
uid theory [9]. I.et us discuss now the validity of the zero
range approximation. The typical momentum of a nu-
cleon in the nucleus is p m . Therefore the contact
limit is justified for the p exchange. However, we should
take into account short range nucleon-nucleon repulsion.
To do it let us introduce into the p term in Eq. (3) the
factor TVp. We also include into this factor the correc-
tions due to the range and exchange character of the p
exchange force.

The zero range approximation for the vr contribution
is not so good. In Ref. [10] the z exchange was treated
explicitly and the contact limit was considered only for
the short range p and w parts of the interaction. Such
an approach is suitable for more accurate calculations.
In the erst approximation, our opinion, the simple con-
tact Hainiltonian (2) is good enough. To take into ac-
count the long range and exchange character of the ~ ex-
change as well as short range nucleon-nucleon repulsion
we introduce into the vr term the factor TV„. Following
Ref. [11],and based on the calculation of PNC in neutron
and proton scattering on He [12,13], we set Wp —0.4,
W —0.16. These values agree with that obtained in
other works [14,15]. Comparing (3) with (2) we find the
dimensionless effective constants g:

1

gpp
=

—(p+ 2)WpAph = 1.5,
1

g~~ = gnn = gpp~

—(2p, + 1)WpAph + W A f 6.5,

I
g

—(2P+ 1)WpAph —W A f
g „=(P, —1)WpAph = —0.7,

P —0 57 106 A g.2g
Gm2 Gm2

—22 (4)

= 59 x 10 .

G 1
(~p p(r) f.

22mB
(5)

Here cr and p are the spin and momentum of an unpaired
nucleon. p(r) is the core density normalized by the con-
dition I pd r = A (we assume that the mass number
A )) 1). Due to Eqs. (2) and (4) the dimensionless con-
stant g are equal

Numerical values of the constants g b are presented for
the "best" values of f and h [7] (see above). We stress
once more that the values of f and h are not knownP
precisely. Therefore one should be rather skeptical of the
presented numerical values of g b.

An effective Hamiltonian of the weak interaction for
the unpaired nucleon above the paired nuclear core can
be written in the following form:

(p, + 2) + —(2p, + 1)
~

h', + W A. f = 4.5, —

g„= —g„„+—g„„=—W,A,
~

—(2p, +1)+—(p, +2)
~

p' —W.A. f. —0. —z ~ fz z
(6)

Numerical values of g correspond to the "best" values
of f and h, and &

—0.42. Formulas (6) were obtained
in Ref. [11].An effective single-particle PNC interaction,
(5) and (6), was also derived in Ref. [16]. As far as we

understand the only important difference is in the factor
8 p. We include short range nucleon-nucleon correlations
into the effective interaction explicitly. It means that our
factor TVp = 0.4 accounts for the range and exchange
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character of the p exchange force, as well as short range
nucleon-nucleon correlations. The factor W~=Os79 —0.88
of Ref. [16] only accounts for the range and exchange
character of the p exchange force. It does not include
any eKect due to short range correlations.

III. SECULAR. M1 AMPLITUDES

We consider the 23.9 keV l2 ) ~ l3 ) transition in

Sn and the 14.4 keV l3 ) —+
l

— ) transition in Fe.
The half-life times for

l 2) levels are [17] Sn, tii3 ——17.8
ns; Fe, t1i2 ——98 ns. Both transitions are predom-
inantly of the Ml type [17]. Therefore one can easily
calculate the Ml amplitudes

to the 381iz unpaired neutron above the closed shells:
configuration

l 2d3&23sii2). The Brst excited state ll)
(E = 23.9 keV) corresponds to the 2d3i2 neutron hole in
the closed shells: configuration

l 2dsi338ii3). Thus in
the independent particle model we have to calculate the
PNC E1 amplitude (3sii2lEll2dsi3). It should be noted
that the many-body eKects of BC S-type pairing are very
important for the PNC El amplitude. Nevertheless let
us consider erst the independent particle model.

We will use the oscillator shell model, a very convenient
way for calculating the PNC as suggested in Ref. [18].
The same trick has been used in Ref. [19] for calculation
of the permanent electric dipole moment, SchiK moment,
and anapole moment of a nucleus. The operator of the
electric dipole moment

119S
&3 2IM-I 3 2) = +0 67'~ d = ) e.r.

"Fe: (2, - lM,
l 2, 3& = +0.61@~.

with eB'ective charges e„= e &, e = —e& [20] in the
oscillator model can be presented in the form

Here M is the magnetic moment operator and p~ ——
2mp

is the nuclear magneton. We have to note that the shell
model transition in Fe is p1i2 —+ p3i2, and in Sn it
is 81i2 ~ d312. Thus in Sn we have an /-forbidden tran-
sition. Nevertheless its magnitude is large. We do not
discuss this problem in the present work. Nevertheless
we would like to stress that this important problem is
not actually resolved.

IV. PNC E1 AMPLITUDE

) ecpc 1 H
mph

where II is the nuclear oscillator Hamiltonian, and u—
40/A i MeV [21] is the oscillator frequency. The PNC
El amplitude is equal to

.(&j-ldln&&nlWIO& &1lWln&&nldlO) &+ E E I. (1o)Ei —E„)
Let us consider the 23.9 keV transition in Sn. In

the naive shell model the ground state lo) corresponds
Using Eqs. (9) and (2) and the relation Ei —Eo « E
Eo w one can transform D into the form

.).(11[ -p- II']lo)

G
, , ).e-g-~(1l(~-(p- —p~), [p., ~(r. —r~)]) lo).

The index a corresponds to the external unpaired nu-

cleon, and 6 corresponds to the core nucleon. We recall
that the exchange terms should not be calculated in for-
mula (11). They are taken into account by appropriate
definition of the constants g g in Eq. (2). There are two
possibilities in Eq. (11): (1) c = a, (2) c = b The first.
corresponds to the virtual excitations of an external nu-
cleon in the weak potential of core (5). Let us denote the
corresponding contribution to the PNC E1 amplitude as
D t. The second possibility corresponds to the virtual
excitations of the core (D, „).From Eq. (11) we get

Dz
core

ext + core &

z(z
A i%

JV Z—
l

e„—g„„+e„g„r l( =——
[p

p

(12)

ZN (g„„—g„„)e(,

where p(r) is the nuclear density. Let us use the constant
density approximation

Then

p(r) = poe(Z —r),
3

p0=4
7t Po

r() ——1.1 fm. (13)

. &po f'dx3d dx3. .0.16 Gpo
'i +3s X2d + X2dX3s
6m„cu( dx dx x ) & 6 m„u

(14)
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The radial wave functions are normalized by the condi-
tion J' y2dx = 1. We have used the values of wave func-
tions at the nuclear surface calculated for Sn in the
oscillator model: y3, ——0.60, &~' ——1.11, y2g ——0.73,

~'" = 0.69.
Now we can discuss the in8uence of BCS-type pairing

on to the PNC El amplitude. It is well known that due
to the pairing the matrix element of the single-particle
operator between the quasiparticle states ~0), ~1) should
be multiplied by a factor uqup —v]vp for a T-even op-
erator and by a factor uzup + vyvp for a T-odd operator
(see, e.g. , [20,22]). u and v are the parameters of Bo-
goljubov transformation. The levels we consider are very
close to the Fermi level. Therefore we get by direct cal-
culation vo vy vo vy ~ 1/v 2, volvo + volvo 1,

v, duo —
volvo

& 1/10. Comparison of a quasiparticle-
quadrupole vibration coupling constant with experiment
confirms the estimation uquo —volvo & 1/10.

Due to Eq. (12) the PNC El amplitude is proportional
to the matrix of effective operator i((cr p), [p„p])
((~ p), —„"~). It is T even. Surely it is quite obvious
without any calculation: The effective operator corre-
sponds to second order in El and weak interaction (10),
but both the Ei amplitude (8) and weak interaction (2)
are T even. Thus to take into account the pairing the
result of the independent particle shell model calculation
(12) should be multiplied by a factor uquo —volvo [18].
Using Eqs. (12) and (14) we get the value of the PNC
El amplitude:

Z 0.16 Z eGppElpNc = — g&—(e('llyv o—vj vo) = i
' ——g „(volvo —volvo).

A "m„~ (i5)

Due to Eqs. (4), (7), and (15) the value of the p-quantum circular polarization for the 23.9 keV transition in Sn is
equal to

Elpwc &po —7 —8P =2Im = +0.14 (uquo —volvo) = +3 x 10 (uquo —volvo) +3 x 10Ml (i6)

This value is very small. However we would like to stress
that there is no special suppression except the factor

1/5 due to compensation in formula (14) and factor
(uyvo v] vo) 1/10 due to pairing. Excluding these
factors Eq. (16) is the maximal possible estimation for
spherical nuclei: P Gpo/ld. A similar situation exists
for the 14.4 keV transition in Fe. We do not present
the calculations for Fe, but it is obvious that ElpN~ is
of the same order of magnitude as for oSn. Due to (7)
it means that estimation (16) is valid for s~Fe as well.

It is interesting to notice that due to Eq. (15) ElpNC
depends only on g „. There is no dependence on g
due to compensation between D;„~ and D; „in Eq. (12).
However we would not like to consider this compensation
very seriously. It is obtained in a very simplified model
of the nucleus. For example, the account of El giant
resonance probably renormalizes D; „by a factor 1/2
and destroys the compensation in the g„contribution.
However it does not inhuence the magnitude of the effect.

Finally we would like to compare our estimation (16)
with well-known results for the

&
~ 2 483 keV transi-5+ 7+

tion in Ta [23,18,10]. This transition is predominantly
of E2 type: 97/o E2+3%%uo Ml [17]. Therefore

12 Elpwc
T.

= (3 x 10 ')2Im
Ml

Comparing half-life times for the levels of Ta and Sn
we conclude that MlT /Mls„2. 4 x 10 . If we sup-
pose that ElpNg in Ta is the same as in Sn, we get
PT 3.8 x 10 . However let us recall that in the Sn
frequency u 23.9 keV is much smaller than the pair-
ing gap A, therefore (uj uo —volvo) 0.1. It is not the
case in Ta where cu 482 keV and A = 700 keV, and

therefore (uquo —volvo) 0.5. Thus we have to multiply
the above estimation by a factor 5:

PT~- +2x 10

The nucleus Ta is deformed, but we base on the calcu-
lation for spherical ~ Sn. Therefore the estimation (18)
is very crude. Nevertheless it quite agrees with the ex-
perimental value PT ———(5.2+ 0.5) x 10 [23] and the
results of accurate calculations (see, e.g. , [18,10]). This
agreement confirms our estimation (16) for Sn and
57F

V. CONCLUSION

In the framework of the standard description of a weak
interaction in nuclei we get the estimation of p-quantum
degree of circular polarization P 3 x 10 for Moss-
bauer transitions in Sn and Fe nuclei. This result
is obtained in an oscillator shell model which is rather
crude. Besides that the factor (uquo —v] vo), which
takes into account the pairing, was really only estimated.
Nevertheless we hardly believe that theoretical value of
P could exceed 10 . Thus the result of calculation
strongly contradicts the experimental value P 10
One may consider this huge disagreement as an indica-
tion of the unknown nuclear phenomenon which leads to
the enhancement of parity nonconservation. In this con-
nection we would like to mention another phenomenon
which presently is not understood. This is the correla-
tion of the signs of PNC effects in the neutron scattering
on Th and U nuclei [24]. We stress the importance of new
independent measurements of parity nonconservation in
Mossbauer transitions.

We are grateful to P. N. Isaev, I. B.Khriplovich, and V.
V. Sokolov for their interest in the work and very helpful
discussions.
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