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Self-consistent relativistic calculation of nucleon mean free path
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We present a fully self-consistent and relativistic calculation of the nucleon mean free path in
nuclear matter and 6nite nuclei. Starting from the Bonn potential, the Dirac-Brueckner-Hartree-
Fock results for nuclear matter are parametrized in terms of an effective 0-u Lagrangian suitable
for the relativistic density-dependent Hartree-Fock (RDHF) approximation. The nucleon mean free
path in nuclear matter is derived from this effective Lagrangian taking diagrams up to fourth-order
into account. For the nucleon mean free path in 6nite nuclei, we make use of the density determined
by the RDHF calculation in the local density approximation. Our microscopic results are in good
agreement with the empirical data and predictions by Dirac phenomenology.

PACS number(s): 21.65.+f

I. INTRODUCTION

One important quantity of a medium is the mean free
path of its elementary constituents. In nuclear physics,
the nucleon mean free path is of special importance since
it can be large compared to the nuclear size such that
the basic assumption of the independent particle motion
of the shell model is reasonable [1]. jn nuclear reactions,
the nucleon mean free path is a useful concept for sum-
marizing a large number of experimental data [2,3]. Fur-
thermore, in the investigation of heavy-ion reactions, the
mean free path of nucleons and other hadrons are often
used to estimate the number of two-body collisions and
the reabsorption effect of the medium on the production
cross sections of hadrons [4].

Most calculations of the nucleon mean free path have
been done in the framework of nonrelativistic dynam-
ics [5—ll], based on, e.g. , the phenomenological Skyrme
force. Characteristic for the early theoretical investiga-
tions [5,6] is the underestimation of the nucleon mean
free path by up to a factor of two as compared to the
empirical value. The proper treatment of the nonlocal-
ity of the nucleon optical potential resolves much of the
discrepancy between the theoretical prediction and the
empirical data [7,9]. The nonlocality of the nucleon op-
tical potential (or mean field) leads to the reduction of
the nucleon mass and consequently increases the nucleon
mean free path, which is known as the Negele- Yazaki en-
hancement [7].

Recently there have been some relativistic calculations
of the nucleon mean free path [12—15], based on either
Dirac phenomenology or the relativistic impulse approx-
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imation for the nucleon optical potential. In this pa-
per, we present a fully self-consistent and relativistic
calculation of the nucleon mean free path in nuclear
matter, starting from the Bonn potential as the real-
istic nucleon-nucleon (%%) interaction. The nucleon
self-energy (optical potential) is derived from the Dirac-
Brueckner-Hartree-Fock (DBHF) results for nuclear mat-
ter, which includes the important medium effects.

This work is a continuation of our efFort [16—19] to de-
scribe self-consistently the properties of nuclear matter,
finite nuclei, and nuclear reactions based on the same re-
alistic NN interaction. There are two aspects to this
problem. First, one needs a realistic NN interaction
which is ultimately determined by the underlying dy-
namics of quarks and gluons and should in principle be
derived from quantum chromodynamics (@CD). How
ever, due to the nonperturbative character of @CD in
the low-energy regime relevant for nuclear physics, we
are far away from a quantitative understanding of the
NN interaction in this way. On the other hand, there is
a good chance that conventional hadrons, like nucleons
and mesons, remain the relevant degrees of freedom for a
wide range of nuclear physics phenomena. In that case,
the overwhelming part of the NN potential can be con-
structed in terms of meson-baryon interactions. In fact,
the only quantitative NN interactions available up until
now are based on meson exchange; a well-known exam-
ple is the Bonn potential [16,20] which we apply in this
work.

The second aspect of the problem concerns a suitable
many-body theory that is able to deal with the bare
NN interaction which has a strong repulsive core. The
Brueckner approach [21—23] and the variational method
[24,25] have been developed for this purpose. How-
ever, when using two-body forces, both many-body theo-
ries are not able to reproduce correctly the saturation
properties of nuclear matter. Inspired by the success
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of Dirac phenomenology in intermediate-energy proton-
nucleus scattering [26,27] and the Walecka model (QHD)
for dense nuclear matter 28,29], a relativistic extension of
the Brueckner approach has been initiated by Shakin and
co-workers [30], frequently called the Dirac-Brueckner-
Hartree-Fock (DBHF) approach. This approach has been
further developed by Brockmann and Machleidt [16,17]
and by ter Haar and Malfliet [31]. The common feature
of all DBHF results is that a repulsive relativistic many-
body effect is obtained which is strongly density depen-
dent such that the empirical nuclear matter saturation
can be explained. The Bonn potential and the DBHF ap-
proach thus provide a reasonable starting point for pur-
suing the longstanding goal of self-consistently describing
nuclear matter, finite nuclei and nuclear reactions based
on the same realistic NN interaction.

In order to carry out a systematic self-consistent
study of nuclear properties, one usually parametrizes the
DBHF results for nuclear matter in terms of an effec-
tive Lagrangian, which, in relativistic density-dependent
Hartree Fock (RDHF) approximation, leads to the same
predictions for nuclear matter as the original DBHF cal-
culation. The effective Lagrangian, with its parameters
determined by the underlying NN interaction, can then
be used in other domains of nuclear physics, e.g. , the
structure of Gnite nuclei and nuclear reactions. Differ-
ent schemes for this parametrization have been proposed
[32—35]. We use in the present work the scheme re-
cently suggested by Brockmann and Toki [34] in which
the DBHF results for nuclear matter with the Bonn po-
tential are parametrized in terms of an effective o-u La-
grangian. This scheme is however extended to the rela-
tivistic density-dependent Hartree-Fock (RDHF) approx-
imation, which is more appropriate than the relativistic
density-dependent Hartree (RDH) approximation of Ref.
[34]. The coupling constants of these effective mesons are
density dependent, and are determined from the under-
lying bare NN interaction via a DBHF calculation. The
nucleon self-energy (optical potential), and hence the nu-
cleon mean free path, are then calculated based on this
effective Lagrangian up to the fourth-order Feynman di-
agrams. For the calculation of the nucleon self-energy

I

and mean free path in finite nuclei, we use the nucleon
density determined by the RDHF calculation [36] in the
local density approximation.

We outline the formalism of this work in Sec. II. The
results and discussion are presented in Sec. III. The paper
ends with a brief summary in Sec. IV.

II. FORMALISM

The relativistic Bonn potential to be used in this work
is constructed in terms of the Thompson equation which
is a three-dimensional reduction to the original Bethe-
Salpeter equation. The kernel of the Thompson equation,
V(q', q), is the sum of one-ineson-exchange amplitudes of
certain bosons with given mass and coupling. In the one-
boson-exchange (OBE) Bonn model [16], six nonstrange
bosons with mass below 1 GeV are used. Three sets of
potential parameters, denoted by Bonn A, B, and C, have
been proposed (and are given in Table A.2 of Ref. [16]).
The main difference between the three parameter sets is
the cutoff mass for the 7tNN vertex, which is 1.05, 1.2,
and 1.3 GeV for Bonn A, B, and C, respectively. Conse-
quently, the three potentials differ in the strength of their
tensor force component; Bonn A has the weakest tensor
force. All three potentials reproduce the deuteron prop-
erties and the phase shifts of NN scattering accurately
(cf. Refs. [16,17]).

The Bonn potential is used in the DBHF calculation
for nuclear matter. The essential point of this approach
is the use of the Dirac equation for the description of the
single-particle motion in the nuclear medium

[~ k+ P(m+ Us) + Uv]u(k, s) = Eu(k, s)

where Us is an attractive scalar field and U& is (the time-
like component of) a repulsive vector field.

As in conventional Brueckner theory, the basic quan-
tity in the DBHF approach is the G-matrix which sat-
isfies the in-medium Thompson equation (also known as
relativistic Bethe-Goldstone equation) [16,17,19]

G(q', q~P, z) = V(q', q) + V q', k
(i/2) X'+i (i/2) &+~ (i/2) i'+k

G(k, q~P, z)

with

m = m + Us and Ei, = (k + m )

and P the c.m. momentum of the two colliding nucleons
in the nuclear medium.

Since the kernel of the in-medium Thompson equa-
tion depends on the solution of the Dirac equation, while
the Dirac equation needs the scalar and vector potentials
which are determined from the G matrix, one is deal-
ing with a self-consistency problem [16,17]. The nuclear

matter properties are then obtained from the in-medium
two-body interaction, the G matrix. Applying the Bonn
A potential, the DBHF calculation predicts that nuclear
matter saturates at 0.185 fm with an energy per nu-
cleon F/A= —15.6 MeV, which is in good agreement with
the empirical values. More results and discussions con-
cerning the properties of nuclear matter as predicted by
the DBHF approach can be found in Refs. [16,17,19].

As proposed by Brockmann and Toki [34], the DBHF
results for nuclear matter can be parametrized by an
effective Lagrangian, in analogy to the 0-u model of
Wale cka:
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8 = @[zpvB m —g (p)P —g (p)VI P"]g

+ (8"—P ) — m—P ——(8„$ —0„$")2

+—m' P"'1
4P 4) (3)

Eq. (3) is applied in the RDHF approximation.
Treating the effective coupling constants locally as

numbers and calculating in the RDHF approximation,
the nucleon self-energy can be expressed as

E(k„) = Zs(kp) + p Zo(kp) + ~ kZv(k~) (4)
where g is the nucleon field, while P and P" are the ef-
fective sigma and omega fields, respectively. The masses
of the effective sigma and omega mesons are kept fixed
at their values in free-space scattering. However, the
density-dependent coupling constants are choosen such as
to reproduce the DBHF results for nuclear matter when

I

where Es, Zo, and K~ denotes the scalar component, the
timelike part of the vector component and the spacelike
part of the vector component of the nucleon self-energy,
respectively. Explicitly the real part of the nucleon self-
energy is given by [29,37]

Zs(p, k) = ——2 g'(p)
m 0

g.' (P)
m~ 0

2 2

d ,m,*
qq +

kF
d '+qq

kF

dqq [g' (p) 0 (k, q) —4g (p) 8 (k, q)],
q

dqq[g (p) 0 (k, q) + 2g (p) 0 (k, q)],

1
Ei (p, k) =— k F

[g.'(p)c'-(k q) + 2g.'(p)c'-(k q)]

where

A;(k, q) + 2kq

A, (k, q)e, (k, q)
4kq

A;(k, q) = k2 + q + m, —(qo —ko), Z=W)M

and

m„* = m+ Zs(p, k),
k" = k(1+ Kv(p, k)),

k, = (k*'+ m„*')'~'+ Zo.

(8)
(9)

(1O)

In determining the effective coupling constants from
these expressions, we drop the spacelike component of
the vector potential and calculate at the Fermi surface,
by identifying Z~ and Zo with U~ and Uo obtained in the
DBHF calculation. This is a reasonable assumption since
the spacelike component is very small and the potentials
are only very weakly momentum d.ependent.

There are mainly two differences between our effec-
tive Lagrangian, Eq. (3), and the Walecka model [28,29].
First, the coupling constants in our model are no longer
free parameters 6tted to the nuclear matter saturation
properties; these effective coupling constants are deter-
mined by the DBHF calculation in which a realistic N%
interaction is used. Second, the coupling constants of
our effective Lagrangian are density dependent, whereas
those in the Walecka model are density independent. The
absence of density dependence in the Walecka model may
be responsible for its unrealistically large incompressibil-
ity.

In the RDHF approximation, the real part of the
nucleon self-energy contains the energy-independent
Hartree contributions [see Fig. 1(a)] as well as the energy-
dependent Fock contributions [see Fig. 1(b)]. The lowest-

order contribution to the imaginary part of the nucleon
self-energy is the fourth-order Feynman diagram which is
characterized by two-particle —one-hole (2@1h) intermedi-
ate states [see Fig. 1(c)]. The nucleon lines in these Feyn-
man diagrams are described by dressed nucleon propaga-
tors, which corresponds to performing the calculation on
the Hartree-Fock ground state and taking account of all
Hartree-Fock insertions. The explicit expressions for the
imaginary part of the nucleon self-energy have been given
in Ref. [38]. The derivation of the nucleon self-energy
from the Walecka model has been discussed in detail in
Refs. [37,38]. For the effective Lagrangian used in the
present work, the expressions for the nucleon self-energy
are the same, but with the coupling constants for sigma
and omega exchange replaced by the density-dependent
ones as determined in the nuclear matter DBHF calcula-
tion.

(b)

(c)

FIG. 1. Feynman diagrams for the calculation of the nu-
cleon self-energy in nuclear matter. (a) Hartree diagram, (b)
Fock diagram, (c) fourth-order diagram.
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The spacelike part of the vector potential, Zv, is rather
small compared to other terms in Eq. (4) and can be
absorbed into the scalar potential and the timelike part
of the vector potential by the following transformation

Us = Zs —mdiv Zo + EZVs—

where we distinguish between the real and imaginary part
of the scalar and vector potential given by

Us = UsR+ iUsr

Uv = UvR+ zUvr

E = [(m+Us) +k ] +Uv. (12)

This can be rewritten as

k2 (E —m)'+V+iW = E —m+
2m 2m

with

(E —m)
V = UsR+ UvR+ UVR

+ (UsR + Uvr UsI Uva) ~

1 2 2 2 2

2m
(E —m)~ = Usr+ Uvr+ UV I

1+—(UsRUsI —Uv RUv I )m

In terms of the scalar potential Us and the vector
potential Uv, the momentum of a nucleon propagating
through a uniform nuclear medium can be determined
from

k = kR+ik (14)

The nucleon mean free path, A, is related to the imagi-
nary part of the nucleon momentum by [7]

From Eqs. (13), (14) and (15) we obtain an analytical
expression for the nucleon mean free path

Since (V+iW) can be identified as the Schrodinger equiv-
alent potential which is the nucleon optical potential in
the non-relativistic approach, Eq. (13) is identical to the
non-relativistic dispersion relation, except for the rela-
tivistic correction, (E —m) j2m.

Since the potentials Us and Uv are complex, the nu-
cleon momentum is also complex and can be expressed
as

1 (E-m) i (E —m)' l—m(E —m —V+ [+m (E —m —V+
)

+W
2 2m 2m )

/2 i —1/2

m' + mT (m + Tj b)

[(m + mT)z + 2mT Tj~b]i&2
(17)

where m and mz are the masses of the nucleon and the
nucleus, respectively.

Since empirical information on the nucleon mean free
path is usually obtained by analyzing nucleon-nucleus
scattering data, it is also of interest to perform a mi-
croscopic calculation of the nucleon mean free path in
finite nuclei. To calculate the nucleon self-energy (opti-
cal potential) and mean free path in finite nuclei, one of-
ten makes use of the local density approximation. With
this approximation, the spatial dependence of the nu-
cleon self-energy is directly related to the density of the
nucleus under consideration. Thus in addition to the ex-
pressions for the nucleon self-energy in nuclear matter, as
outlined above, we also need to know the density of the
finite nucleus, so that we can calculate the nucleon mean
free path in finite nuclei. To attain self-consistency of
our calculations, the density of the finite nucleus must be
determined in a RDHF calculation with the efFective La-
grangian, Eq. (3). Such a calculation has recently been
carried out by Fritz et al. [36] for Ca, which we use in
our calculation of the nucleon mean free path. Note that
in finite nuclei, the incident energy T& b is related to the
total energy E by

III. RESULTS AND DISCUSSIONS

The coupling constants of the sigma and omega me-
son of the effective Lagrangian are shown in Figs. 2(a)
(sigma) and 2(b) (omega). Both efFective coupling con-
stants drop with increasing density. There are some dif-
ferences between the efFective coupling constants derived
from the Bonn A, B, and C potentials; those based ori
Bonn C decrease more with increasing density. This dif-
ference can be traced back to difFerences in the tensor-
force strength of these potentials [39].

From the efFective Lagrangian we derive the nucleon
self-energy (optical potential) up to the fourth-order
Feynman diagrams (see Fig. 1). In Fig. 3, we show
the scalar and vector potential, Us and Uv, as defined
by Eqs. (4) and (ll). We consider two cases with den-
sity p=(l/2) po (solid curves) and po (dashed curves);
pp = 0.17 fm is the density of normal nuclear mat-
ter. The results are obtained with the Bonn A potential.
The incident energy T~ b is related to the total energy E
by E = Ti b + m. Whereas the real part of these po-
tentials depends only weakly on the incident energy and
decreases slightly (in magnitude) with increasing energy,
the imaginary part depends strongly on the incident en-

ergy and increases (in magnitude) very fast with energy.
With the scalar potential Us and the vector poten-
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