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The temperature dependence of different thermodynamic quantities such as the free energy, chem-
ical potential, symmetry energy, single particle potential, equation of state, etc. , is studied for asym-
metric nuclear matter within a fully self-consistent model with an effective interaction. The equation
of state is found to be quite soft in agreement with supernova calculations. The critical temperature
for the occurrence of a liquid gas phase transition is found to decrease with the proton-to-neutron
ratio p and finally vanishes for pure neutron matter. The possibility of m condensation has also
been studied.
PACS number(s): 21.65.+f, 21.30.+y, 25.75.+r, 97.60.3d

I. INTRODUCTION

In the last few years, the study of hot and dense nu-
clear matter has attracted considerable interest in nuclear
physics and astrophysics. In particular, the investigation
of the nuclear matter equation of state under unusual
conditions of temperature and pressure plays an impor-
tant role in the understanding of supernova explosions
and neutron stars. Recently Baron, Cooperstein, and
Kahana [1] found a softening of the equation of state of
neutron-rich nuclear matter at high density. Within a hy-
drodynamical model, they have shown that the prompt
bounce-shock mechanism in type-II supernovas can be
understood if the compressibility is taken to be consid-
erably lower than the values given by most sophisticated
microscopic nuclear matter theories.

In the supernova implosion-explosion stage, neutrons
outnumber protons at the core center by approximately
two to one because of photodisintegration and electron
capture. Hence, for the understanding of such supernova
explosions, the properties of asymmetric nuclear matter
are quite important. In the last few years, we [2, 3] have
been developing a fully self-consistent model which is a
generalization of the Brueckner theory to finite tempera-
tures in which scattering to intermediate states is taken
into account and the degeneracy and the single particle
potential are calculated self-consistently. This model [2]
has been found to be quite successful in describing the
experimental data on entropy production in heavy-ion
collisions. We [3] have also used this model to calcu-
late the temperature dependence of difFerent thermody-
namic quantities for symmetric nuclear matter and neu-
tron matter. The results are in reasonably good agree-
ment with the predictions of other thermodynamic mod-
els [4—6]. The success of our model for symmetric nuclear

matter and pure neutron matter has encouraged us to ex-
tend it to asymmetric nuclear matter.

Up to now, only a few theoretical calculations have
been reported for asymmetric nuclear matter. ter Haar
and Malfliet [7] have performed a relativistic Dirac-
Brueckner calculation, based on a one-boson-exchange
interaction. However, their calculation is restricted to
zero temperature. Again, they observe a stifF equation of
state in contrast with the outcome of supernova calcu-
lations. Wiringa, Fiks, and Fabrocini [8] have reported
microscopic calculations of the equation of state of dense
nuclear and neutron matter within the variational ap-
proach. They have extended the calculation to asym-
metric nuclear matter by interpolation. Bombaci and
Lombardo [9] have performed a systematic calculation
of asymmetric nuclear matter within the framework of
the Brueckner-Bethe-Goldstone approach. However, all
these calculations are restricted to zero temperature.

In Sec. II, we give a brief discussion of the model. The
results are analyzed in Sec. III. Section IV contains the
summary and the conclusions of the present study.

II. THE MODEL

We have already discussed the details of our model
in our earlier publications [2, 3, 10—12]. We give here a
few important steps for completeness. In our formalism,
we have extended the Brueckner theory by including the
temperature efFects. In the finite temperature case, we
start by calculating the grand thermodynamic potential
per unit volume:

0 = P= Tlntrexp [
——(H ——p, )/T],

where H, P, T, p, and n are the Hamiltonian, pres-

0556-2813/93/48(3)/1056(6)/$06. 00 1056 1993 The American Physical Society



48 HOT AND DENSE ASYMMETRIC NUCLEAR MATTER 1057

sure, temperature, chemical potential, and number den-
sity, respectively. The main reason for taking the grand
thermodynamic potential lies in the fact that it can be
expressed as a linked cluster expansion analogous to zero
temperature Brueckner-Goldstone expansion, i.e. ,

0 = Op+ Oi+ 02+. (2)

where Op, Oi, 02, . . . are the contributions to the ther-
modynamic potential due to the unperturbed part, one
body part (single particle potential), and two body part
(binary collision) of the Hamiltonian. Since our formal-
ism is based on a linked cluster expansion, it is expected
to be reliable up to very high densities. Our formalism
is limited up to 02. In this formalism, we have used the
Brueckner reaction matrix instead of the bare NN force.
The number density n is given by

6 k2
+U (k),

where k is the momentum and m is the nucleon mass.
The single particle potential U (k) is de6ned by

1
U+(kg) = dk2[ n+ (k2) g++ (E., ki, k2)

+n (k2)g +(E„kg, k2)],

where n (k) is the Fermi distribution function given by

1
n (k)= 1+ exp([s (k) —y, ]/T)

(6)

where n is the number density of nucleons with isospin
7 (+ for protons and —for neutrons). The single particle
energy is given by

It may be noted that the single particle potential is
needed in calculating n (k) [Eq. (6)], which is in turn
required to calculate the single particle potential itself.
Hence the single particle potential is calculated by it-
eration. Because of this self-consistency of the single
particle potential, the scattering to intermediate states
is taken into account properly through the Pauli oper-
ator. The equation of state thus obtained is expected
to be valid up to densities much higher than the normal
nuclear matter densities. The chemical potential p is
determined by the number density constraint [Eq. (3)].
It should be noticed that Eqs. (3) and (5) warrant double
self-consistency which must be satisfied with respect to
the single particle potential and chemical potential. The
internal energy, pressure, and free energy are given by

2

A n )- (2~)s

, )
7

E=u —TS.

(n'k'
d'kn (k)

i
+ —U (k) I, (11)(2m 2 )

dkk'n (k)
i

—k „„+—U (k) i, (12)
(1 de 1

(3 dk 2 ) '

V,e ——VsME+ W, (14)

We had used Sussex interaction in Ref. [2]. However, this
interaction does not saturate correctly in nuclear matter.
It gives insufficient binding by about 3 MeV per nucleon.
Hence following the prescription of Tripathi, Elliot, and
Sanderson [14] we have added a density-dependent term
to the original Sussex interaction. The parameters of
the density-dependent term are determined empirically
so as to correctly reproduce the binding energies and the
densities of nuclear matter and O. Such a prescription
has also been followed in Ref. [3]. If VsME denotes the
original tabulated Sussex interaction matrix elements, an
efFective interaction Vg is defined as

In the above equation p is the chemical potential of the
nucleons with isospin 7. We have put the Boltzmann
constant equal to 1. The number density n is obtained
by integrating the distribution function n (k) over all
momenta and weighting it with spin degeneracy. The g's
are the interaction matrices

arctan [mp@Q~~ K (E,)]
g+7' S 1 1) 2

7CPEQ«I

where pE is the single particle level density and the K
matrix satisfies the integral equation

K ~ (E) =V +V KE, —Hp

Here V i is the realistic nuclear interaction, Q I is the
Pauli operator given by
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FIG. 1. Energy per nucleon versus density for different
values of p: (a) T = 10 MeV and (b) T = 20 MeV.
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where W is a simple density-dependent addition given by

40-

W = ) Ab(r)p (R,)
i(j
+2[B(1+P;, ) + C(1 —P;, )] exp( —r /a ), (15)

X
20-

ELJ

where r = r; —r~, R =
2 (r, + r~), p is the density, and P,~

the space exchange operator. The values of the different
parameters of this equation are taken from Ref. [14] and
are A = 568 MeV fm +, B = —101.7 MeV, C = 90.6
MeV, and n = 1/3.
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FIG. 2. Symmetry energy versus density at T = 10 MeV
and 20 MeV.

III. RESULTS

The calculations are performed taking the effective in-
teraction given by Eq. (14). We have calculated the bind-
ing energy per nucleon at different densities and tem-
peratures using Eq. (11). In Fig. 1, we plot these at
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tential versus momentum at
p = 0.1 fm (a) for protons at
T = 10 MeV, (b) for neutrons
at T = 10 MeV, (c) for pro-
tons at T = 20 MeV, and (d)
for neutrons at T = 20 MeV.
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FIG. 6. Free energy versus density at T = 10 MeV and
20 MeV at diferent asymmetries p.

FIG. 4. Equation of state at different asymmetries p: (a)
T = 10 MeU and (b) T = 20 MeU.

different values of p. As can be seen from the figure,
for a decreasing proton-neutron ratio p, the saturation
density shifts to lower values in agreement with observa-
tions. Similar results were also obtained by ter Haar and
Malfliet [7], Bombaci and Lombardo [9], and Wiringa,
Fiks, and Frabrocini [8] at zero temperature. Bombaci
and Lombardo have confirmed the empirical parabolic
law satisfied by the binding energy per nucleon. They
have shown that the quadratic dependence of the bind-
ing energy upon the asymmetry parameter P = ~ & is
valid up to high values of P at zero temperature. Such a
parabolic law for binding energy is also found to hold at
T = 10 MeV and 20 MeV in our calculation. Under this
approximation, the symmetry energy can be evaluated
using the equation

We have plotted the symmetry energy versus density at
T = 10 and 20 MeV in Fig. 2. Our results at T = 10 MeV
are almost similar to the values reported by Bombaci and
Lombardo [9] at zero temperature.

In Fig. 3, we plot the single particle potential versus
momentum at d.ensity p = 0.1 for different asymmetries
and at temperatures T = 10 and 20 MeV. The varia-
tion of the single particle potential with the density for
symmetric nuclear matter and neutron matter was dis-
cussed in our earlier publication also [3]. Here we want
to study how the single particle potential varies with the
asymmetry. For symmetric nuclear matter, our results
agree quite well with those of Lejeune et al. [4]. This
gives us confidence to extend our model to asymmetric
nuclear matter. We find the depth of the proton and
neutron single particle potential to decrease with asym-
metry at T = 10 MeV. This is because as the proton ratio
decreases, the T = 0 part of the nuclear force becomes
smaller and hence the depth of the potential decreases.

E,y
——B(p, P = 1) —B(p, P = 0)
= B(p, p = 0) —B(p, p = 1).
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FIG. 5. Critical temperature versus asymmetry p.
FIG. 7. Chemical potential for proton at T = 10 MeV

and 20 MeV at diferent asymmetries p.
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However, as we go to T = 20 MeV, the proton single par-
ticle potential almost becomes independent of asymme-
try. This is probably due to the dominance of the thermal
energy. Bombaci and Lombardo [9] have also studied the
variation of single particle potential with asymmetry at
zero temperature. The depth of the potential in our case
is smaller since our calculation is at finite temperature.

In Fig. 4, we plot pressure versus density at different
asymmetries and temperatures. We [3] find from our cal-
culation that the critical temperature for the occurrence
of a liquid gas phase transition in symmetric nuclear mat-
ter is 9.5 MeV. Most of the other calculations [5, 6) predict
a much higher value for the critical temperature. How-
ever, ter Haar and Malfiiet [13] have performed a fully
self-consistent Dirac-Bruckner calculation and found the
critical temperature to be below 10 MeV. This critical
temperature decreases with the decrease of the asymme-
try parameter p as shown in Fig. 5. However, this de-
crease in the critical temperature is not uniform. From
p = 1 to p = 0.4, the decrease in the critical temperature
is almost uniform. However, the critical temperature is
almost constant for p lying between 0.4 and 0.2. Then
finally for p = 0 (neutron matter), we have T, = 0, indi-
cating the absence of a phase transition. The equation of
state for all values of the asymmetry parameter p lies in
a narrow band both at T = 10 MeV and T = 20 MeV. A
similar trend was also observed by ter Haar and Malfiiet
at zero temperature. However, their equation of state is
quite stifI. As has been pointed out, Baron, Cooperstein,
and Kahana [1] have tried to understand the iron-core
collapse of a type-II supernova within a hydrodynamic
model. They have found that one can obtain sustained
shocks and prompt explosions if the equation of state is
taken to be soft. On comparison, we also And our equa-
tion of state similar to Baron, Cooperstein, and Kahana
[1]. Our calculated compressibility also points to a soft
equation of state. For example, at T = 10 MeV, we find
the value of K = 84 at p = 0.4 compared to the value of
K = 158 for symmetric nuclear matter. But this value
drops to K = 77 at p = 0.2.

In Fig. 6, we plot the free energy versus density at

120.0-

90.0-

60.0—
l

C

30.0-

QP
0.0 0 1 0.2 0.3 0.4

DKNSlTY t fry' )

I I

0 5 0.6

different asymmetries at T = 10 and 20 MeV. Our re-
sults for symmetric nuclear matter and neutron matter
agree well with those of Friedmann and Pandharipandy
[6], Lejeune et al. [4], and Baldo et al. [5]. We find that
the free energy increases with a decrease in the asymme-
try parameter p.

In Figs. 7(a) and 7(b), we plot the chemical potential
for a proton at T = 10 MeV and 20 MeV, and in Figs.
8(a) and 8(b) the neutron chemical potential is plotted
at these temperatures. In our calculation the chemical
potential is calculated self-consistently. We 6.nd that on
increasing the neutron concentration (decreasing p), p„
decreases, but p„ increases, which is expected.

Whether pions appear in dense nuclear matter has
been of considerable theoretical interest. It has been
shown by Baym and Pethik [15] that vr will form via
n ~ p+ vr if the neutron proton chemical potential dif-
ference p —p„exceeds the vr rest mass m — = 139.6
MeV provided one neglects the interaction of pions with
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FIG. 8. Chemical potential for neutron at T = 10 MeV
and 20 MeV at different asymmetries p.

Flt . 9. p —p,„versus density: (a) T = 10 MeV and (b)
T = 20 MeV.
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matter. We have calculated the chemical potential self-
consistently. In Fig. 9, we plot p —p„versus density
at T = 10 MeV and 20 MeV. It is found that p —pz
is greater than the rest mass of the pion for p & 3po for
p ( 0.1, i.e. , for neutron-rich matter at T = 10 MeV.
However, for T = 20 MeV, we And p, —p~ ) m — for all
values of p for p ) 3po. Thus we predict the occurrence
of pion condensation at high density. The pion conden-
sation is found to be favored at higher temperature.

IV. CONCLUSIONS

We have developed a self-consistent model to calcu-
late difFerent thermodynamic quantities at difFerent tem-
peratures. Our model is an extension of the Brueckner
theory to finite temperature. We have used an efFec-
tive interaction which consists of the Sussex interaction
and a density-dependent part. The parameters of the
density-dependent part are fixed so as to correctly re-
produce the binding energies and the densities of nuclear
matter and O. We find from our calculation that the
saturation density shifts to lower values with a decrease
of p = Z/N as expected. Assuming the parabolic law
for the binding energy, we have extracted the symme-

try energy at T = 10 MeV and 20 MeV. The symmetry
energy is found to decrease with temperature. We have
calculated the single particle potential and chemical po-
tential self-consistently and studied the dependence of
these quantities on the asymmetry p. In our calculation,
we find the occurrence of a liquid gas phase transition at
T = 9.5 MeV for symmetric nuclear matter. This value
of the critical temperature is smaller than most other
calculated results [5, 6]. However ter Haar and Malfliet
[13] found the phase transition to occur below T = 10
MeV from their Dirac-Brueckner calculation. The criti-
cal temperature is found to decrease with asymmetry p.
However, for p = 0.4—0.2, the critical temperature is al-
most constant. Finally for neutron matter (p = 0), the
critical temperature T, = 0, indicating the absence of
phase transition. The calculated free energy is found to
increase with the decrease in the asymmetry parameter
Q 0

We predict the occurrence of pion condensation for p )
3po. The pion condensation is found to be favored at
higher temperature.
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