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A method for extracting effective p-n monopole matrix elements from experimental data is devel-
oped and applied to nuclei just below Pb. Eight effective monopole matrix elements are extracted
from a fit to 38 experimental data with an overall rms deviation of 116 kev. The resulting matrix
elements are compared with those from sernirealistic effective interactions.
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I. INTRODUCTION

It is widely recognized that the valence p-n interac-
tion is an essential key to the understanding of nuclear
structure and its evolution with W and Z [1—5]. The
effects of the pn interaction appear most vividly in
two more or less distinct empirical aspects, reflecting,
respectively, its quadrupole and monopole components.
The quadrupole component is primarily responsible for
the development of collectivity in nuclei removed from
closed shells. Indeed, this fact accounts for the success
of the 1V„K„scheme [4] in correlating the nuclear data in
shape-transitional regions leading to deformation. The
monopole component is critical in shifting and determin-
ing the basic single-particle energies (spe's) of the under-
lying shell structure. This in turn determines the shell
gaps and closures and hence the valence space in which
the quadrupole component acts. The importance of the
monopole component of the p-n interaction in eradicating
the proton shell gap at Z=38 when N )60, leading to the
virtually instantaneous onset of deformation in the Sr, Zr,
and Mo isotopes, was discussed in Ref. [3]. Figure 1 [6]
illustrates the effect of the monopole p-n interaction on
the spe's of the % = 50—82 shell between Zr (Z = 40)
and Sn (Z = 50). The principal change, a dramatic
lowering of the v(19712) orbit, is largely due to the filling
of the vr(lgs12) orbit in this region, since these two orbits
have a large overlap and thus a large attractive monopole
interaction strength. Studies by Goodman [7], Heyde [5],
and others [8, 9] have further elucidated the importance
of this component of the effective nuclear force in sev-
eral mass regions, and in doing so have also linked the
concepts of shape coexistence and. intruder states into a
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FIG. 1. Relative single-particle and single-hole energies,
respectively, in Zr and Sn, showing their changes as a
function of % and Z. The d5y2 energy is set equal to zero in

Zr and the energies are further normalized so that the szy2
level has the same energy in the two nuclei. Based on Ref. [6].

coherent picture.
Despite these widespread effects of the monopole p-n

interaction, there is no acceptable model for its matrix
elements. Semirealistic matrix elements, which success-
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fully describe many aspects of nuclear structure, are un-
able to reproduce spherical single-particle systematics in
passing through a shell. As a consequence, many mi-
croscopic analyses simply ignore the problem, using a
p-n force with no monopole component and choosing the
spherical single-particle energies (in some way) for the
nucleus under discussion [10, 11]. Monopole p nef-fects
can be included in a minimal way through the use of a
linear interpolation procedure [12], but this ignores any
specific dependence on the orbits that are filling. There
has also been an attempt to parametrize the monopole
matrix elements (mme's) in terms of the proton and neu-
tron quantum numbers [13], but so far this has not been
done systematically.

In this paper, we propose a systematic approach to
extracting effective monopole p-n matrix elements from
experimental data. Our approach is similar in spirit to
that of Ref. [14], where effective p nmatr-ix elements for
the light rare-earth region were obtained by a scaling
procedure in the context of the spherical Hartree-Fock-
Bogoliubov (HFB) method. However, it really owes its
origin to the work of Arenas Peris and Federman [9] on
intruder states As .in Ref. [9], we consider the p nmrne's-
as variational parameters, which are determined by fits
to appropriate experimental data. However, as we will
discuss in Sec. II, we have made some extensions and
improvements of their method.

The basis of our proposed method is the observation
that in nuclei in which at least one type of particle (neu-
tron or proton) is fairly near a magic number, the gener-
alized seniority scheme [15] should be applicable. In such
cases, low-lying states should be dominated by configura-
tions in which the neutrons and/or the protons have gen-
eralized seniority (m) zero. Whenever this is the case, the
only component of the p-n interaction that contributes is
the monopole. By judicious fits to the binding energies
and spectra of such nuclei, we can hopefully extract the
mme's of interest. In Sec. II, we describe the method and
present some criteria for choosing the nuclei to which it
should apply.

As a first application of our method, we have con-
sidered nuclei in the mass region just below Pb. In
Sec. III, we discuss the data that were included in the
fits as well as the other required input and then describe
our results. Finally, in Sec. IV, we discuss the principal
conclusions of our work. A major thrust of our effort
has been to clarify the practical issues that must be ad-
dressed before our method can be used systematically to
extract p-n mme's. As we will see in the discussion to
follow, a principal limitation concerns the lack of exper-
imental data, which may hopefully be remedied in the
future through newly available experimental opportuni-
ties.

II. THEORETICAL PRAMEWORK

Nuclei away from closed shells are dominated by
two competing correlation structures. Pairing correla-
tions, resulting from the interactions between identi-
cal nucleons, give rise to a spherical system with (to
a good approximation) conserved generalized seniority.

(V„„), = ) n,
" (i) n", (i) V,",- .

Here, H~ denotes the Hamiltonian for particles of type p
(n or p), including both the single-particle energies and
the identical-nucleon interaction. Also, Vz z represents
the average or monopole matrix element between a pro-
ton in orbit j„and a neutron in orbit j and n (i) is the

3p
number of valence nucleons in orbit j~ in the state i.

The basic idea of our analysis will be to extract E,
and (H~), from experimental data (combined with cal-
culations, where necessary) and n (i) from calculations.

3p
If this can be done reliably, the only remaining unknown
quantities that determine the energies are the p-n mme's.

With this in mind, we set up a system of nonlin-
ear equations (one for each state with the appropriate
generalized-seniority structure) to determine (in a least-
squares sense) the unknown mme's. The system of equa-
tions can be written compactly as

) A* V "=B',
2pln

where, as before, i specifies the nuclear state,

and

B' = E, —(H„); —(H„), (4)

A,*. ,- = n~ (i) n,
" (i) .

This overcomplete system of equations, once set up, can
be solved using standard iterative techniques.

The quantities E; can be directly extracted from ex-
perimental data. A natural first thought is that, as in
Ref. [9], (H~), and (H ); can also be obtained from ex-
perimental energy differences, but now between the dou-
bly magic core and the semimagic nuclei with the cor-
rect numbers of valence nucleons. However, in a system
with active neutrons and protons, such a procedure ig-

Neutron-proton correlations, resulting primarily from the
quadrupole-quadrupole interaction, lead to a deformed
system and break generalized seniority. The interplay of
these two correlation structures is governed by the ra-
tio ~ "+~, where N„and N are the number of valence
protons and neutrons (or holes), respectively. Empirical
systematics suggest that when this ratio is less than 2,
the system will be dominated by pairing correlations. If,
furthermore, the system is either even-even or odd-mass,
the structure of the lowest states will be dominated by
configurations in which the neutrons and/or the protons
have generalized seniority m = 0 and thus J = 0+. For
such states, the only component of the p-n interaction
that is active is the monopole. This observation provides
the basis of the theoretical framework we use to extract
monopole p-n matrix elements from experimental data.

For systems of the type just described, the energies of
the lowest states relative to that of the relevant doubly
magic core can be expressed as (i denotes the state)

E* = (H-)* + (Hp)' + (V~--)'

where
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nores changes in the structure of the identical-particle
wave functions that may be induced by the same p-n
monopole interaction that we want to determine. Thus,
in our calculations we modify these quantities so that
they are consistent with the extracted mme's. Namely,
at each step of the iteration procedure, we calculate the
modifications to the bare single-particle energies e that

2p
result from the monopole interaction with particles of
the other type and then determine the changes in (H ),
and (H„), that result. The effective single-particle ener-
gies P are related to the bare values by [p' = p(n) if

2p

+) n~ V
2p 2p I 2p2pt

/pl

Next we discuss how we treat the identical-nucleon sys-
tems. A generalized-seniority treatment would be most
appropriate, particularly if we were interested in precise
energies and occupation numbers. Our interest, however,
is in the occupation numbers and in corrections to ener-
gies, and these can be obtained with essentially no loss
of accuracy using the simpler BCS approximation. This
is the method we have used in the calculation that we
report in the following sections.

III. CALCULATIONS FOR NUCLEI JUST
BELOW Pb

A. Experimental input

As discussed in Sec. II, our method involves setting up
an overcomplete system of coupled equations for the en-

ergy levels that depend only on the unknown p-n mme's
of interest (as well as on additional "known" quantities).
Each equation corresponds to a single experimental level.
In principle, we could include all levels that to a good ap-
proximation have the appropriate generalized-seniority
structure. Thus, in dealing with nuclei in the Z = 50—
82, N = 82—126 shell, we could include levels just below

Pb as well as levels just above Sn. All have the
requisite structure and all depend on the same 30 mme's
(corresponding to the five active proton orbits and the
six active neutron orbits of this region). Unfortunately,
there are insufFicient experimental data available to carry
out a simultaneous fit to all 30 efIective mme's. Thus, it
is essential to carry out the analysis in steps, focusing in
each on those nuclei for which a limited number of mme's
are expected to dominate.

We will in this work focus on those nuclei that are just
below Pb. In particular, we will assume a Pb dou-
bly magic core (with bare single-particle energies given by
the Pb and Tl spectra) and only consider those nu-
clei in which the dominant proton holes are in the 3sig2,
2d3(2, and lh, &zg2 orbits and the dominant neutron holes
in the 2fsg2, 3pqg2, 3p&y2, and lizsy2 orbits. Nuclei for
which this is the case (and which should also have the ap-
propriate generalized-seniority structure) are those of the
odd- and even-Hg isotopes and the odd-Tl isotopes. To

a good approximation, the energies of these levels should
depend on only 12 of the p-n mme's. As we will dis-
cuss shortly, in the end we were able to extract reliable
estimates for 8 of the 12.

The even-Hg binding energies can be readily extracted
from existing compilations [16]. The choice of energies
in odd-mass nuclei, however, is more subtle and requires
signi6. cantly more care. In odd-mass nuclei, some mixing
of generalized seniorities can occur even for semimagic
systems. This leads to a fragmentation of single-particle
strength, as reflected by single-nucleon pickup spectro-
scopic factors. Ideally, we should use the centroid of
pickup strength to represent the energies of the unmixed
pure-generalized-seniority configurations. Unfortunately,
sufFicient data do not always exist. This is in part due to
the difhculty of resolving states at higher excitation en-
ergies, in part to the inability to assign reliable J values
(particularly regarding I 6 Ij2 ambiguities), and in part
to the inherent unreliabilty of small spectroscopic fac-
tors. Of equal importance, even if complete and reliable
data were available in some nuclei in an isotopic chain,
there are often other nuclei that are simply inaccessible
with transfer reactions. It is clearly inappropriate to use
complete centroids iri some nuclei in a chain and then to
switch to the lowest levels of a given spin and parity in
another.

All of these issues have led us, after many trials and
sensitivity tests, to develop a set of rules and procedures
for choosing a consistent set of data for the odd-mass nu-
clei included in our fits. First, only major components
of the spectroscopic strengths were included in the ex-
traction of centroids. Second, all orbits with extensive
fragmentation (e.g. , the dsy2 proton orbit in Tl) were not
included in the fits. The results that we will report are
based on this set of rules. However, we have also carried
out calculations using instead the lowest states of each
spin and parity. The fact that the results obtained from
the two separate fits were not very difFerent convinces us
that our prescription is relatively stable.

There are a few other points worth mentioning here.
Even among the odd- and even-Hg isotopes and the odd-
Tl isotopes, there are some nuclei that should not be in-
cluded in the fit. In the lighter isotopes, the 7r(hsy2) orbit
begins to "intrude" into the low-energy spectra (also as
a consequence of the monopole p ninteraction) [-7], pro-
ducing the onset of collective behavior. Once this occurs,
the low-lying states no longer have the desired simple
generalized-seniority structure, nor do they depend solely
on the mme's of interest. As a consequence, we have not
included data for A ( 195 in our fits. At the other ex-
treme, we also do not include the nucleus Tl, since we
do not expect a coherent generalized-seniority structure
to evolve for a nucleus with so few valence neutrons and
protons.

Figure 2 compactly summarizes the nuclei and efIec-
tive single-particle levels that were used in the fits. The
caption gives details. One of the end results of this study
will be the recognition that a more thorough approach
to the problem of p-n mme's necessitates more exten-
sive data, even for the limited region of nuclei just below

Pb. We will return to this later.
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FIG. 2. A schematic summary of the data included in the fit, in the form of a slice of the nuclear chart (see text for a
more detailed discussion). The notation BE in the boxes for the even-Hg isotopes denotes the binding energy relative to Pb.
For odd-A nuclei, the ground state binding energies are also included in the fits, as are the effective single-particle energies
shown in the respective boxes (in keV). The format for the effective single-particle levels is given in the legend. Note that this
format, which applies for all odd-mass nuclei included in the fits, does not imply an ordering in energies of these levels. Bowes
criss-crossed by an x indicate nuclei for which no data were used.

B. Further details and results

18
z'
17

Gp=

I: Gp ——
18G„= —,
23G„= —.

Prescription I is favored by calculations of quasiparticle
energies in the Pb region, while II is perhaps the most
commonly used. Solutions to the system of equations
[(3)—(5)I showed a preference for the latter prescription:
The rms deviations between fitted and experimental lev-
els with prescription I were typically about 30'Fo larger.
We therefore adopt prescription II in the analysis to fol-
low, although we feel that further study of this issue is
worthwhile.

Even with the data limited to nuclei relatively near
Pb, the calculations still in principle involve all 30

mme's. However, since the nuclei we include have very
few holes in the lower levels, their low-lying energy levels
are not sensitive to the corresponding 18 mme's. We tried
several prescriptions for these other mme's and found
that, for any reasonable choice, the values extracted for
the important mme's and their associated errors were
more or less the same. In the results to follow, we
set, for definiteness, all 18 mme's involving the n(2ds~2),
7I (lg7/2), v(2f7y2), and v(lhsg2) orbits to —0.2 MeV

As noted earlier, of the 12 matrix elements correspond-
ing to the upper single-particle orbits, only 8 could be

In addition to the experimental data described above,
the other crucial ingredients to our calculations are ap-
propriate pairing strengths. These, in conjunction with
the p-n mme s, dictate the distribution of particles in
the states included in the fit. We have considered two
prescriptions for the pairing strengths: VP "

2d3/2- »13/

p A

1h11/2- »13/2

—0.20,

—0.40,

vp"
2~3/2 3p3/2

p A
lh11/2-3p3/2

—0.30,
—0.20,

reflecting the general belief [1,13] that mme's correspond-
ing to p npairs with similar -quantum numbers (and par-
ticularly those with large and similar quantum numbers)
should be stronger than those for which the quantum
numbers differ substantially. However, we have checked
that the final results were not very sensitive to the de-
tailed choices.

Ultimately, the calculations that we carried out in-
volved fits to 38 experimental data with 8 unknown
mme's. Convergence of the iterative solution to (3)—
(5) was usually quite rapid (typically ( 5 iterations),
and both the rms deviations of the fits and the resulting
mme's were not very sensitive to further details of the
calculations (e.g. , we could remove some of the less cer-
tain levels from the fit or we could fix the unvaried mme's
at alternative values without substantially changing the
results) .

Our final results are summarized in Table I. The over-
all rms deviation of the fit was 116 keV. We also include
statistical errors for each of the fitted mme's. Note that

determined accurately from the levels included in the
fit. The other four, involving the p npairs n-(2ds~2)-
v(liisy2), vr(lhiiy2)-v(liis~2), a(2dsy2)-v(3psy2), and
7r(lhii(2)-v(3psg2), invariably emerged from the fits with
very large uncertainties. We fixed these four matrix ele-
ments at the following values (all in MeV):
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TABLE I. ER'ective p-n monopole matrix elements arising from a fit to 38 energy levels in the
even-Hg isotopes and the odd-Hg and -Tl isotopes, as described in the text. In parentheses are
given the statistical errors associated with each calculated matrix element. All matrix elements
involving the 2dsgz and 1gr~2 proton orbits and/or the 2 fr~2 and 1hsg2 neutron orbits were set to
—0.2 MeV and not included in the fit. Others that were not included in the fit are denoted by (n.f.)
for the error. All results are given in Mev.

Jp/ J„
381/2
2G3/2

~ ~11/2

3P1/2
-0.47 (0.02)
-0.62 (0.06)
-0.30 (0.12)

2 f5/2
-0.37 (0.01)
-0.21 (0.04)
-0.39 (0.06)

3P3/2
-o.oo (o.o4)
-O.3O (n.f.)
-O.2O (n.f.)

1113/2
-o.3o (o.o2)
-0.20 (n.f.)
-0.40 (n.f.)

in all cases they are substantially smaller than the matrix
elements themselves. As such, we can conclude that all 8
mme's have been determined to a fair degree of accuracy.
We should emphasize that the errors listed are from the
fits alone and do not include contributions from uncer-
tainties in the remaining input parameters (e.g. , pairing
strengths, the use of centroids vs lowest spe's, etc.).

G-matrix results for the p-n mme's appropriate to this
region were reported some time ago in Ref. [7] (Table I).
On the average our semiempirical mme's are somewhat
weaker than those of Ref. [7]. There are also some rather
glaring differences in specific mme's, most notably in the
interaction between a 3sz/2 proton and a 3p3/2 neutron.
Our value for this matrix element is —0.09 MeV, whereas
the G-matrix calculation gives —0.79 MeV. It is interest-
ing to note that when the matrix elements of Ref. [7]
(supplemented by the common value of —0.2 MeV for
those not listed) were inserted into the system of equa-
tions (3)—(5), the resulting rms deviation was 2.56 MeV.
This reinforces our earlier comment that first-principles
treatments to date have not been able to produce reliable
p-n mme's, and underscores the importance of empirical
extractions of monopole p-n matrix elements.

The less-comprehensive fits of Ref. [9] also produced
values for several of the same matrix elements that we
have determined, notably for those involving the 3sz/2
proton orbit. In general, the two sets of calculations give
similar results for these matrix elements, even though our
analysis included more data in the fits and also incorpo-
rated effects of the p-n monopole interaction in modifying
the identical-nucleon contributions to the energies.

IV. CONCLUDING REMARKS

In this paper, we describe a method to extract effective
proton-neutron monopole matrix elements from experi-
mental data. The method is based on the observation
that for nuclei in which at least one type of nucleon is
near a closed shell, the low-lying states should have a sim-
ple generalized-seniority structure, whereby the neutrons
and/or the protons have J = 0+. In such nuclei, the
only component of the proton-neutron interaction that
contributes is the monopole. The energies of such states
can be expressed in terms of quantities that can either be
extracted from data or reliably calculated, and the un-
known monopole matrix elements. These unknown quan-
tities can then be obtained from a nonlinear least-squares
fit to the experimental energies.

We have applied this method to nuclei just below
Pb, where enough experimental data exist to reliably

pin down several mme's. The calculations yield fairly
definitive predictions for 8 mme's, corresponding to the
last few proton and neutron orbitals in the Z = 50—82
and % = 82—126 shells, respectively.

The extracted matrix elements, all of which have fairly
small statistical uncertainties, in general seem reason-
able. They are all attractive and on the average exhibit
the property that those corresponding to neutron and
proton orbits with similar quantum numbers are stronger
than those for which the quantum numbers difI'er sub-
stantially.

The matrix elements that we obtain are on average
somewhat smaller than those from first-principles G-
matrix calculations. This we believe is essential if we wish
to describe not only excitation spectra but also binding
energies. And indeed effective shell-model-type fits in
heavy nuclei [17] lead to magnitudes similar to those we
obtain.

It is our hope that reliable effective p-n matrix ele-
ments, extracted from experimental data as in our anal-
ysis, can provide useful constraints for models (micro-
scopic or otherwise) that attempt to understand the
evolution of single-particle energies in the nuclear shell
model. Since these single-particle energies are critical to
a quantitative understanding of nuclear structure, both
near and far from stability, such constraints should prove
very useful, particularly as new realms of nuclear species
become accessible in the future.

The proposed method can in principle be used to ob-
tain all p-n mme's for heavy nuclei, where the valence
neutrons and protons fill different major shells. In lighter
nuclei, proper consideration of isospin conservation would
lead to some mixing of generalized-seniority configura-
tions.

While it may be possible to extract a few more mme's
in heavy nuclei at this time, the feasibility of using our
method to systematically determine alit mme's hinges on
the availability of significant new experimental data. Ra-
dioactive beam facilities, of the type currently being pro-
posed, may provide the required experimental tool.
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