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The time-dependent Green s function method provides a basic theory for nuclear dynamics and

heavy-ion collisions. The spectral function plays an important role in this theory containing information
on correlations in the medium. These are usually neglected by using a quasiparticle approximation. In
order to evaluate this particular approach it is important to establish in the static limit a link between
this method and other traditional nuclear many-body theories such as the Brueckner approach. Using a
self-consistent T-matrix approximation for the self-energy in the Green s-function approach, treating
particles and holes on equal footing, the self-energy can be obtained and compared with the Brueckner
expression. In the quasiparticle limit it contains terms up to and analogous to the Brueckner second or-
der rearrangement energy. In an extended quasiparticle approximation (EQP) which does not violate the
sum rule for the spectral function the Brueckner third-order rearrangement energy can also be repro-
duced. The latter approximation constitutes a bridge between the Brueckner and Green's-function
methods. It assumes small absorption (and energy dependence) of the mean field. Some numerical esti-

mates of the different approximation schemes that we discuss are shown. An iteration scheme for apply-
ing the EQP approximation is suggested.

PACS number(s): 21.65.+f

I. INTRGDUCTIGN

The theoretical analysis of heavy-ion (H.I.) collisions
has brought a renewed interest in microscopic theories of
nuclear matter. These, in general, describe the collisional
process in terms of a mean field and a two-nucleon col-
lision term, that mainly relate to the static and the dy-
namic (nonequilibrium) properties of nuclear matter, re-
spectively. A most interesting goal of the analysis is to
derive an equation of state for nuclear matter from the
experimental data, but the mean-field and two-nucleon
collisional effects are never fully separated in the short
time of the colhsional process. Thus to obtain the equa-
tion of state (equilibrium property), the dynamics (non-
equilibrium property) has also to be understood.

Most H.I. calculations and discussions of the equation
of state and possible pionic effects, etc. have been based
on the semiclassical Boltzmann-Uehling-Uhlenbeck
(BUU), Vlasoz-Uehling-Uhlenbeck (VUU), etc. models.
From a microscopic point of view these models seem too
simplistic to justify a too close comparison with experi-
ments. For a better treatment of both mean-field and col-
lisional effects, close attention to temperature (excitation)
dependence, quantal, and relativistic effects as well as
particle production has to be included. It may also be
necessary to go beyond the semiclassical approximation.

The only microscopic theory which is capable of
describing both the statics and dynamics in a comprehen-
sive way is the Green s-function approach first initiated
by Martin and Schwinger [I] and later developed by
Schwinger [2], by Keldysh [3], and by Kadanoff and
Baym [4], and with specific application to nuclei by

Danielwicz [5] and by Botermans and Malfliet [6]. The
latter authors have also extended their work to include
relativistic effects [7]. The static equilibrium limit of
these dynamic nonequilibrium theories is also important
both formally and for computational purposes. In the in-
itial stage of a H.I. collision the nuclei are (normally) in
their ground (temperature T=O) states. The transport
theory has to be capable of treating these limits correctly.

Microscopic descriptions of finite nuclei are based on
Brueckner theory. It is therefore important to make not
only the formal connection but also the connection be-
tween Brueckner and Green's-function theory in the
specific form that the Brueckner theory has been applied
for finite nucleus calculations. Although 8rueckner
theory applies only to ground-state nuclei and is not a dy-
namic theory, there is also a connection with transport
theories through the relation between the collision term
of, for example, Uehling-Uhlenbeck form and the absorp-
tive potential calculated by Brueckner theory [8]. It is
our plan to apply the path-ordered Green's-function
methods as discussed by Botermans and Malfliet [6] to
the study of correlations in nuclei and its effect on nu-
clear dynamics. The purpose of this paper is to clarify
some of the quantitative relations between the two
methods especially as regards mean field (self-energy),
correlations, and occupation numbers.

The Brueckner many-body theory of nuclei defines
leading-order contributions to the mean field; in first or-
der it is determined by the Brueckner reaction matrix.
Second- and third-order contributions are also defined
and are usually referred to as rearrangement terms be-
cause they are obtained from changes in the reaction ma-
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trix (rearrangements in the correlations) as a particle is
removed or added. The second-order contribution results
from a change in the Pauli operator while the third-order
contribution results from changes in the energy denomi-
nator.

Of these various contributions to the mean field, the
first- and third-order terms have (at least in principle)
been included in most self-consistent (alias Hartree Fock-,
Brueckner-Hartree-Eock, or renormalized Brueckner-
Hartree Fock-) microscopic calculations for finite nuclei.
The second-order term has however been totally neglect-
ed in most such calculations although it has been calcu-
lated and discussed many times for nuclear matter
[9—11]. In this case there is no direct need for a mean-
field potential (the wave functions are plane waves) but it
still enters indirectly by the variational search for the sat-
uration- density. The minimization of the energy with
respect to density is equivalent to saying that the single
particle energy (SPE) of a nucleon at the Fermi surface is
equal to the binding energy per nucleon. This is, in fact,
the Hugenholtz —Van Hove theorem. To satisfy this
theorem the second-order term has to be included. Being
strongly momentum dependent, changing by over 20
MeV from the bottom to the top of the Fermi sea at nor-
mal density and zero temperature [9—13], it is important
in determining the effective mass, i.e., the nonlocality of
the mean-field potential. Although the main importance
of this Brueckner second-order rearrangernent term for
finite ground-state nuclei [14—16] is for SPE s, its impor-
tance for heavy-ion collisions has been accentuated by the
BUU calculations with a momentum-dependent interac-
tion done by Gale and co-workers [17]. The rearrange-
rnent terms are also important for calculation of occupa-
tion numbers and spectral functions. The imaginary part
of the second-order rearrangement energy gives, for ex-
ample, the width of hole states already calculated in Ref.
[18].

This serves to show the important fact that the
Brueckner rearrangement terms play an important role
for the correct treatment of saturation and correlation
properties of nuclei. It therefore seems important to find
the corresponding terms in the Green's-function formula-
tion. Particles and holes are here treated symmetrically.
The effective interaction is usually defined not only with
particle-particle, as in Brueckner theory, but also with
hole-hole propagation in intermediate states. We shall
find that as a result both formulations contain essentially
the same "second-order rearrangement term. '*

An important ingredient of the Green's-function for-
malisrn is the spectral-function that contains information

on the correlation among nucleons. A numerical solution
requires an iterative procedure to include this function
consistently. This leads in general to complicated energy
integrations. In most works the spectral function is
therefore approximated by a delta function of the energy
peaked at the quasiparticle energy.

Such a simple approximation falls however short of in-
cluding correlations that are routinely included, e.g., in
Brueckner calculations. Iteration procedures using im-
proved spectral functions are necessary. As a first itera-
tion it is convenient to choose a quasiclassical approxima-
tion with all the strength at the quasi-particle peak. As a
second iteration one may consider choosing the quasi-
particle approximation including a strength function.
This approximation suffers, however, from inconsisten-
cies directly related to the fact that it does not obey the
energy sum rule.

The extended quasiparticle approximation (EQP) was
introduced in previous work [19]. It was shown to
remedy some of the faults of the simpler approximations.
The correlation structure was found to be similar to that
obtained in Brueckner theory. In the present paper the
EQP approximation is applied systematically to the
path-ordered Green's-function formalism of Boltermans
and Malfliet [6]. We shall find that it is necessary to go
beyond the quasiparticle approximations in order to find
the analog of Brueckner third-order rearrangements.
Therefore, the EQP approximation is a considerable im-
provernent.

The Brueckner formalism as well as applications are
found in many publications using different approaches of
presentation. The following section contains a concise
presentation suitable for comparison with the Green's-
function method which is presented in Sec. III. In Sec.
IV three approximations of the spectral function, a main
ingredient of the Green's-function method are discussed.
The extended quasiparticle approximation proposed here
has superior properties. This is demonstrated in Sec. V
where the zero-temperature case is discussed in relation
to Brueckner theory. Section VI contains a short discus-
sion and summary.

II. BRUECKNER FC)RMAI. ISM

Brueckner theory is strictly only applicable to zero-
temperature nuclei. In its original form it only considers
particle propagation in intermediate states by defining a
two-body reaction matrix or "effective interaction" K
with diagonal elements in nuclear matter given by

&p, p'l&(&)lp, p'&=&p, p'II'lp, p'&+ g &p, p'II'lp", p"'& ", ",. &p",p"'l&(II)lp, p'& .
P ~P

Integrations over continuum states are here and in the fu-
ture for simplicity replaced by summations. Conserva-
tions of energy and momentum are implicit. Occupation
numbers n (p) refer to the "model, " i.e., uncorrelated

I

medium and are equal to 1 and 0 for occupied and unoc-
cupied states, respectively. The +ig term is included to
obtain outgoing particle states in case of vanishing energy
denominator and K is, in general, complex and all ener-
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e~
=p /2m +Re Vi(, '(p, e ) (2)

where subscript B stands for Brueckner and with the po-
tential energy defined below. (Re and Im are used to in-
dicate real and imaginary parts, respectively. ) The total
energy is given by

gies defined below in terms of E are therefore also corn-
plex. We assume that the energies e~ are, as is usual in
Brueckner theory, defined by (neglecting the "off-energy-
shell" effect in particle lines [9])

dE~
e&(p) =

which in our case are generally complex. By direct
differentiation of the expression for the total energy in
Eq. (3) one gets [10]

e~(p)=S /2m+ V,"'(p, e, )+ V,"'(p, e, )+ V,'"(p, e, ),

where the superscript on V indicates the order of K. The
first order is obtained by differentiation only with respect
to the n (p) explicit in Eq. (3) to get

E~ = g n ( p )p /2m
Vi)"(p, e~)= g &p, p'lK(e~+e~ )lp, p'&n(p') .

P

(6)

+—g &p, p'lK(e~+e~ )lp, p'&n (p)n(p') .
2

P P

(3)

Only the ground-state energy is real because of the Pauli
blocking in Eq. (1). The exchange term is here and in the
future omitted for shortness. We define SPE's e(p) by
(the Landau definition) [9]

The matrix K also depends implicitly on occupation
numbers. The differentiation with respect to these give
the so-called Brueckner second- and third-order (in E)
rearrangement terms. The differentiation with respect to
the occupation numbers in the Pauli operator, i.e., in the
numerator of the second term of Eq. (1) leads to the
second-order term

8 +8 ~~ 8»~ 8 + l X/P~P ~P

where some relabeling was done in the last expression. Notice that the sign of ig is negative which agrees with the
chronological (causal) formalism [20] but is opposite to the retarded potential discussed later [see Eq. (60)].

The differentiation with respect to starting energies e (e, ) in the denominator of K, which depend on the occupation
numbers through Eq. (6), leads to third-order terms

V(3a)(p e )
n (p')n (p")[1 n(p"')][1 —n(p'"')—]

(e,+e ~
—e ".—e „, +iq)

X &p, p'II~(e, +e, )Ip, p'&
1
&p', p" l&(e, +e, )lp'" p""& I' . (8)

The differentiation with respect to intermediate energies e - (e -) leads similarly to third-order terms

(3b) n (p')n (p")[1 n(p'")][1 n(p""—)]-
Vi) p, e

2
( e,+e„—e -+ i i) )P P

X &p, p"'lK(e, +e„- )lp, p"'&
l
&p', p" K(e, .+e -) p"', p""

&
' . (9)

It is quite practical to do the indicated differentiation nu-
merically in Eq. (4) as done previously [21]. However,
the explicit three equations (7), (8), and (9) which were
used for preliminary evaluations [10] are also useful for
discussing and evaluating occupation probabilities as
shown below.

The sum V~[ '+ V~ ' can also be written as

Vi') '(p, e )= —g &p, p'le (e~+e~ )lp, p'&n (p')C~
P

+ g &p, p'l&( „+ )lp, p'&

where

n (p')[1 n(p")][1 n(p"—')]-
0 ~ 2

p p-p- (e +e, e- e~-+iq—)—
X l&p, p'l&(e, +e, )lp", p"'&I'

n (p')n (p")[1—n (p")]
p p p (e +e,.—e „,—e +irj)

x l&p', p" l&(e, +e, )lp"' p&l'. (12)

X [1 n(p')]C', —
, (10)

By direct inspection one also finds after slightly generaliz-
ing Eq. (6) by replacing e by co
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BReVi) '(p, co)

Bc() co= e
P

(13)

Adding V~
' to Vz" of Eq. (6) the mean field is therefore

normalized by factors 1 —C which typically are -0.8
depending on the strength of the correlations. Likewise

(c)

FIG. 1. Energy diagrams discussed in text. Horizontal lines
are effective interactions.

Cl
P

co=e
(14)

Equation (10) shows explicitly that the first sum with fac-
tors n(p') is a contribution from normally occupied
states while the second with factors [1 n(p—')] is from
normally unoccupied states. The coefficient C defined
by Eqs. (11) and (13) is conveniently interpreted as the
correction to the first order (in I(. ) SPE due to the de-
pletion of states in the correlated medium and the
coefIicient C' defined by Eqs. (12) and (14) is the ampli-
tude for finding a nucleon excited into state p because of
these correlations. These coefficients therefore relate the
occupation numbers p(p) in the correlated medium to the
occupation numbers n(p) of the uncorrelated medium.
The relations are

to include ReV~ ', one can also include the energy dia-
grams shown in Fig. 1(c) but one has to be careful with
overcounting. Second-order insertions can also be in-
cluded, in principle, by including ReV& ' but off-energy-
shell effects will reduce the contribution of these consid-
erably [9]. No serious attempt, however, has been made
to calculate this.

III. GREEN'S-FUNCTION FORMALISM

The spectral function S(p, co) is an important quantity
for a correlated many-body system. With S given the to-
tal energy of the system is determined by

p(p) =n (p)(1 —C, )

for the hole states and

p(p) = [1 n(p—)]C~

(15)

(16)

E=2f f (co)de f [p /2m +m]S(p, co)
OQ (2vrh)'

for particle states. Using the expressions for C and C'
given in Eqs. (13) and (14) one obtains for the state with
momentum p

+oo d p=2
3 p 2m+coh p pp

(2m')i)
(20)

p(p) =n (p) 1+
8 Re V~"(p, co)

Bco

where (oh (p) is the average energy of a hole with momen-

tum p

noh(p)= f cof (co)S(p, co)dao
2vrhp(p)

(3 Re V~( )(p, (o)
+ [1 n(p)]-

Bed
(17) 1 + oo=COp+ f (co coo)f (co)S(p—, (o)des .2'(p)

This result agrees with Jeukenne, Lejeune, and Mahaux
[22]. The discontinuity at the Fermi surface is given by
the quasiparticle strength

8 Re V~(p, co)
Z~(p) =1+

where Vg = Vg' + Vg '.
We also find that the third-order rearrangement energy

can be simply included by calculating

V(1)(p e )+ V(3)(p e )

p(p) = f f (~)S(p, (o)de . (22)

In the path-ordered Green's-function method one
defines a retarded effective interaction T+ in a homo-
geneous medium by (see, e.g. , Refs. [5,6])

(21)

The choice for coo will be discussed later on (Sec. IV).
The occupation numbers in the correlated medium are
given by

= g (p, p'l&(e~+e~ )lp, p')p(p'), (19)
P

which should be compared with Eq. (6). We shall use
these results below.

The Brueckner formalism described above includes
energy-diagrams shown in Figs. 1(a) and l(b) while the
SPE diagrams are shown in Fig. 2. If instead of the
Brueckner choice for e~ given by Eq. (2) one chooses also

~Q(l
(c)

FICi. 2. Single-particle energy diagrams discussed in text.
Horizontal lines are effective interactions.
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(p, p'I T (Q)lp, p') = (p, p'I vip, p') +(ih')
P,P, CO, CO

&p p'll'lp" p"'&

(P o' )g (P PI ) g (P oi )g (P

x(p",p"'IT+(Q, )lp, p') .

It is important to realize that the +i g term is a consequence of the retarded character of T
The retarded mean field X+ is given by

X+(p, co) = i' —g [(p,p'IT+(co+I@')Ip, p' &g '(p', co')+ & p, p'IT'(oi+oI')Ip, p' &g (p', io')]
I I

P IC0

with T given by

(23)

(24)

& p, p'I T'(n) lp, p' & =it
II III II I I

&p, p'IT+(n)IP" p"'&g'(p" ~")g'(p'", ~"')&p",p"'IT (II)lp' P) (25)

g —(P, oi) =
co —p /2m X+(p,—co)+—iq

and with the Green's functions g given by

g '(p, oi)= —(1/i&)S(p, oi)f (oI),

g (p, co)=(1/if&)S(p, co)[1—f (co)],

(26)

(27)

(28)

called for. The simplest is the quasiclassical defined in
Sec. IV A. This is however too simplistic for most studies
as will be shown, but is convenient as a first step in an
iteration scheme also discussed below. An improved but
still numerically manageable extended quasiparticle ap-
proximation (EQP) for the spectral function will be dis-
cussed in Sec. IV C.

Here f (co) is a distribution function. For nuclear matter
in thermal equilibrium we have

f (oi)=1/[e@ "'+1] . (29)

The spectral function is given in terms of co-dependent
mean fields by

A. Qnasiclassical approximation

In the limit of small absorption one can use the quasi-
classical approximation S&c for the spectral function
with

SQc(p, co) =2vrfi5(co pip), — (32)
—2iiilmX+(p, co)S p, co

[co—p /2m —ReX+(p, o~)) + [ImX+(p, co)]

(30)

It satisfies the sum rule

where coo is defined by

oip=p /2m +ReX (p, cop) .

One then finds from Sec. III

(33)

f S(p, co)dpi= 1 . (31)
pQc(p) =f (oIp),

~~(p) =~o

(34)

(35)

IV. EXTENDED QUASIPARTICLE APPROXIMATION

The calculation of, e.g. , the total energy requires a
self-consistent (iterative) solution of Eqs. (23)—(30) which
is a heroic task. The co integrations in Eq. (23), etc. , are,
in general, especially complicated to be performed in
practice. Some approximation of the spectral function is

+~ dpEqc —2
3 (p /2m+cop)f (oIp) .

(2vrR)
(36)

~],Qc(P, o~ ) = g & P, P'
I TQc (oi+ o~o ) I P P' &f ( ohio)

P

The second term of X+ in Eq. (24) becomes

(37)

%'e next use this approximation to evaluate the first term
of X+ in Eq. (24) and find

f ( pip') f (ohio" )
~2, Qc(p oi)= 2, „„,. I & p" p'"I TQc(pro +~o0 ) Ip p ) I' .

+~o ~o ~o +'9PIP IP
(38)

The effective interaction TQc is in the quasiclassical approximation Eq. (32) given by

1 — ( pI" ) — (oI'" )
&p, p ITQ+c(n)lp, p'&=&P, p'll'lp, p'&+ g &p, p'Ivlp" p"'& „„, &p",p"'ITQc(~I)lp, p'& .

II III Q —mo' —~o +'rp

(39)
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B. Qnasiparticle approximation

generally accepted as a better approximation for the
spectral function is the quasiparticle approximation

Sgp(p, to) =2vrh5(co coo—)Z(p)

with the quasiparticle strength Z given by

(40)

Z(p)= 8 ReX+ (p, co )

Bco

It should, however, be noted that this approximation for
S does not satisfy the sum rule in Eq. (31). In the quasi-
particle approximation hole-state occupations are renor-
malized by factors Z (p). Thus

in Brueckner theory given by Eq. (18). With the quasi-
particle renormalization one further finds

Egp
——2I (p /2m +coo)Z(p)f (coo) .

(2~Ii)

Furthermore,

~a(p) =~o

(43)

(44)

&i+,Qp(p, ~)= g & p, p'I Tgc(~+~o) ~p, p' &Z(p')f (~o)
P

just as in the quasiclassical approximation. We next use
this approximation to evaluate the first term of X+ in Eq.
(24) and find

pgp(p)=Z(p)f (to, ) (42) (45)

Note that Z is similar to but not equal to the strength Z~ The second term of X+ in Eq. (24) becomes

&,+QP(P, ~)=
P P~P

Z(p')Z(p")Z(p"')f (~oo')f (~o")
~&p" I'"ITQP(~0'+~0") P P'&~ (46)

The efFective interaction Tgp is evaluated similarly in the quasiparticle approximation Eq. (32) to give

&P P'~TQP(»lp P'&=&P P'IVIP' P'&

1 —f (~q') —f (~o" )
+ g Z(P )Z(P )&PPlvp P '& „„,. &P P '~Tg «)lpP &.

tl III 0 coo coo + E YJ~p

(47)

The zero-temperature limit of the quasiparticle approximation will be discussed in Sec. V and inconsistencies will be
pointed out which are related to the fact that the sum rule is not satisfied. The strength of the quasiparticle peak is re-
duced by the factor Z but is not distributed over any other states.

C. Extended quasiparticle approximation

The quasiclassical and quasiparticle approximations
discussed above imply great numerical simplifications
and are therefore common but we have seen above that
they are deficient in several respects. The width of the
spectral function cannot be neglected in a strongly corre-
lated medium like nuclear matter. A new approximation,
the extended quasiparticle (EQP) approximation, will now
be introduced. In Brueckner theory the occupation-
numbers p(p) in the correlated medium, to be dis-
tinguished from occupation numbers n(p) in the un-
correlated medium, define the third-order rearrangement
diagram Vz

' by Eq. (19). In Green's-function theory

p(p) is given by Eq. (22), i.e., it is closely related to the
spectral function. We shall therefore discuss the EQP ap-
proximation together with rearrangement energies and
the occupation numbers in the correlated medium. When
used in the Green's-function formalism at zero tempera-
ture it is found (in Sec. V) to give expressions practically
equal to those of Brueckner theory and this approxima-
tion therefore establishes a link between the two theories.

In an expansion with ImX+ &&ReX+ and 8ReX+/
Bc@((1 one finds [23]

SEQp(p, co) =2vrh'6(co —coo)Z'(p) —P 2' ImX+ (p, co)

(co coo)

where
(48)

8 ReX+(p, co)
P = (49)

and where P indicates that the principal value is to be
taken when integrating over S. This approximation
differs from the quasiparticle approximation, shown in
Eq. (40) by the last term and also by the strength function
Z which is now replaced by a function similar to the Zz
of Eq. (18). The last difference is not important because

SE&p is expanded to first order in the cu derivative any-
way. More important is the last term in Eq. (48). As
pointed out above Sgp(p, co) does not satisfy the sum rule,
Eq. (31). This is because normally occupied states are
depleted (due to the correlations) but in the quasiparticle
approximation there is no corresponding occupation of
normally unoccupied states. The last term of the extend-
ed quasiparticle approximation (48) corrects for this
deficiency. To show this we use the dispersion relation
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' 1 ~ ImX+(p, co')dco'
ReX p, co =—

to get

(50)
inclusion of a Brueckner third-order rearrangement ener-
gy [19]. The occupation-number p in the correlated
medium is now given by

c) ReX+(p, co)

Bco

1 I ~ ImX (pco )dco

cu =coo 'Ir ~ (CO COO)

(51)

( ) Z ( )f ( )
P y+~ ImX+(p co)f (co)
7T ~ (CO COo)

(55)

and one finds

1 f ~
& ( )d 1

c) ReX+(p, co)
Eqp P& CO CO

Bco

c) ReX+(p, co)

Bco

0)—CO0

CO
—CO0

1 +~ ImX+(p, co)f (co)
dCOh(p) —

COo dco .
BP(P ) —co CO COO

(53)

(52)

The two last terms cancel showing that SE&p satisfies the
sum rule, Eq. (31).

From Eq. (22) one obtains in the EQP approximation
for the average energy of a hole

The principal value part of SEQP [the second term in
Eq. (48)] was an important part of the expressions above.
In evaluating the second term of the mean field in Eq.
(24) and the effective interaction T+ in Eq. (23) this part
is, however, neglected below. This will be partly justified
in Sec. V C. The second term of the retarded mean field
X+ in Eq. (24) then becomes exactly like X2+&p in Sec.
IV B except with Z replaced by Z' and similarly for T+.

The effect of the broadening of the spectral function is
only to reduce the strength with no shift in energies co

from the quasi-particle value mo. At zero temperature
the contribution from the skewness of the spectral func-
tion expressed by the second term of the EQP approxima-
tion is of a higher-order derivative of X+ with respect to
m as will be shown in Sec. V.

&,+(p, )= g &p, p'~T+( + (p'))~p, p'&p(p') . (S4)

This is an interesting result. It shows, for example, that
the mean field at an energy ~o should be evaluated with a
T+ matrix defined with Q =coo+ noh but not at
A=coo+coo as in the quasiclassical approximation in Sec.
III. We shall find in Sec. V C that the difference between
the two energies is essentially the Brueckner second-order
rearrangement energy which for hole states is -20 MeV
or more [20]. It also shows that the mean field becomes
"renormalized" with a factor p which corresponds to the

In the quasiparticle (as well as the quasiclassical) approxi-
mation co&

—=coo but this is not the case here. We find the
mean energy of a hole to be shifted relative to the quasi-
particle energy mo. This is a consequence of the nonsym-
metry (skewing) of the spectral function. We shall find
below that the shift is large and negative at zero and low
temperatures.

We next use this approximation to evaluate the first
term of X+ in Eq (24). .Consistent with the linear expan-
sion of ReX+ with respect to co we expand T+ similarly
and find

V. ZERO-TEMPERATURE LIMIT

The Green's-function formalism presented above is val-
id for nonzero as well as zero temperatures. In the zero-
temperature limit it is of importance to compare it with
more established theories. In turns out to be especially
interesting to do so with Brueckner theory.

JF d pE C=4 p 2m+ —,
'X+ p, coo(2M)' (56)

The SPE's coo differ from. the Brueckner energies e~
defined in Eq. (2). For a comparison with the mean fields
in Brueckner formalism we shall therefore replace the coo
with e in Eq. (40). This change will be discussed again
below. For T+ one gets from Eq. (39) at zero tempera-
ture

A. Quasiclassical approximation

The quasiclassical approximation for the spectral func-
tion is given by Eq. (32) with quasiparticle energies coo

defined by Eq. (33). At zero temperature one finds

&p p ~Tc)c(»lp p'& =&p p'~ I ~p p'&

„,
&

[1 n(p")][1—n (p"')] n(p—")n (p—"')
&
„„,

~
T (Q)

~
& (57)

II III

The effective interaction Toc differs from K defined in Eq. (1) by the hole-hole propagation.
The mean field becomes, from (37) and (38),

Il I tl

&pc(p ~)= & &p p'I gc(~+eglp p'&n(p')+ & „„,. l&p*p'IToc(e + p")lp" p'"&I'.
1 co+e .—e"—e'"+i q
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The last term is of second order in TOc but is different from the Brueckner second-order term Vs ' given by Eq. (7).
The sign of the i g term is opposite and we shall return to this below. More important for the present discussion is that
Vz ' has an extra factor 1 —n (p'). We note, however, that while TOC and K are different they are related by

& p, p'I T+(II) lp, p' &
= &p, p'l&(II) lp, p'& —& & p, p'l&(II)lp", p'"

&

" "
. & p",p"'I T'(II) lp, p'& .

P ~P

Inserting this expression for T+ into the expression (58) for X+ one finds to second order in IC

II III

&+(p,~)- & &p, p'l&(~+e, )lp, p'&n(p')+ g " "
. 1&p, p'll~(e, +e,") p",p"'&I'

I

(59)

I &p, p'Ilt (~+e, )Ip",p"'& I'

—g &p, p'IK(co+e, )Ip, p'&n (p')+ g I &p, p' IK( e~„+e„-)I p', p
I co+e ~

—e —e -+ill
P P~P P

(60)

In the last step K(co+e, ) was approximated by
K(e „+e - ). This would not be a good approximation
for short-range correlations but the hole-hole scatterings
are mostly forward scatterings from the long-ranged part
of the interaction and it is therefore expected to be satis-
factory in this case [10]. In this approximation the terms
of second order in K now agree, except for the signs of
the imaginary terms, with the Brueckner second-order
rearrangement term in (7). This sign difference is, howev-
er, familiar from the difference between retarded and
chronological formalisms [24,25]. In this respect it
should be noted that when calculating, e.g. , the total en-
ergy in the chronological formalism, one has to incorpo-
rate a converging factor to eliminate the semicircle con-
tribution in the omega-integration. This is equivalent to
directly using the appropriate retarded quantities in the
total energy expression. Apart from the sign we conclude
that there should be rather small difference between the
Green's-function retarded mean field X+ calculated in
the quasiclassical approximation and the Brueckner mean
field, i.e.,

ReX+ —Re V~ '+ Re V' '

ImX+ —Im V" ' —Im V' ' .
(61)

This has been verified by actual calculation [19].
It must be emphasized however that our conclusion

was based on assuming that the SPE's are defined equally
in both formalisms. In actual applications this is usually
not so. The definition e by Eq. (2) is (most commonly)
used in Brueckner calculations. This energy is at (or
near) the average energy of a hole, averaged over the
spectral function [19] while in Green's-function calcula-
tions coo defined by Eq. (33) is at the peak of the spectral
function. We shall return to this point in Sec. V C.

The main conclusion from the results above is that at
the quasiclassical level of approximation the Green's-
function theory contains a term quite similar to the
Brueckner second-order rearrangement energy. Howev-
er, there are no terms that correspond to the Brueckner
third-order rearrangement terms. A better approxima-

tion is needed for the spectral function in order for the
Green's-function theory to be on a par with Brueckner
theory.

B. Quasiparticle approximation

The quasiparticle approximation defined by Eq. (40)
differs from the quasiclassical by the renormalization-
factors Z(p) given by Eq. (41). In this approximation the
total energy becomes, at zero temperature,

PF dpE p=4 f [p /2m+ —,'X (p, coo)]Z(p) .
(2~%')'

(62)

C. Extended quasiparticle approximation

The F.QP approximation introduced in Sec. IV C is
here applied to zero-temperature nuclear matter. In or-
der to simplify the result and for comparison with
Brueckner theory we first note that for T=0,
ImX (p, p, ) =0. We furthermore define 1mVo and Im Vz

by

The occupation numbers and hole renormalizations of
the mean field are in Brueckner theory shown by Eqs.
(17) and (19) while in the quasiparticle approximation one
has from Eq. (42) p(p) =Z (p)n (p) and therefore p(p) =0
for p )pF which differs from Brueckner theory. Another
difference from Brueckner theory is that the full field X+
rather than just Vz" defines the renormalization factor.
Although the quasiparticle approximation thus generates
a term similar to the Brueckner third-order rearrange-
ment term Vz ' represented by the diagram in Fig. 2(c).
It is numerically different. In addition there is no term
corresponding to Vz ' represented by the diagram in Fig.
2(d). This is related to the fact that the sum rule (31) for
the spectral function is not satisfied in the quasiparticle
approximation. In conclusion, the quasiparticle approxi-
mation is an improvement over the quasiclassical but it
also leads to serious inconsistencies. The extended quasi-
particle approximation discussed at zero temperature in
the next section will remedy this situation.
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Im Vo( p, co ) =0, co &p,
Im Vo(p, co) = ImX (p, co), co )p,
ImV~(p, co) =0, co)p,
—ImV2(p, co) =ImX (p, co), co &p .

(63)

It was shown in Sec. V A that Vz is then (essentially) the
Brueckner second-order rearrangement energy and obeys
a dispersion relation. As a consequence then, ~h given
by Eq. (53) becomes

Re V2(p, coo)

p(p)
-p /2m +ReVo(p, coo) . (64)

The last approximation is obtained with p-1 and ap-
plies only to states below the Fermi surface, p &p~. It il-
lustrates the often used statement that the Brueckner
second-order rearrangement energy contributes not to
the removal energy (average energy of a hole state) but
only to its width [18,19,26] which comes from the imagi-
nary part.

It is at this point also of interest to observe that as a
consequence of ReVo(p, coo)-ReVe"(p, e ) we also find
from Eq. (2) that coh -e . A main reason that Re Vo and
ReV&" are only approximately equal is that the energies
coo and e differ, essentially by a second-order rearrange-
ment energy. Using SE&p(p, co) to calculate the occupa-
tion numbers by Eq. (22) we find for states below the Fer-
mi surface (coo & p)

8 ReX+(p, co)
pp =1+

1

y
p ImX+(p, oi)den

77 co (o) o)o)
(65)

But using the approximate relation in Eq. (61) and the
fact that ImVe' '(p, co) =0 for co &p we can substitute the
last X+ in Eq. (65) by Ve' ' and because Vz '(p, o~)=0 for
co)p we can extend the integration to + ~. Using the
dispersion relation we then find that Eq. (65) reduces to

p(p) =1+ a R.e V~ '(p, ~)
Bco

(66)

and this is exactly the result obtained from Brueckner
theory given in Eq. (17) for particles below the Fermi sur-
face.

For coo) p, i.e., for states not occupied in the uncorre-
lated medium the 6 function, the first term in SE&p, does
not contribute to the integral over u. Again using the
above relations and properties of the mean field we find
the contribution from the second term to give

p(p) = 8 Re Ve' '(p, co )

Bco
(67)

that also agrees exactly with the Brueckner result, Eq.
(17). The question of whether this approximation for
p(p) is number conserving or not has been discussed at

length by Mahaux and Sartor [20]. If the two potentials
V~" and Vz ' are calculated from the same effective in-
teractions, it will be.

The total energy given by Eq. (20) becomes in the ap-
proximation (64) for noh

+- dp 2
EEQp 4 Ip ~2m + —,

' Vo(p ~o)]p(p)
(2vriri)

(68)

This is a very interesting result because it shows that the
second-order rearrangement energy does not contribute
to the total energy. Note that the Brueckner approxima-
tion for the energy Ez, given by Eq. (3) is just this expres-
sion except that p(p) is replaced by n (p) so that the in-
tegration over momentum is only over normally occupied
states when calculating Ez.

The result for EE&p at zero temperature in Eq. (3)
should also be compared with the quasiclassical approxi-
mation E&c in Eq. (56). The difference between these two
approximations for the total energy is essentially an aver-
aged Brueckner second-order rearrangement energy
which is —10 MeV [20].

The quasiparticle approximation E&p, on the other
hand, simulates that for EE&p except that the
momentum-integration extends only to pF. Some esti-
mates of these various expressions for the energy are
found in Sec. VI.

In Brueckner theory the third-order rearrangement en-
ergy was expressed in terms of occupation numbers p(p)
as shown by Eq. (19). Exactly the same expression is ob-
tained in Green s-function theory if in Eq. (54) (i) the
coh(p') in T+ is replaced by e~ which we already estab-
lished after Eq. (64) to be a pair approximation and (ii)
T+ is expanded to first order in IC by Eq. (59).

Occupation numbers p(p) take into account the corre-
lations among nucleons in the medium. We have found
that the occupation-numbers derived by the Brueckner
formalism above are consistent with the use of the ap-
proximate spectral function SE&p in the Green's-function
method. We can therefore conclude that this approxima-
tion establishes a link between the two theories. In
Brueckner theory improvements consist of considering
higher-order diagrams, higher-order insertions in hole
and/or particle lines, three-body and ring diagrams, etc.
Improvements in Green's-function methods consist of us-
ing improved spectral functions in Eqs. (23) and (24)
thereby including higher-order correlations.

What we have established is that at zero-temperature
the expressions obtained in the EQP approximation for
the spectral function yield results that have a structure
very similar to that of the Brueckner theory. There are
some differences. A difference is that in Br ueckner
theory the mean field is (usually) calculated at a
prechosen self-consistent energy e defined by Eq. (2)
differing from the choice mo which is dictated by the spec-
tral function. The difference appears essentially in the
second-order rearrangement energy.

The contribution to T+ and Xz+ from the principal
value part of SE&p was neglected above in Sec. IV C. At
zero temperature one is better able to estimate these
terms. One is, in general, faced with performing energy
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integrals of two types:

P
y

[1—f (co)]1m'+(p, co)

(a —co)(co—coo)

and

P
y

f (co)1m'+(p, co)

(a —m)(co —coo)

At zero temperature one finds

P ~ ImX+(p, co)

p a co co coo

(69)

(70)

(71)

or

p g „ Im Vo(p, co)
dco

Oculo
— (a —co )(co —coo)

(72)

1
[
—Re Vo(p, a)+Re VO(p, coo)]

(a —coo)

+ Re Vo(p, co)
1

a —
mo Bc@

(73)

Results of calculations of Vo(p, co) show a near linear co

dependence. From the last expression for I, one can
therefore argue that it should be small. Although this
was derived for zero temperature we assumed I, to also
be small at the nonzero temperatures considered in Sec.
IV.

The integral I2 will lead to similar results at zero tem-
perature as Eq. (73) but with Vo replaced by V2. It is
found in Refs. [12,19] that the co dependence of V2 cer-
tainly has a nonzero second derivative so that I2 may
have to be included by explicitly evaluating Eq. (73) (with
Vo replaced by V2).

It deserves to be pointed out that the EQP approxima-
tion for the spectral function implies an expansion of the
imaginary part of the mean field and its co dependence to
first order and that the validity of such an approximation
may be questioned especially for a nonequilibrium system
at high temperature or excitation. For ground-state
properties for which Brueckner theory is designed this
seems, however, a valid assumption. On the other hand,
it can be concluded that in order for the Green's-function
methods to be on a par with Brueckner theory one needs
a spectral function at the very least as good as the extend-
ed quasiparticle approximation or EQP.

VI. DISCUSSION AND SUMMARY

Although Brueckner theory is basically a static theory
it provides a connection with dynamic theory through
the imaginary part of the self-energy and this has been an
important contribution of this theory for discussing and

where in the last step the integration was extended using
Eq. (63). This integral can now be performed using the
dispersion relation for Vo to give

1
[ —ReVO(p, a)+Re Vo(p, coo)]

understanding H.I. collisions [8]. Path-ordered Green's-
function methods provides a more complete theory of the
dynamics and we have here referred mostly to recent
work by Botermans and Malfliet [6] developed
specifically for nuclear transport phenomena. Brueckner
theory has been applied to both nuclear matter and the
nuclear Hartree-Fock problem for finite nuclei with con-
siderable success. Using the (Goldstone) diagrammatic
techniques usually associated with Brueckner theory, dia-
grams of arbitrary order can, in principle, be calculated.
Considerable effort has been used in calculating such con-
tributions especially for nuclear matter and considerable
experience in their relative importance has been gained.
In order to explain basic properties of nuclei related to
correlations, the minimal requirement is that the terms
and diagrams considered in Sec. II and Figs. 1 and 2 are
considered. These include the second- and third-order
rearrangement terms.

As an example of the difference between the different
approximations that we have discussed the following ex-
amples are illustrative. Using the extended quasiparticle
approximation the total binding energy is obtained from
Eq. (68) to give

EF&p = 17.4 MeV/nucleon

as shown in Ref. [19]. This calculation involves an in-
tegration over both normally occupied and unoccupied
states. The latter are very strongly bound. In contrast,
in the quasiparticle approximation there is no contribu-
tion from p )pF as shown by Eq. (43). Using the data
from Ref. [19]one approximately finds

EQP =15.9 MeV/nucleon .

Brueckner theory meanwhile gives [19)

Ez = 16.7 MeV /nucleon .

However, with V~ '(p, e~ ) replaced by V~ '(p, coo) we
found in Ref. [19]a binding

E~ =20.0 MeV/nucleon .

The quasiclassical approximation would likewise yield

EQC = 10.5 MeV /nucleon

The difference is due to the repulsive second-order rear-
rangement energy. (The last results above are partly esti-
mates. Each approximation is not carried through self-
consistently. ) This serves to illustrate the relative numer-
ical accuracy of these various approximations.

We have found that in order to bring the Green's-
function method up to a similar degree of approximation
as Brueckner theory the minimal requirement is that with
mean fields calculated from Eq. (24) the spectral function
should be given by the extended quasiparticle approxima-
tion of Eq. (48). In other words, we can state that doing a
Green s-function calculation in the EQP approximation
in many ways is equivalent to doing a Brueckner calcula-
tion.

We have above stressed the similarities between the
two formalisms and the next step is to explore the
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differences. The Green's-function formalism contains
corrections associated with the spreading of the spectral
function. We have seen above that the Brueckner theory
in fact does contain some of this spreading although im-
plicitly. We did, in fact, show that in the limit of small
absorption the occupation numbers are identical but we
like here to emphasize that this may be a poor approxi-
mation for high-energy heavy-ion collisions for which the
spreading of the spectral function can be expected to
affect the dynamics in an important way.

The question of choice of single particle energies e in
the definition of the E and T+ matrices was brought up
above. In most Brueckner calculations one chooses a
spectrum defined by Eq. (2) while the Green's-function
expression is given by Eq. (33) which is closely related to
the spectral function behavior. For detailed calculations
the difference can be important, as already illustrated by
the calculation of binding energies above.

To go beyond the approximations in this paper, numer-
ical work is necessary. Some such calculations have al-

ready been done and a main conclusion of this paper,
namely, the close agreement between Brueckner and
Green's-function theory in the EQP approximation has
been verified numerically [19]. Recently a complete cal-
culation of the equation of state, spectral function, and
occupational probabilities of nuclear matter has been per-
formed using a relativistic version of the Green's-function
formalism [27].

Our approximation for the spectral function can be
modified slightly while maintaining its simplicity and re-
normalization property. As an example, preliminary
work indicates that a slightly better approximation is
given by

2irt ImX+(p, ca)
&Ega(p, ca) =Z(p) 2~%5(co —coo) —&

(Ca Cao)

The solution of the many-body problem by the
Green s-function formalism of Sec. III requires, in princi-
ple, a repeated iteration of the spectral function. This

would be very tedious to carry through numerically.
Some approximation is necessary. The simplest approxi-
mation of the spectral function is the quasiclassical where
a 6 function at the quasiparticle energy is chosen. It is,
however, known that this would be a very poor approxi-
mation. In Brueckner theory it would, for example, cor-
respond to neglecting third-order rearrangement energies
and all single-particle energies would be quasiparticle en-
ergies. The extended quasiparticle approximation corre-
sponds more closely to the Brueckner theory and we be-
lieve it is practical to implement numerically. The spec-
tral function SE&p contains the mean field and an itera-
tion scheme is still necessary. The suggested scheme is to
start by using the quasiclassical approximation in the first
iteration. Quasiparticle energies can and mean fields
X+(p, tao) as well as derivatives of X+ with respect to to

are determined. This requires an additional iteration for
self-consistent mean fields (Brueckner self-consistency).
A first approximation for the extended quasiparticle spec-
tral function is then given by Eq. (48). The strength func-
tion Z'(p) [or Z(p)], the occupation numbers p(p), and
hole energies ca& (p) are obtained from Eqs. (49), (55), and
(53), respectively. The total energy can now be calculated
from Eq. (20) and this is an improvement over the quasi-
classical approximation. New interactions T+ and mean
fields X+ can now be calculated by the expressions in Sec.
IVC. The iteration of the spectral function can then be
continued until convergence. Convergence of these itera-
tions can only be tested by actual calculation but it is ex-
pected that one full iteration is sufficient.
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