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Microscopic approach to pion-nucleus dynamics
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Elastic scattering of pions from finite nuclei is investigated utilizing a contemporary, momentum-space
first-order optical potential combined with microscopic estimates of second-order corrections. The cal-
culation of the first-order potential includes (1) full Fermi-averaging integration including the 6 propa-
gation and the intrinsic nonlocalities in the vr-N amplitude, (2) covariant kinematics, (3) invariant ampli-
tudes, and (4) a finite-range off-shell pion-nucleon model which contains the nucleon-pole term. The 6
nucleus interaction is included via the mean spectral-energy approximation. This approach produces a
convergent perturbation theory in which the Pauli corrections (treated as a second-order term) cancel re-
markably against the pion true-absorption terms. Parameter-free results, including the 5-nucleus shell-
model potential, Pauli corrections, pion true absorption, and short-range correlations, are presented.

PACS number(s): 25.80.Dj, 24. 10.Cn

Pion scattering measurements, in combination with
phenomenological descriptions [1] of the propagation of
the pion and the 6 in the nuclear medium, have proved
useful for probing details of nuclear structure. The situa-
tion is not, however, entirely satisfactory because some of
the parameters. in these phenomenological descriptions
have not been derived quantitatively, even though their
physical origin is believed to be understood. Chief
among these is a shift [2] in the energy of the two-body,
pion-nucleon scattering amplitude, which is evaluated
somewhat arbitrarily. Therefore, in this work we want to
see how far we can go in describing the dynamics of the
pion and the 6 starting from a purely microscopic ap-
proach in which the dynamics (including the energy at
which the in-medium two-body amplitude is to be evalu-
ated) are completely determined from theory. Such an
understanding is needed before one can envision making
a reliable extension of the theory to higher nuclear densi-
ties and high temperatures, where the propagation of the
pion in the nuclear medium plays an important role in
both heavy-ion reactions and in astrophysical problems.

From the results of such a microscopic approach we
hope to learn the extent to which the existing
phenomenologies are in quantitative agreement with the
dynamics as understood in a variety of contexts, includ-
ing what is known about the reactive content of the in-
teraction (true absorption, quasielastic scattering, and
correlation effects), delta-nucleus dynamics (the delta-
nucleus interaction, delta propagation, and the Pauli
principle), and the interplay of the reaction dynamics
with nuclear structure effects. Although some calcula-
tions [3—7] of pion scattering do include higher-order
terms coming from these effects, a modern, microscopic
test of pion-nucleus dynamics that makes contact with all
this information does not yet exist.

Such a test of pion-nucleus dynamics must deal careful-
I

ly with several well appreciated but technically awkward
aspects of the dynamics. One is Fermi averaging, which
is expressed as a three-dimensional integral of the off-
shell pion-nucleon scattering amplitude over the nuclear
density matrix. The exact performance of this integra-
tion incorporates both the propagation of the delta and
the intrinsic nonlocalities that are inherent to a two-body
resonating amplitude. Another is the Lorentz-covariant
kinematics. Finally, the pion-nucleon amplitude utilized
should contain explicitly the nucleon pole. The neglect of
this singularity in the two-body amplitude leads [8] to an
artificially low momentum cutoff that produces a geome-
trical change in the effective radius [9] of the nucleus.
We here make a test of pion-nucleus dynamics within the
framework of the optical potential which incorporates all
of these features. The isobar-hole model [7], which was a
successful semimicroscopic approach to the dynamics,
has served as a phenomenological tool to fit various pion-
(and photon-) induced reactions, including the true-
absorption and quasielastic channels. Much has been
learned about pion and delta dynamics from this model.
Even more has been learned from the abundance of
high-precision data that have been taken at the meson
factories during the ten years since the inception of the
model. Our work relies on this progress to generate a
parameter-free microscopic theory, which we will com-
pare here to elastic scattering data from 80 to 226 MeV.

The improvements that we fee1 to be needed are natu-
rally incorporated by working in momentum space. A
technical advance which is particularly suited to momen-
tum space is [10] the use of "relativistic, three-body,
recoupling coefficients. " These incorporate exactly
Lorentz-covariant kinematics [11,12] (including Wigner
spin precision), and they provide natural variables for
performing the Fermi-averaging integration. The first-
order optical potential is given by
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with (k„k„,Igk ) the target wave function (labeled by

its eigenvalues e and proportional to a momentum-
conserving delta function). The pion-nucleon amplitude
( kg'„

I
t ( W) I k*„) also contains a momentum-

conserving delta function. The three implicit
momentum-conserving delta functions produce an overall
momentum-conserving delta function and leave a three-
dimensional integration (the Fermi averaging integration)
to be performed numerically. The kinematics involved in
Eq. (1) are those of a relativistic three-body problem with
momenta k, k„, and kz &, the details of how relativistic
recoupling coefficients allow one to calculate Eq. (1) can
be found in Ref. [13]. We use invariant amplitudes
[13,14] that are free of kinematic singularities and utilize
invariantly nor med wave functions; these introduce
phase-space factors into the calculation which can only
be treated exactly by working in momentum space.

In momentum-space the lowest-order optical potential
as we formulate it can be evaluated without approxima-
tion. In this sense, our work improves not only the phe-
nomenological optical model [1], but also the numerous
aspects of the isobar-hole model [7], which were both ex-
pressed in coordinate space, where nonlocalities are not
as easily handled. The propagation of the delta was fully
incorporated in the isobar-hole model, but the integration
over the nonlocalities associated with the two-body am-
plitude were approximated by factorization —an approxi-
mation that necessitates [15] a non-negligible correction,
particularly for lighter nuclei. To deal with Lorentz-
covariant kinematics, expansions and further factoriza-
tions of integrals were made. Also, the pole in the two-
body amplitude was neglected, something we have avoid-
ed in order to eliminate the possibility of a spurious
geometrical change in the eff'ective radius [9] of the nu-
cleus.

Given that we are able to calculate the first-order opti-
cal potential without approximation, there remains the
question of how to organize many-body theory (in partic-
ular, choosing the energies of the nucleon and the delta in
the medium) to optimize its rate of convergence. The
role of the energy W in Eq. (1) is quite important in this
regard because the half width of the delta resonance (55
MeV) is the same size as energies that characterize nuclei.
Thus, the results of a calculation will be sensitive to how
the energies that constitute 8' are chosen. 8' is
defined covariantly as the energy available in the center-
of-momentum frame of the pion-nucleon system,
W = W „—(k +k„), with W „defined as the energy
available to the ~S pair in the pion-target center-of-
momentum frame

W„„=WO—+(k +k„) +m„
and 8 o =S, the invariant square energy of the reaction.
The mass of the 3 —1 system, m~ &, differs from the
mass of the 3-body target, m z, by a nucleon mass and a
binding energy, m ~

=m z &+m„+Eb. In its nonrela-
tivistic limit, this energy is known [16] as the "three-body
energy denominator. "

Utilizing the above definition of 8' produces needless-
ly large higher-order corrections [16,17] in the many-

body expansion. This is because the delta-nucleus shell-
model potential Uz, which is believed to be nearly equal
to the potential energy of a nucleon in the nucleus, has
not yet been included. Including the effects of Uz in the
T matrix causes an effective downward shift in the posi-
tion of the resonance that tends to cancel the upward
shift caused by the nucleon binding energy. To incorpo-
rate this effect, we have proposed [17] a treatment of W
that includes U& in a first approximation via an energy-
dependent and target-dependent energy shift. This shift,
called the mean spectral energy E~s is derived in Ref.
[17]as

f d r P' '*(r)P'+'(r)p(r)U&(r)
E~s( Wo) =

fd3ry'. '*(-r)y'.+'(r)p(r)
(2)

U' '(k' k)=A, ' 'k k'p' '(k —k') (3)

where p' ' is the Fourier transform of the square of the
target density. Microscopic calculations of higher-order
terms yield a coefficient kz ' which itself depends weakly
on r. In the same spirit as the mean spectral energy cal-
culations, we may define the radius R 2 at which the pion
interacts in a finite nucleus by

fd r P' '*(r)P (r)p(r)r
R2= (4)f d r P'„ '*(r)P (r)p(r)

In Table I we give the value of R 2 and the density p(R 2 )

calculated for various pion energies for ' C. We note that
over this energy region (80 MeV ~ T„~315 MeV) the in-
teraction is confined to the nuclear surface and low densi-

where Ut, (r) is taken to be equal to the shell-model po-
tential of a nucleon. In Fig. 1 we present results for ~+
elastic scattering from ' C at 80, 100, 148, 162, and 226
MeV. The data are from Ref. [18]. The dashed line is
the result of using the full lowest-order optical potential,
including E~s. At all energies shown here we find that
the inclusion of U& is not only significant but moves the
results remarkably close to the data.

At this point, the agreement of the theoretical results
with the experimental data is surprising, because there
remains much that has not been considered. We know
that the pion true-absorption channel is about one-half
[19] of the total reaction cross section. The Pauli princi-
ple [3,4,20] also should play a significant role in the
scattering of the light-mass pion from the heavier nu-
cleon. The p-wave character of the pion-nucleon interac-
tion produces non-negligible correlation corrections [21]
(the Ericson-Ericson-Lorentz-Lorenz correction). We will
next include each of these higher-order terms. The re-
sults will provide a test of our understanding of each
piece of the physics and the role that it plays in pion-
nucleus dynamics. Details of our treatment of the
second-order optical potential can be found in Ref. [22].

In order to utilize existing calculations of the second-
order terms, we will make extensive use of the local den-
sity approximation. For the Pauli and true-absorption
terms, we utilize the functional form of the second-order
corrections as derived in Ref. [1]:
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TABLE I. Parameters ADI
' [corresponding to the density in ' C at the radius R2 (fm)] for the Pauli

and spreading interaction as a function of pion kinetic energy T (MeV). The units for ko ' are fm'.

80
100
148
162
230
315

2.40
2.52
2.80
2.86
2.90
2.67

p(&~)/po

0.289
0.252
0.175
0.160
0.151
0.209

Q ' (Pauli)

—0.40, —1.46
0.08, —1.88
2.50, —1.74
3.20, —0.90

054, 2.50
—0.60, 0.26

A,o
' (spread)

—0.93, 2.02
—1.43, 2.09
—3.29, 1.18
—3.70, 0.35

—1.02, —2.80
0.67, —0.68

A.o (sum)

—1.33, 0.56
—1.36, 0.21

—0.80, —0.56
—0.50, —0.55
—0.47, —0.31
0.07, —0.42

ties. Here pc=0. 16 fm (nuclear matter density) and
the pion distorted waves are taken from Ref. [1].

The Pauli exchange term is taken directly from Ref. [3]
evaluated at the density p(Rz). We extend the term by
including p-meson propagation in the intermediate state,
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following Ref. [22]. We omit pion distortions for the in-
termediate pion to avoid including multiple reAection
corrections in the Pauli term. The A,o

' coefficients are
given in Table I. The dotted curve in Fig. 1 gives
differential cross sections resulting from adding the
second-order Pauli correction to the lowest-order calcula-
tion. We see that the Pauli correction (1) is large and (2)
completely destroys the nearly quantitative agreement of
the dashed curve.
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FIG. I. The differential cross section for elastic scattering of
m+ from ' C at the energies indicated. The dashed curves are a
lowest-order optical model calculation including the delta-
nucleus interaction through the mean spectral approximation, '

dotted curves are from the lowest-order optical potential with
the second-order Pauli corrections included; solid curves are
with the lowest-order optical potential, and second-order Pauli
corrections and the second-order spreading potential all includ-
ed.
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FIG. 2. The same as Fig. 1, except the shaded area includes

the full lowest-order optical potential, Pauli and spreading
corrections, and the LLEE correlation corrections. The two
curves forming the boundary result from the LLEE parameter g
given by 0.08 (the lowest curve in the forward direction) and
0.23 ~
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4g f~ra
27 m~

2

where g is the usual Lorentz-Lorenz parameter. The
value of ( depends on the range of the short-range repul-
sive correlations between nucleons, the range of the
pion-nucleon form factor, and the strength of the delta-
nucleon interaction. We will allow for some uncertainty

resonance broadening by introducing a A,o
' parameter

determined phenomenologically from the spreading po-
tential of the delta-hole model [23]. These two terms can-
not be equated directly because the spreading potential
occurs in the denominator of the delta propagator. We
can make the correspondence by first isolating the P33
partial wave contribution to the lowest-order optical po-
tential and expressing it in a resonant form. The
difference between this potential evaluated once with
width I o+ImW, and then with width I o (the free
width) is a true-absorption potential that can be expand-
ed at low density to give a Xo

' independent of r. Rather
than expanding, however, we determine A,o

' by matching
this difference to Eq. (3) at the radius Rz. The resulting
values of A,o

' are given in Table I. We see that at all ener-
gies there is a large cancellation between A, o(

' (Pauli) and
A, Ii

' (spreading), yielding a small total second-order
correction. The solid curve in Fig. 1 gives the differential
cross sections obtained when EMs, Ao

' (Pauli), and Ao(
'

(spreading) are all included. The cancellation of the Pauli
and spreading terms is evident.

The small size of the second-order terms is pleasing. It
indicates that an optical model approach is a practical
representation of the pion-nucleus interaction. This is an
important result, because much of the nuclear-structure
studies with pions are made beginning with the optical-
potential description. The fact that the higher-order
terms are small for the optical potential does not guaran-
tee, however, that they will be small for transition opera-
tors in inelastic or charge-exchange scattering.

Finally, we also include the correlation [or Lorentz-
Lorenz-Ericson-Ericson (LLEE)] corrections. It has been
shown [25] that the LLEE effect can be included in the
delta self-energy by a modification

in g. The minimum value that is reasonable is about
g/3=0. 08, which results from a pion-nucleon monopole
cutoff of 800 MeV/c and no 5-X interaction. The max-
imum value of g/3 is 0.23, which arises from a cutoff of
990 MeV/c and includes a b,X interaction contribution.
This value gives a real part of the delta-hole spreading in-
teraction that corresponds to 5EMs =23 MeV. The final
result of this work is given by the shaded area between
the solid curves in Fig. 2 (corresponding to the range
0.08~ g/3~ 23). These results combine the first-order
potential in which the delta-nucleus potential is included
via the mean spectral energy the Pauli, true-absorption,
and correlation corrections.

The agreement with the data shown in Fig. 2 is not ex-
act, but it is remarkably good for a parameter-free calcu-
lation. Discrepancies could be due to the fact that our
treatment of the second-order corrections is neither exact
nor totally consistent (we have made certain approxima-
tions to the isobar spreading width [23]). For these
reasons, it is probably unwarranted to conclude that the
smaller value of g/3=0. 08 is preferred, even though this
result is everywhere closer to the data. Firm conclusions
should await a more thorough, internally consistent treat-
ment [22] of all the higher-order terms. We are motivat-
ed to pursue this because our present calculation is intri-
guingly close to the data.

We have for the first time combined a contemporary
momentum-space calculation of the first-order optical po-
tential with microscopic predictions of the effects of the
delta-nucleus interaction, Pauli corrections, pion true ab-
sorption, and short-range correlations. We have seen
that convergence of the expansions is enhanced
throughout the resonance region by (1) collecting Ua (via
the mean spectral energy approximation) together with
binding corrections into the first-order optical potential,
and (2) collecting the Pauli and true-absorption terms to-
gether. This result supports our perturbative approach
[22] to calculating the optical potential. Finally, the good
results that we find from 80 to 226 MeV with no adjust-
able parameters suggest that pursuing calculations of
greater accuracy for the second-order terms might yield a
definitive determination of the short-range correlations
(i.e., the parameter g) and the delta-nucleus interaction
U~.
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