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First evidence for states in Hg nuclei with deformations between normal and super deformation
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High-spin states in "Hg with a quadrupole deformation of i3, =0.34(4) have been established from
measured gamma-ray coincidences and lifetimes. These data, which provide the first evidence for a de-
formation midway between normal and super deformed, can be interpreted in terms of the [651] z and
[770] —' neutron configurations.

PACS number(s): 21.10.Re, 21.10.Tg, 23.20.En, 27.70.+q

Three ellipsoidal shapes are commonly observed in
stably deformed nuclei: prolate deformation with
Pz--0. 25 (normally deformed), super deformed prolate
deformation with P2=0. 55, and oblate deformation with
Pz= —0. 15. The increased stability of these shapes has
been attributed to minima in the single-particle energies
which can be related to highly ordered periodic single-
particle orbits. In contrast, the occupation of certain
highly polarizing, particlelike orbits will have a strong
tendency to drive the nuclear shape away from these
common deformations; see, e.g. , [1]. Indeed, much of
modern nuclear structure physics is concerned with the
striking stability of these deformations, the single-particle
dependence of the relatively small variations from these
stable shapes, and what happens in less stably deformed
"transitional" nuclei.

The present work reports the first evidence for a
configuration in ' Hg with a deformation midway be-
tween normal and super deformation. Calculations asso-
ciate this configuration with the occupation of a pair of
quasineutrons (either the v( [651]—,

' [514]—', ) or the
v([651]—,' [770]—,') configuration [2], or a mixture of
these two) that intrude (at large deformations) from
above the N = 126 shell. The occupation of these orbitals
also is expected for the super deformed configurations of
the lighter osmium and platinum [3] and heavier mercury
isotopes [4]. The interpretations of additional decay se-
quences, established in our work, will be presented later.
Preliminary results have been reported previously [5].

Though the ground states of the mercury isotopes are
known to be oblate, the shape-coexisting high-spin yrast
states of the neutron-deficient mercury isotopes usually
are thought to have a stable prolate deformation. Indeed,
calculations based on different mean-field assumptions,
see e.g. [6], all predict such a coexistence of oblate and
prolate shapes. There was no prior experimental evi-
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dence that establishes a negative parity for the intruder
band (band 3 in Fig. 1) in ' Hg. This band earlier was
assigned positive parity and even spins and interpreted as
an aligned v(i, 3/2) configuration based on a triaxial core
[7], or alternatively interpreted as an intruder ~(i,3/p)
configuration based on a prolate core [8]. In a recent
study, band 3 was suggested [9] to have negative parity
based on only one dipole DCD ratio (directional correla-
tion orientated nuclei) (this does not distinguish M 1 and
El), and discussed in terms of an aligned m(i»/2h9/2)
configuration by analogy to the 11 band in ' Pt [10].

The ' Hg nuclei were produced at the Holifield Heavy
Ion Research Facility using the ' Gd( S,4n) reaction.
Two ' Gd targets (92% enriched) were used, a 1.0-
mg/cm self-supporting target and a 1.2-mg/cm target
backed by 6.2 mg/cm of ' Au. Gamma rays were
detected with 20 Compton-suppressed Ge detectors in a
compact geometry at a beam energy of 167 MeV, with
excitation function data at 159 and 175 MeV. The self-
supporting target yielded 2.7 X 10, and the backed target
9.0X10 y-y events triggered by y-y-y events. A four-
Ge-detector Compton polarimeter was placed at 90'. A
polarimeter event (2.3X10 collected) required a coin-
cidence between two of the polarimeter detectors and at
least one Compton-suppressed Ge detector.

A level scheme deduced from the present work is
shown in Fig. 1. In most cases, spin and parity assign-
ments are based on the measured DCO ratios. Band 2,
interpreted as the lowest configuration in the prolate
minimum, is extended to (28+). The DCO ratios of the
255- and 1011-keV transitions [0.60(5) and 0.69(6), re-
spectively] indicate that both of them carry only one unit
of angular momentum to yield a spin of 11 for the 3089-
keV level. The linear polarization of the 255-keV y ray,
+0.40(28) (without efficiency correction), indicates that
this transition is E 1 (M 1 transitions have negative
values). Thus, band 3 starts from 11 and is extended to
(31 ).

Doppler-broadened line shapes are established in the
backed-target data, by comparing the spectra obtained
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from forward (45') and backward (135 ) angle detectors,
at and above the 20+ —+18+ transition in band 2 and the
23 ~21 transition in band 3. Lifetimes were extracted
by applying the Doppler shift attenuation method to
spectra gated on transitions lying below the levels of in-
terest. The line shapes at forward and backward angles
were fitted simultaneously with a local version of the pro-
gram DSAMFT [11],which includes a Monte Carlo simu-
lation [12] of the nuclear stopping power. Tabulated
electronic stopping powers corrected for shell effects [13]
were used. A five-state rotational-band sidefeeding was
assumed for each level. The transition quadrupole mo-
ments of the state under consideration (Q, ) and of the as-
sumed sidefeeding cascade (Q, ) were extracted by minim-

izing they of the fit.
As illustrated in Fig. 2, the measured line shapes are

well reproduced. The contaminations were identified
from forward and backward angle spectra. Their intensi-
ties were carefully controlled in the fitting process.
Gamma-ray intensities and extracted quadrupole mo-
ments are summarized in Table I. A few details of the
analysis are noteworthy. The transitions depopulating
the 24+ and 27 levels are the. highest spin transitions
fitted because of the limitation of statistics. The precur-

sor rotational transitions preceding these two levels were
assumed to have similar Q, values to their band members
respectively. The errors related to this assumption,
affecting especially the two top-most transitions, were
evaluated by varying the precursor Q, values +20%. The
sidefeeding clearly can influence the state lifetimes.
Current Q, values of band 3 already are on average
-30% larger than those in band 2. It would require a
significant further increase in these values to result in a
Q, of band 3 comparable to that of band 2. However,
this is highly unlikely physically. The errors listed in
Table I also include other statistical errors (counting
statistics, uncertainties of the energy loss in the slowing-
down process and correlated uncertainties from the
fitting process). Finally, the sidefeeding intensities were
changed by +20%%uo to add an additional error in the Q,
values.

The average Q, values obtained for bands 2 and 3 are
7.7(1.3) and 10.7(1.7), respectively. Assuming axial sym-
metry, the standard formula Q, =0.0109ZA Pz( 1

+0.36Pz) yields quadrupole deformations of Pz=0. 25(3)
for band 2 and 0.34(4) for band 3. This value for band 2
agrees with the measured value for the lower spin
members of this decay sequence [14] and other normally
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FIG. 1. ' Hg level scheme from this study.
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FIG. 3. Calculated equilibrium deformations of near-yrast
configurations in "Hg in the P-y polar coordinates. Predicted
energies of the two-quasiparticle proton and neutron intruder
states in ' ' Hg are given in the inset. The rotational fre-
quencies are indicated (in MeV/A).

FIG. 2. Doppler-broadened line shapes seen by the backward
angle detectors (thin line, experimental data; thick line, calcula-
tions which include the unshifted peak and moving components,
also the contaminations). The arrows indicate the unshifted
peak positions. See text for details.

deformed nuclei. A possible additional 15—20% sys-
tematic error from uncertainties in the treatment of the
slowing-down process does not alter the conclusion that
the deformation of band 3 is significantly larger than that
of band 2.

The previous interpretation of collective negative-
parity intruder bands in this mass region involved
m(ir3/2h9/2) excitations based on a prolate core, e.g. , in

Pt [10]. This same interpretation was given for band 3
in ' Hg in Ref. [9]. However, we propose an alternative
interpretation for this band. Woods-Saxon calculations
[3] indicate that for X = 104—108 the lowest,
li»/2e2g9/p Nilsson neutron orbital ([651]—,') approaches
the Fermi level at 13&-0.35. This state is the neutron ana-
log of the 1h9/22f7/z ([541]—,') proton orbital. The inset
in Fig. 3 shows the calculated band-head energies of
the two low-lying rr = — two-quasiparticle vr( [541]—,

'

[660] —,') and v([651]—,'[514] —,') states in the mercury
isotopes with 102~%~ 108. The calculations were made
using the Woods-Saxon-Strutinsky model with pairing

treated by the Lipkin-Nogami approach as described in
Ref. [15]. In ' ' ' Hg the v( [651]2 S [514]z )

configuration is predicted 200 to 400 keV lower in energy
than the two-quasiparticle proton configuration. In the
Pt isotopes the pattern is similar, but both two-
quasiparticle states lie about 3 MeV above the prolate
ground state.

No rotational sequence based on the deformed v[651]—,
'

state has been established previously, and only a few pos-
sible candidates for this configuration are given in a re-
cent systematic study of one-quasiparticle states in this
mass region [16]. The [651]—,

' state (strongly mixed with
the [640]—,

' state) is essential for producing strong octu-
pole correlations in the light actinides through coupling
with the [770]—, orbital [17]. Likewise, the band crossing
in superdeformed ' ' Gd has been interpreted [18] in
terms of the v[651]—,

' orbital. Evidence for the presence
of this neutron state at intermediate deformations would
establish its deformation trajectory experimentally.

Aligned angular momenta for several bands in ' Hg
and that of the rr([541PIgr [660]—,'), negative-parity band
in ' Pt are shown in Fig. 4. The alignment pattern for
band 3 is different from that of either band 2 or the band
in ' Pt. Whereas alignments attributed to a pair of i&3/2
neutrons occur at co-0.28 MeV for both band 2 and the

TABLE I. Summary of y-ray relative intensity and quadrupole moment information extracted from
the lifetime rneasurernents.

Er (keV)

722.3
670.8
620.6
738.9
700.7
665.3

I 'Ir I ')Ti~f
27 ~25
25 ~23
23 ~21
24+ ~22+
22+ ~20+
10+~18+

Intensity

1.1(1)
2.o(2)
4.3(2)
2.2(2)
4.o(2)
6.8(3)

Q, (eb)
10 7(+2 7)
11.2(+1 6)
10 3(+2.4)

7.3(+1 3)
8 0(+1.3)

Q, (eb)
7 6(

—1.0)

7 7(+2.o)
10.8( +2'0)
5.2(-,",)

6.7(+1.7)
5.6(+3 7)

x'
2.06
0.70
0.96
0.54
0.59
0.75
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FIG. 4. Aligned angular momentum for bands in ' Hg and
the it= —band in ' Pt built on the 3081-keV state [9]. The
reference parameters Jo=30 A /MeV, J& =110 A /MeV are
used for both nuclei.

band in ' Pt [10], this crossing is clearly absent in band
3, which looks very collective over the total range of ob-
served frequencies.

Figure 3 also displays calculated equilibrium deforma-
tions extracted from the total Routhian surfaces for
near-yrast configurations in ' Hg, corresponding to
different co values near the vi &3/2 band crossing. The rela-
tionship between Q, and Pz from Ref. [19]was used to ac-
count for P4, y and higher-order terms of f3z. Shape-
coexisting bands built on the oblate (ground state,
Pz-0. 15, y ——60') and prolate (Pz-0. 23, y-0') 0+
states are indicated by the triangles. The alignment of
i&3/2 neutrons triggers a shape change towards y ——15
for the prolate band. The calculated Q, value for band 2
is 9.1 e b, somewhat larger than the experimental value.
The deformation of the ir([541]—,'[660] —,') band is pre-
dicted to be Pz-0. 25, i.e., nearly equal to that of the pro-

late yrast band, but with a slightly positive value of
y —10. The calculated equilibrium deformation of the
v( [651]—,

' Ig [514]—', ) configuration is about Pz-0. 31

(Q, = 11.1 e b), i.e., it is intermediate between the defor-
mation for the prolate minimum (Pz-0. 23) and the de-
formation of superdeformed states in the heavier Hg iso-
topes (Pz-0.48) [4]. Finally, the equilibrium deforma-
tions of the intruder band involving the lowest X =7 neu-
tron, i.e., the v([651]—,'(81[770]—,') band is predicted to be

Pz —0.41 (Q, = 15.8 e b).
The experimental quadrupole moment Q, =10.7(1.7)

for band 3 may be consistent with either interpretation,
since the experimental values are systematically smaller
than the calculated ones. Another attractive possibility,
which is difTicult to confirm by experiment, involves octu-
pole mixing between the j»/2 and i$]/2g9/2 neutron
states (as mentioned earlier this mixing plays a crucial
role in producing static octupole deformations in the
light actinides).

In summary, evidence is presented for a negative-
parity, odd-spin decay sequence in ' Hg which has a
quadrupole moment that is about 40% larger than that of
the normally deformed yrast sequence. This band, the
first in heavy deformed nuclei with an established defor-
mation midway between normal and super deformed, is
interpreted as an excitation of two highly deformation-
polarizing quasineutrons, either the v( [651]—,' [514]—,') or
the v([651]—,'II [770]—,') configuration or a combination of
both intruding from above the N = 126 shell.
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