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Natural orbital representation in nuclei

M. V. Stoitsov, A. N. Antonov, and S. S. Dimitrova
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy ofSciences, Sofia 1784, Buigaria

(Received 27 July 1992)

Mean-field approximation results emerging from Hartree-Fock calculations with Skyrme-type forces
are compared with those obtained within the natural orbital representation of the Jastrow correlation
method in its lowest order approximation for He, ' 0 and Ca. The influence of short-range correla-
tions on the single-particle wave functions and occupation probabilities is analyzed. A two part decom-
position of the one-body density matrix is achieved which reflects both the low- and high-momentum
components of the correlated ground state.
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The effects of short-range correlations (SRC) on
single-particle (s.p. ) properties of nuclei are currently of
great interest in nuclear physics due to recent experimen-
tal data that confront the theory with new challenges.
On one hand, comparison of the experimental data and
theoretical results has demonstrated sizable SRC effects
on the nucleon and cluster momentum distributions, the
occupation numbers of s.p. states, the spectral functions
of deep-hole nuclear states as well as nuclear reaction
cross sections [1]. Well known, for example, is the work
done in y scaling as an attempt to extract the nuclear
momentum distribution from the experimental data on
electron-nucleus scattering [2]. The data cannot be ex-
plained within the mean-field approximation (MFA) to
the nuclear ground state. Qn the other hand, many ex-
perimental data show that the s.p. states that emerge
from the MFA are rather close to physical reality. For
example, recent (e, e'p) experiments [3] demonstrate that
the peak of the s.p. strength is near the energy predicted
by the nuclear shell model. These data also yield well-
defined s.p. wave functions in coordinate and momentum
space [4]. In addition, there has been a great deal of
work in (y,p) reactions having an almost unique sensitivi-
ty to high-momentum components of the nuclear wave
function and giving information on the single-particle
momentum distribution that is complementary to that
from electron- and proton-induced reactions [5].

The aim of the present paper is to analyze the s.p.
description of nuclei in the framework of the natural or-
bital representation [6], which is valid also for systems
strongly affected by SRC. Instructive conclusions are
made about the inhuence of SRC on the s.p. wave func-
tions and occupation probabilities in nuclei. Some restric-
tions of the nuclear MFA caused by SRC are revealed.

An important problem arising in correlation methods
going beyond the MFA is to define s.p. nuclear states and
to calculate s.p. wave functions and occupation probabili-
ties associated with the correlated ground state
0'—:%'(r, , r2, . . . , r„) of an A-particle system [7]. The
main difhculty comes from the fact that the general rep-
resentation of the one-body density matrix associated
with 4

does not uniquely define either the set of s.p. wave func-
tions t q& (r) j or the matrix elements p p, whose diagonal
part 0~ p ~ 1 is the s.p. occupation probability [6], i.e.,
the number of particles in a particular s.p. state with
wave function tp (r). Usually, difFerent MFA approaches
use additional physically motivated approximations to
avoid the arbitrariness of the s.p. set [y (r)J associated
with qt or p(r, r'). In these cases the resulting set [y (r)]
is clearly model dependent.

The only model - independent way to define a set of s.p.
wave functions and occupation probabilities sole1y from
the correlated one-body density matrix p(r, r') is to use its
natural orbital representation (NOR), introduced by
Lowdin [6]

p(r, r')=gn g*(r)P (r') . (2)

p(r, r') -=gv y*(r)y (r'), (3)

where MFA wave functions y (r) are used instead of the
natural orbitals f (r) and additional inforamtion is incor-

The normalized eigenfunctions g (r) of p(r, r'), called
"natural" orbitals, form a complete orthonormal set.
The associated eigenvalues n, called "natural" occupa-
tion numbers, define the probability (0~n ~ 1) that the
natural orbital P (r) is occupied in the ground state %.
Usually there are A orbitals P (r) for which the occupa-
tion probabilities n are significantly larger than those
for the others. As in the MFA, these are called the hole-
state orbitals while the others are called particle-state or-
bitals [8].

Clearly, the one-body density matrix and consequently
all one-body nuclear characteristics have the simplest
form within the NOR, Eq. (2). It is therefore attractive
to use the method [9,10] for approximating the correlated
density matrix p(r, r') by an expression of the type of Eq.
(2),
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porated for the new occupation probabilities U .
In the present paper we compare the MFA and the

NOR of the correlated ground states of He, ' 0, and
Ca. As typical MFA results we consider those for hole-

and particle-state wave functions [y (r)], local densities
p(r), elastic form factors F(q), nucleon momentum distri-
butions n (k), and related one-body nuclear characteris-
tics obtained within the Hartree-Fock theory with
Skyrme SkM' effective forces [11]. The same quantities
have been calculated also within the NOR of a one-body
density matrix which takes into account SRC using the
Jastrow correlation method (JCM) in its low-order ap-
proximation (LOA) [12]. A simple choice of harmonic-
oscillator wave functions and a Gaussian state-
independent correlation factor gives rise [12] to analytical
expression for the JCM one-body density matrix in LOA.
It depends on two parameters: the oscillator length a
and the correlation parameter P. Values a=(0.82, 0.59,
and 0.52) fm ', P=(1.23, 1.43, and 1.21) fm ' have been
obtained by fitting the experimental elastic form factor
data for the nuclei He, ' 0, and Ca, respectively.

Typical results for both sets [&p I and [g I are shown
in coordinate space (Fig. 1) and momentum space (Fig.
2). The natural occupation numbers n of Ca are com-
pared with recent experimental data in Table I. The
comparison leads to the following conclusions concerning
the hole-state orbitals:

The NOR hole-state orbitals g are close to the occu-
pied MFA orbitals p in coordinate space (see, e.g. , the
ls-state in Fig. 1) and momentum space (Fig. 2). Thus,
the SRC do not affect significantly the hole-state orbitals.
Relativistic effects are expected to be important for mo-
menta k ~2 fm ', their inclusion would lead to a better
agreement with the experimental hole-state momentum
distributions (see Fig. 2). The influence of SRC is mainly
on the natural hole-state occupation probabilities, which
are close to (but less than) unity. Natural hole-state occu-
pation numbers as well as the total depletion of the Fermi
sea caused by SRC agree with the available experimental
data, as can be seen in Table I.

The conclusions given above justify the MFA as a good
approximation to the correlated one-body density matrix
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FIG. 2. Nucleon momentum distribution of 1p3/2 protons in
' 0 calculated within the NOR (solid line) and MFA (dashed
line). Comparison is made with the total JCM momentum dis-
tribution n (k) in LOA (solid line with squares) and experimen-
tal data [1] (circles).

(2) for the hole-state orbitals. The MFA and NOR re-
sults for both the s.p. wave functions and occupation
probabilities are of the same order of magnitude. This
explains the observation that whereas clear experimental
indications for an appreciable amount of high-
momentum components due to the SRC exist in the total
nucleon momentum distribution n(k) (solid line with
squares in Fig. 2), no such components have been detect-
ed with respect to the hole-state momentum distributions
(circles in Fig. 2).

However, the situation drastically changes when con-
sidering the particle-state orbitals. In this case both the
s.p. wave functions and occupation probabilities are
strongly affected by SRC:

In coordinate space, the natural particle-state orbitals
tt (r) are much more localized than the MFA orbitals

y (r). The former are concentrated inside the nucleus in
the region where the local density p(r) is not zero. This
feature does not depend on the principa1 quantum num-
ber or the orbital angular momentum of g (see Fig. 1).
The natural particle-state orbitals have significantly
smaller rms radii but more than two orders of magnitude
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TABLE I. Comparison of MFA and NOR results for the oc-
cupation numbers n, the depletion of the s.p. states D, and
the total depletion TD (both D and TD in percents) in Ca
with experimental data [3].
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FICx. 1. Particle- and hole-state natural orbitals (solid line)
compared with the associated MFA orbitals (dashed line) in ' 0
(the radial parts multiplied by r).
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larger high-momentum components than the MFA
particle-state orbitals. Due to the SRC, small but
nonzero occupation probabilities appear for the particle-
state orbitals (see Table I). This fact, together with the
large high-momentum components of the natural orbit-
als, suggests that the high-momentum tail in the total dis-
tribution n (k) caused by SRC is almost completely deter-
mined by the particle-state contributions. The particle-
state natural occupation probabilities are about one order
of magnitude smaller than the preliminary experimental
predictions (see Table I).

The main conclusion concerning the particle-state or-
bitals is that for these states the natural orbitals are not
close to the MFA results nor are the natural occupation
numbers close to experimental data. Therefore, the ap-
proximation (3) fails to describe properties that are sensi-
tive to large momentum transfer, such as, e.g., the high-
momentum components of F (q) or n (k).

Since the approximation (3) is questionable, it is impor-
tant to find its physically acceptable improvement. This
may be done within the present model in which we can
decompose the correlated one-body density matrix (2)
into two parts,

p(r, r')=p'"(r, r')+p' '(r, r') . (4)

The first part p'"(r, r') collects all the terms of the JCM
one-body density matrix in LOA [12] that are responsible
for nuclear characteristics sensitive to low-momentum
transfer. The associated part of the total momentum dis-
tribution n"'(k) reproduces almost exactly n(k) up to
momentum of about 2 fm '. In contrast, the second part
p' '(r, r') is responsible for those nuclear properties that
are sensitive to SRC or equivalently to the high-
momentum components in nuclei. The associated part of
the total momentum distribution n' '(k) reproduces al-
most exactly n (k) in the high-momentum region.

We have diagonalized independently both parts
p"'(r, r') and p' '(r, r') entering Eq. (4). In this way the
JCM one-body density matrix in LOA takes the form

p(r, r')=gn g*(r)g (r')= gu p*(r)p (r')

+y n&*(r)X (r'» (5)

where (n, f ) are the natural orbitals and occupation
numbers of the complete density matrix p(r, r'), while
(u, y ) and (i),y ) are the eigenvalues and eigenfunc-
tions of the matrices p'"(r, r') and p' '(r, r'), respectively.

Typical results for the eigenvalues n, v, and g in
' 0 are given in Table II. Unphysical negative values for
some occupation probabilities n arise due to breaking of
the A representability of p(r, r') in the LOA [12]. The
negative values of n are obviously related to the states

having negative eigenvalues v . In this sense, our next
conclusion is that the decomposition (5) gives a method
for restoring the 2 representability of the JCM one-body
density matrix in LOA.

Simply, one has to exclude from Eq. (5) all states p
with negative v and eventually to renormalize the result-

TABLE II. Eigenvalues entering Eq. (5) for ' O. Natural oc-
cupation numbers before (n ) and after (n ) restoring the A

representability are also given.
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0.9495
—0.0016
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0.9646
—0.0018
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Va

0.9409
—0.0053

0.0
0.0

0.9603
—0.0056

0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0113
0.0044
0.0015
0.0004

0.0079
0.0027
0.0008
0.0002

0.0057
0.0017
0.0005

0.0035
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0.0003

na

0.9495
0.0057
0.0026
0.0001

0.9646
0.0053
0.0018
0.0005

0.0057
0.0017
0.0005

0.0035
0.0010
0.0003
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ing new A-representable matrix p(r, r'). Its associated
new natural orbitals and occupation numbers (the com-
pletely non-negative values n in Table II) do not
significantly change since the breaking of the A represen-
tability is small.

The most important result from the two-part decompo-
sition (5) is the following. Whereas there is no single po-
tential associated with the natural orbitals g (r) there are
just two different harmonic-oscillator-like potentials asso-
ciated with qr (r) and y (r): U'"(r) for all the states
q& (r) and U' '(r) for all the states y (r). It turns out that
U'"(r) is of the same type as the MFA potentials
(A'co-=14. 4 MeV), while the second potential U' '(r) is
completely different from that of the MFA and has
%co =-62. 14 MeV.

Extrapolating the above results to the general correlat-
ed one-body density matrix p(r, r'), we expect that its
decomposition as in Eq. (5) should be more realistic than
the approximation (3). The first term p"'(r, r') may come
from the MFA for p (r) and some additional information
about the eigenvalues u, while the second term p~ '(r, r')
is associated with "another MFA" responsible for the
high-momentum components of the nuclear ground state

Concluding, it should be noted that the present results
are in agreement with those for the NOR in other sys-
tems, such as the "He atom [13), as well as with "the
best" wave functions used so far in describing Fermi
liquid drops [8]. This gives us confidence that the present
conclusions reAect some general properties that are
relevant for the exact correlated ground states of rnany-
fermion systems.
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