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We calculate the momentum dependence of the p-u mixing amplitude in a purely hadronic model.
The basic assumption of the model is that the mixing amplitude is generated by NN loops and
thus driven entirely by the neutron-proton mass diAerence. The value of the amplitude at the w-

meson point is expressed in terms of only the NNu and NNp coupling constants. Using values

for these couplings constrained by empirical two-nucleon data we obtain a value for the mixing

amplitude in agreement with experiment. Extending these results to the spacelike region, we find

a p-u contribution to the NN interaction that is strongly suppressed and opposite in sign relative

to the conventional contribution obtained from using the constant on-shell value for the mixing

amplitude.

PACS number(s): 11.30.—j, 21.30.+y

The existence of a nonzero mixing matrix element be-
tween the isovector p meson and the isoscalar w meson
is by now firmly established [1—3]. In addition to the
observed (small) branching ratio for the G-parity forbid-
den decay of the w meson into two pions, the under-
standing of the pion form factor at the w-meson point
(q2 = m2) necessitates the coherent interplay of two
distinct amplitudes; a dominant, t -parity allowed con-
tribution (p —+ p ~ 2vr) interfering with a small

(p ~ cu —+ p ~ 2vr) amplitude arising from p-ur mixing [1,
3].

It has long been recognized that a p-~ mixing ampli-
tude would give rise to charge symmetry violation (CSV)
in the nucleon-nucleon (NN) force [2, 4, 5]. The p-~
contribution to the NN interaction is constructed by
employing NN-meson vertices constrained by empirical
two-nucleon data. The p-cu mixing amplitude, on the
other hand, is obtained from a measurement of the pion
form factor at the on-shell cu-meson point [1,3, 6].

In one-boson exchange (OBE) models of the NK force,
nucleons interact via the exchange of several mesons
possessing different Lorentz and isospin transformation
properties [7, 8]. In this paper we are concerned with the
mixing between the isoscalar a meson and the neutral
member of the isovector p meson. The neutral u meson
couples in a minimal fashion to the conserved baryon
current

~NNcd g4pg / 0~@

The isovector p meson, on the other hand, has a vector
as well as a tensor coupling to the nucleon

&= gpss"~ 4p„+fp4~" ~ 0 Mc. .
2M

Notice that the above de6.nitions are standard except for
possible factors of 2 (some definitions include isospin ver-

tices as 1/2 or a/2). In addition, some models include a
NNw tensor coupling. Since in this paper we choose typ-
ical coupling constants determined by the Bonn group,
we use their conventions throughout this work [7, 8].

Having constructed an interaction Lagrangian one
can then proceed to calculate the contribution from
p-w mixing to the NN potential; one obtains (with
I'" = io" q /2M and C~ = f~/g~) [2, 4]

Viii (q) = &iviv(q) &"(1)&~(2) &-(I) + &*(2) (3a)

VP (q) = V~ (q) C I'"(1)p (2)r, (1)

—W" (1)I'p(2) r*(2) (3b)

where

g&g (I ~l ~)
(q2 —m2)(q2 —m2)

This parameter-free construction of the potential is
quite satisfactory since it does not introduce additional
parameters beyond those already constrained by charge-
symmetry-conserving (CSC) two-nucleon data. More
importantly perhaps, most of the differences observed
experimentally in the binding energy of mirror nuclei,
the Nolen-Schiffer anomaly [9], have been attributed to
p-ur mixing and explained using the above potential [10].
In addition, p-~ mixing plays an important role in ex-
plaining the difference between the neutron and proton
analyzing power (AA) in elastic neutron-proton scatter-
ing [ll—14]. Indeed, p-~ mixing seems to account for half
the size of the effect in the Indiana University Cyclotron
Facility experiment [3, 12].

One important issue that has been overlooked until
very recently, however, is the momentum dependence of
the p-w mixing amplitude. To date, most of the theoret-
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ical efforts devoted to the understanding of p-w mixing
in CSV have assumed the constant on-shell value for the
mixing amplitude. Since the relevant momentum trans-
fer carried by the meson exchange between two nucleons
is spacelike (q„( 0), the use of a mixing amplitude de-
termined at a timelike point is clearly suspect. Recently,
Goldman, Henderson, and Thomas have tested the on-
shell assumption by constructing a model in which the
mixing is driven by the u —d quark mass difference [15].
Since in their model the mixing is generated by qq loops,
they could examine the momentum dependence of the
mixing amplitude and, thus, confront the on-shell as-
sumption. They have concluded that the on-shell as-
sumption may be surprisingly poor.

In this paper we study the momentum dependence of
the p-w mixing amplitude in a purely hadronic model.
We consider the mixing amplitude to also be generated
by fermion loops. The basic assumption of our model,
however, is that the mixing amplitude is generated by
NN loops and thus driven entirely by the small neutron-
proton mass difference.

There are several advantages in calculating the p-a
mixing amplitude using a purely hadronic description.
First, all parameters used in the calculation are known
to great accuracy (e.g. , nucleon and meson masses) or
are constrained by empirical data (e.g. , coupling con-
stants) [7, 8, 16, 17]. Furthermore, since field-theoretical
models naturally include vacuum corrections, the cou-
pling between nucleons and antinucleons is determined by
the underlying theory and, thus, ultimately constrained
by the empirical data. These vacuum contributions are
an essential part of the relativistic description of a nu-
clear target. In fact, vacuum corrections are known to be
crucial for avoiding the appearance of spurious (center-
of-mass) excitations and for maintaining the conserva-
tion of the electromagnetic current [18, 19]. Furthermore,
hadronic models have been relatively successful in cal-
culating the nuclear response to electromagnetic probes
by including, in addition to the traditional particle-
hole excitations, vacuum polarization [20, 21]. The self-
consistency of these calculations demanded that the same
interaction used in the calculation of ground state prop-
erties be used for the residual particle-hole and NN inter-
action. Hence, in the calculation of the NN loops driving
the p-w mixing amplitude [see Eq. (5) below], we will use
the same dynamical input as in the calculation of the p-w
contribution to the NN potential [Eq. (4)]. Therefore,
the p-w mixing amplitude constitutes a parameter-free
prediction. While one might question the reliability of a
purely hadronic description of the mixing amplitude, we
feel that this is balanced by the simplicity and parameter-
free nature of the calculation. Second, in the calculation
of ferrnion loops there are no unphysical (e.g. , qq) thresh-
olds appearing near the region of interest [15]. The only
thresholds that appear are related to the production of
physical (NN) states and occur far away from the region
of interest. Finally, there is no need to introduce ad hoc
form factors to regularize (infinite) loop integrals (we dis-
cuss later the sensitivity of our results to the introduction
of form factors). Since the mixing amplitude is sensitive
only to the difference between proton and neutron loops,

the difference is finite even though the individual pieces
are not (note that the difference between u-quark and
d-quark loops should also be finite).

Using standard Feynman rules, the p-u mixing ampli-
tude in the hadronic model described by Eqs. (1) and (2)
can be written as

(p]H] ~) = gp g q2 II(q ), (5)

where II(q ) is the transverse component of the full polar-
ization tensor [see Eqs. (lla) and (lib) below]. Because
the p meson has, both, a vector ancl a tensor coupling to
the nucleon, one needs to evaluate polarization tensors
having Lorentz vector and tensor vertices, i.e. ,

II" (q) = II" (q) + CpII", (q),

where

(6)

iII" (q) = Tr [p"G(k + q)p"~.G(k)],
d'k

iII", (q) = d4k gg AAq

Tr p"G(k+ q) "~,G(k) . (7b)

The isospin trace can be evaluated by writing isoscalar
and isovector components of the nucleon propagator

1 1
G(k) = -G„(k)(l + ~.) + —G„(k)(1 —7..)

—= G.(k) + G, (k)~, (8)

in terms of individual proton and neutron contributions

Hndronic Loops

k+q p n

Mixing
Amplitude

Proton
Loop

Neutron
Loop

FIG. 1. The p-u mixing amplitude given as the difference
between proton and neutron loops. The Feynman diagram on
the left labels the external meson momentum q and the loop
momentum A:.

After performing the isospin trace one discovers, as ex-
pected, that the p-a mixing amplitude is driven by the
difference between proton and neutron loops (see Fig. 1)

n„.(q) = n~~~(q) —II~"„l(q) .

The calculation of the vacuum loops is now completely
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standard [22]. Since the individual proton and neutron
contribution diverge (but not their difFerence), we iso-
late the singularities by using dimensional regularization.
The Lorentz tensor structure of the polarization can be
obtained after performing the appropriate traces; we ob-
tain

&.":(~)= (
—g" s'+ q"a )&-(~')

";b.r) =
(

—g"V+q"s )&.~(a'),

(11a)

(11b)

where the unrenormalized polarizations are given (for
proton loops) by

11(:~(q')=-
vv 2%2 6~ 6

II (q )=-(@) g 1 1
vt 8&2

( )

(~,' —*(1—*)q' )

(M2 —x(1 —x)q~ l
dxx 1 —x ln (12a)

In the above equations A is an arbitrary renormalization constant, p is the Euler-Mascheroni constant, and e —+ 0. A
finite mixing amplitude is now obtained by taking the difference between proton and neutron contributions

11..(q') = 11(~~(q') —11(".) (q') =

rr„,(q') = 11&",'(q') —11.'t'(q') =

M2 —x(1 —x) q2
dxx(1 —x) ln M2 —x1 —xq2

M2 —x(1 —x)q2
dx In Mz —x(1 —x)q2

(13a)

(13b)

Expanding the integrand to first order in the neutron-proton mass difference we obtain the following closed-form
expression for the p-u mixing amplitude:

(p~H~ ~) gag AM
M2 ~2

for 0(q &4M1 ——(1+('+ C,) tan '
[

—~,( ' &()
'

1 2 1 ((—1
1 ——(1 —( + C~) —ln[,otherwise,( 2 ((+1

(14)

where

M = -(M„+M„),1

2
EM = (M„—M„),

4M(= 1—

TABLE I. Meson masses, coupling constants, ten-
sor-to-vector ratio, and cutoR' parameters in the Bonn
one-boson exchange model (see Table 4.2 of Ref. [7] and Ta-
ble 4 of Ref. [8]).

Meson Mass (MeV)

770
783

g'/4~

0.41
10.6

&= fig
6.1
0.0

A (MeV)

1400
1500

The above analytic expression is accurate everywhere
except in the vicinity of the thresholds (q = 4M ).
This equation embodies the central result of the present
work. It displays the momentum dependence of the p-a
mixing amplitude in terms of three parameters (g, g~,
and C~). Having previously constrained these parame-
ters from CSC two-nucleon data, this result provides a
parameter-free prediction of the model. In particular, us-
ing the above expression at the on-shell ~-meson point,
together with the parameters of Table I, we obtain

(p[H ~
~) = —4314 MeV

which compares well to the experimental value of
(—4520+ 600) MeV .

The momentum dependence of the p-w mixing ampli-
tude is shown in Fig. 2. Two calculations are displayed.
The solid line shows results for the mixing amplitude us-

ing Eq. (14) at all values of q2. In contrast, the dashed
line shows results modified by the introduction of form
factors in the spacelike region. These form factors are in-
troduced by modifying the point coupling in the following
way:

gp~gp(q ) =gp(1 —q /A )

gee ~ g~(q ):K (1 q /A~)

(16)

As before, the numerical values for the cutoffs (A) are
constrained by empirical two-nucleon data (see Table I).

The topic of form factors, or vertex corrections, now
needs some comment. It is clear that the finite size of
both nucleons and mesons should modify the naive point
coupling at finite q . These vertex. corrections, however,
need not be included in an ad hoc fashion. In fact, vertex
corrections ean, in principle, be calculated using renor-
malizable models based on hadronie degrees of freedom.
The basic dynamical assumption of these models is that
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FIG. 2. The p-~ mixing amplitude as a function of q with
(dashed line) and without (solid line) the inclusion of form
factors in the spacelike region. The experimental point was
extracted from a measurement of the electromagnetic pion
form factor at the ~-meson point [1].

the internal structure of the hadrons can be described
in terms of hadronic degrees of freedom alone [17]. Al-

though some progress has recently been made in calcu-
lating vertex corrections in hadronic theories [23], much
work remains to be done. In particular, very little has
been said about vertex corrections in the timelike region.
In addition, OBE models of the NN interaction can only
constrain the form factors on-shell. Hence, in order to
minimize the model assumptions introduced in our cal-
culation, we modify the naive point coupling only in the
spacelike region by the introduction of on-shell form fac-
tors as prescribed by Eq. (16). The issue of off-shell form
factors is clearly an important and open problem.

Because of the smooth behavior of the (dimensionless)
transverse polarization over the sampled q2 region (not

shown), the most important momentum behavior of the
mixing amplitude displayed in Fig. 2 is determined by the
q factor in Eq. (5). In particular, it reveals that the rnix-2

ing amplitude has the opposite sign relative to its value
at the on-shell point over the entire spacelike region sam-
pled in NN scattering. This behavior is clearly seen in
Fig. 3 which shows the p-w contribution to the NN po-
tential. Three calculations are displayed. The solid line
shows the NN potential [Eq. (4)] obtained from using
the on-shell value for the p-w mixing amplitude. The
dashed line uses the same on-shell amplitude but modi-
fies the naive coupling by the inclusion of on-shell form
factors at the external nucleon legs. Finally, the dash-
dotted line uses the off-shell p-~ mixing amplitude and
has, both, the off-shell amplitude and the external nu-
cleon legs modified by form factors. In addition to the
sign difference displayed over the entire spacelike region,
a much suppressed contribution to the NN potential is
observed whenever the off-shell mixing amplitude is used.

Finally, in Fig. 4 we show the static contribution to
the NN potential in configuration space. These results
are obtained from taking the Fourier transform of the
three momentum-space potentials displayed in Fig. 3. In
particular, with the on-shell mixing amplitude and with
no on-shell form factors this r-space potential takes the
following form [2, 4]:

g~g (pIHI w) (e
4~ m2 —m2( r (17)

p —u Contribution to the NN Potential
6 I I I I

I

I I I I

I

I I I I

I

I I I I

Large differences are clearly seen in the interior for all
three potentials. However, due to the strong repulsive
nature of the charge-symmetry-conserving NN poten-
tial, the two-nucleon wave function will be insensitive
to the details of the distorting CSV potential in the in-
terior. More importantly, perhaps, is the occurrence of
a node in the potential around r 0.9 fm. This is the
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FIG. 3. The contribution from p-~ mixing to the NN
potential as a function of q using the oA-shell value for the
mixing amplitude (dash-dotted line), and the on-shell value
with (dashed line) and without (solid line) the inclusion of
on-shell form factors at the external nucleon legs.

0.0 0.5 1.0 2.0

r frn
FIG. 4. The contribution from p-cu mixing to the NN

potential as a function of the NN separation using the off-
shell value for the mixing amplitude (dash-dotted line), and
the on-shell value with (dashed line) and without (solid line)
the inclusion of on-shell form factors at the external nucleon
legs.
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region where conventional estimates suggest that the p-u
contribution, obtained from a competition between the
fast falloff of the CSV potential and the suppression of
the two-nucleon wave function in the interior, should be
larger. Consequently, our findings are in basic agree-
ment with the results obtained in Ref. [15] and are consis-
tent with the view that the p-w contribution to the CSV
nucleon-nucleon potential is, effectively, nonexistent.

In summary, we have calculated the momentum depen-
dence of the p-a mixing amplitude in a simple hadronic
model. The mixing was assumed to be generated solely
by NN loops and thus driven by the neutron-proton mass
difference. Since the mixing is sensitive only to the dif-
ference between proton and neutron loops, the amplitude
was found to be finite even though the individual pieces
were not. We have presented closed-form analytic expres-
sions for the mixing amplitude in terms of very few pa-
rameters. Furthermore, these parameters were obtained
from previous fits to two-nucleon data. Hence, our re-
sults can be regarded as parameter-free predictions of
one-boson exchange models. Using standard values for
these parameters we obtained a value for the p-u mixing
amplitude at the on-shell w-meson point in good agree-
ment with experiment. We have extended our results to
the spacelike region and have computed the contribution
from the off-shell p-w mixing amplitude to the NN poten-
tial. These results were compared to a recent calculation
of the mixing amplitude in terms of qq loops [15]. In spite
of the obvious differences between the two models, our
findings agree with the main conclusions drawn from that
work, namely, that the momentum dependence of the p-u

mixing amplitude is significant and that the occurrence
of a node in the NN potential around r 0.9 fm severely
suppresses the p-a contribution to the CSV potential.

What the impact of these results will be on CSV ob-
servables is, at this juncture, hard to predict. For some of
them like the Nolen-Schiffer anomaly or the differences
in NN scattering lengths one must, at the very least,
study the momentum dependence of the vr-rt mixing arn-
plitude [24, 25]. In addition, one must study medium
modifications to the vector-meson propagators. This ef-
fect might be important in explaining the Nolen-Schiffer
anomaly for medium to heavy nuclei. These issues are
currently under investigation.

The neutron-proton analyzing power difference, LA,
might, however, pose a serious challenge. There, the x-q
amplitude does not contribute. At Ti~b = 477 MeV, AA
is dominated by the one-pion exchange potential and an
absent p-w contribution might not spoil the agreement
with experiment. At Tieb = 183 MeV, on the other
hand, the one-pion exchange contribution is small and
p-cu mixing dominates [3, 13, 14]. Hence, if as suggested
by our findings, and by those of Ref. [15], p-w mixing is
indeed severely suppressed, additional CSV mechanisms
will have to be found in order to account for the unex-
plained AA at Ti b = 183 MeV.
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