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Quasielastic scattering of Li using realistic three-body wave functions
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The quasielastic scattering of Li from C at 60 MeV/nucleon is calculated in a four-body

Glauber approximation. Different Li ground-state wave functions are used, including those calcu-

lated using Faddeev three-body models. The calculated quasielastic cross sections, including the 2

and 3 states of C in a distorted wave Born approximation, reproduce the experimental data over

most of the angular range, the dHFerences between theoretical models being less than the quoted

statistical errors on the available data.
PACS number(s): 25.70.Bc, 27.20.+n

Recent experiments with neutron-rich radioactive nu-
clear beams [1—3] have suggested that nuclei such as ~ Li
have a large neutron halo, or dilute neutron skin, which
extends to large radii. Such experiments have measured
not only the total reaction cross section for ~ Li projec-
tiles but also the momentum distributions of the sLi or
neutron fragments following the breakup of Li at high
energies. The neutron halo interpretation is supported
by a number of recent theoretical calculations [4, 5] of the
~r Li ground state, some of which calculate the density [6]
and breakup [7] distributions. These calculations, how-
ever, make rather different assumptions about the rela-
tive strength of pairing and spin-orbit forces experienced
by the halo neutrons.

Recently, the quasielastic scattering of ~rLi from ~2C

at 637 MeV has been measured [8]. We shall investigate
whether the effect of the neutron halo is evident in this
angular distribution and whether the present experimen-
tal data enable us to discriminate between alternative
models for the Li ground-state wave function.

To date most calculations of the Li reaction process
have used an optical-limit Glauber model 9], which re-
quires a knowledge of only the single-particle density [6].
However, the particular feature of interest in ~~Li is the
pairing correlations of the valence neutrons. These pair-
ing correlations are included explicitly in the three-body
models of ~ Li, and it is thus of interest to use the wave
functions of these models in calculations to clarify the
~~Li reaction mechanism.

It is well known that with the lighter lithium isotopes,
6Li and Li, the reaction mechanisms are strongly in-
fiue'need by polarization and/or breakup into the compo-
nent clusters. In these cases, simple folding models based
on the single-particle densities fail to generate the optical
potentials needed to describe the elastic scattering angu-
lar distributions. With o,-d and o;t separation energies
of 1.47 and 2.46 MeV, respectively, for Li and Li, we
know that dynamic polarizations are important [10, ll]
and that the real part of the folded potential has to be

multiplied by a factor of order 0.5 to fit the experimental
data [12]. In r~Li, with a sLi-nn separation energy of
only 0.3 MeV, similar large effects should be expected.

The Glauber approximations can be used not only in
the optical limit (where the free nucleon-nucleon reaction
cross section is the essential input) but also in a three-
or four-body model, with cluster-target optical potentials
as the ingredient. These few-body Glauber models have
been tested for deuteron scattering [13,14], and have re-
cently been extended to Li, but only for the case of
uncorrelated valence neutron wave functions [14, 15]. In
this Rapid Communication, we present the results of a
full four-body Glauber model that is able to include the
full details of three-body model predictions for Li. This
model is thus able to include the correlations of the va-
lence neutrons, their polarization and breakup induced
by the reaction process, the excitation of any low-lying
resonances, and to predict the effects of these on the ~~Li

elastic scattering observables.
For the scattering of composite particles the Glauber

approach involves an adiabatic treatment of the internal
degrees of freedom of the projectile as well as a small
angle treatment of the scattering. Both of these approx-
irnations are expected to hold at the energies of interest
here.

Our four-body model for ~~Li scattering assumes a
sLi+n+n+target description. A three-body (sLi+n+n)
wave function is used for ~ Li [4]. The sLi core is assumed
to be a spectator to the reaction and hence its spin degree
of freedom can be neglected. Given a choice of the ~rLi

wave function and the n- and Li-target optical poten-
tials, the Glauber scattering amplitude can be calculated
without further adjustable parameters.

Unlike the recent work by Yabana et aL [14] we in-
clude the recoil of the Li core. Since our three-body
wave function also takes into account the effects of corre-
lations between the valence neutrons it cannot be factor-
ized into a product of single-particle wave functions for
each neutron.
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The four-body Schrodinger equation is written

(TR + Ho + U(R, p, r) ) 4'(R, p, r) = E 4(R, p, r),

where

U(R, , p, r) = U, (R, p) + U i(R, p, r) + U„2(R, p, r) .

z

9
Li

Here, R, p, and r are the coordinates of the iLi center-
of-mass (c.m. ), the sLi-nn separation and the n ns-ep-
aration, respectively (see Fig. 1), T~ is the c.m. ki-
netic energy operator of the iLi projectile, and Ho is
its internal Hamiltonian. The core ( Li)-target (U, ) and
neutron-target (U„i 2) optical potentials constitute only
central terms. The treatment of the Li-target Coulomb
interaction is discussed later.

In the Glauber approximation [16] the elastic scatter-
ing amplitude is written

X
FIG. 1. Spatial coordinates of the Li-target four-body

system, and their projections on the impact parameter (X'-Y)
plane.

—iKf.i(q) =
27r

db e'~' dp drje j2 (e'~&b ') —1)
where the vectors R, p, and r are expressed in cyhndrical polar coordinates (see Fig. 1) as (b, R3), (or, p3), and (s, r3),
respectively, ~ is the iiLi incident wave number, and q is the momentum transfer.

The Glauber phase shift is

x(b, o, s) =x.(lb. l) + x (I»l) + x (I»l)
with

.(I .I) =-„p ( 2
U,

l
R ——pll

U„R+—p+
( 9 (—1)'

where the index i = 1, 2 labels the two neutrons and b„sq, and sg are the projections of the core and neutron
coordinates (with respect to the target) on the impact parameter plane. Both the reduced mass y, and K are
calculated using relativistic kinematics [17].

The Li ground-state wave f'unction, 4~ii, ;, has the general form

where the y, are the neutron spinors. In the present calculations the wave function includes both S- and P-wave
components. The angular momentum labels on the radial wave functions are hence equal (I. = E' = S = I,) and we
abbreviate the notation to Pl, (p, r), where L = 0, l.

As the Glauber phase shift y(b, o, s) is a function of vectors which lie in the impact parameter plane, the Z-
component integrations in the amplitude of Eq. (3) involve only the wave function. Thus we first evaluate the iiLi
density projected onto the impact parameter plane (the Glauber "thickness" function),

g(a, s) = (IC' (p r) I').

where ( )»,„denotes an integration over spin coordinates. From the definition of the wave function,

2

(IC'»L(p r)l')spi =, ).(—I) + (~L+1)'(2A+1) ~(LLIL LA)
I 0 0 0 I PA(cosa) 14L(s»r)l'

47r 3

with Pg(cosy) a Legendre polynomial and p the angle between p and r. Explicitly,
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p3r3 cTs
cos p = + —cos((p~ —(p„),

pr pr

and hence

(10)

((o, s) = gi (o, s) + g2(o, s) cos((p~ —p, ) + gs (o, s) cos ((p~ —(p„),

where

1
gi(o, s) = dp3 p, )+2! —

~ ! +1 ~(3(
2 ( ( pr

(12)

3
g2(o, s) = — os

gs(o. , s) = — (mrs) Gp3

dr, '",', yi(p, r),
pr)

t'A(p, e)
)
'

(14)

The elastic amplitude, with q = 2K sin(8/2), is therefore

f.i(e) = db e's' d«ds g(«, s) (
e'x~ ' " —1 ) (15)

In the above, the phase shift y is due to the strong interaction only. We incorporate the Coulomb interaction of the
Li core with the target by including the contribution yc „& from a screened Coulomb potential of screening radius

a, and expanding and retaining only the leading terms [13, 18] in powers of b, /a. We find y~c „~ (b,) = y (b,) + y, ,

where

—2rl(&/&co&i) [1 + s (A/&coui)~] + 2rl in(K&co&i + K&) bc ( &eau),
XP —

+2~ ln Kb, , &c & &Co&»
(16)

2 1 2
Z is the target charge, Rc,„i its Coulomb radius, and y, = —2rj ln(2Ka). Here, A(b, ) = (Bc „i—b, ) & and rj = Ze p/K
is the Sommerfeld parameter.

Upon adding the point-charge Coulomb amplitude to the Glauber amplitude [13, 18]

f (8) —e*" f (d) — db e's +""'" ' (e*x"' ' —1))
iK

el —& ' pt

where

e*x...(sj d«ds g(«s) (e'Ix(s»')+x, (» )—ex& «sl)

(17)

(18)

The overall phase factor y, (the only effect of the screen-
ing radius) can be ignored when calculating the cross
sections from this expression.

The calculation of the elastic scattering of Li requires
the specification of (i) the Li ground-state wave func-
tion, and (ii) the neutron- and core ( Li)-target optical
potentials. For the neutron-target interaction, we follow

[14] and use the Becchetti-Greenlees parametrization [19]
appropriate to the beam energy, but without the spin-
orbit force. At 637/11 MeV/nucleon, for a izC target,
we therefore use

V = 37.4 MeV, rv ——1.20 fm, av ——0.75 fm,
W' = 10.0 MeV, r~ = 1.3 fm, a~ = 0.6 fm.

The choice of the Li- C interaction is more problem-
atic. Since no Li scattering data have been measured,
we have to rely on data obtained with similar nuclei. Op-
tical potentials for i2C-izC scattering have been deter-
mined at 30 and 85 MeV/nucleon [20]. We have linearly
interpolated these potential parameters in energy to ob-

tain values for use in Li- C scattering at 637/11 (57.9)
MeV/nucleon:

V = 147.0 MeV, rv = 0.641 fm, a~ = 0.885 fm,

W = 25.0 MeV, r~ ——1.012 fm, a~ ——0.755 fm.

The radius parameters are multiplied by 9 ) + 12i~ .
Using these potential parameters, and the Faddeev

three-body wave functions for iiLi from [4], we have cal-
culated the Glauber cross sections (r,i(e) =

~ f,i(6)) ~2.

These cross sections are shown in Fig. 2, for different
models of iiLi [4]. Curve M3 uses the "spin-orbit limit"
wave function with potential radius 1.1 fm, while curve
Q5 uses the larger radius of 1.45 fm and gives a slightly
larger Li matter radius. In both cases, the Li ground
state is predominantly a (Opigz) configuration, moder-
ated by pairing correlations. Curve L6A on the other
hand arises from the "pairing limit" wave function, where
pairing correlations are assumed to dominate a (weak)
spin-orbit force in the Op shell, so that the neutrons are
entirely in a relative So state.
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FIG. 2. Calculated Li- Q elastic scattering at 637 MeV
using d'fF nt three-body models for Li, and when using
the core potential only. The data are the quasielastic cross
sections of [8].
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We also show the predictions of the model Z2 of [21],
and curve Yl is the pure uncorrelated (0@i~2) configura-
tion as used in [14]. For comparison, the scattering due
only to the core potential (with radius calculated using
9i~s + 12i~s) is also shown. The figure shows that, upon

l
' of the valence nucleon halo, there is consider-

able additional absorption for scattering angles greater
than 5', and that there is a shift in the phase of the
oscillations caused by the real part of the polarization

The experimental energy resolution in the data of [8]
does not allow for the separation of the elastic scatter-

s ae, ' ' + 2C which
f th inelastic scattering to low-lying collective

states; in particular the 2+ and 3 states of, w ic
should make the largest contributions. These have to be
calculated separately and added to the cr,i(8) calculate
from the Glauber model.

In estimating these inelastic contributions we need to
decide whether the distorted wave Born approximation
(DWBA) or the coupled-channels approach should be
use . inced S' C and Li have the same neutron num-

12ber, we will assume as a first approximation that
and Li have similar deformed shapes, and that their
inelastic processes have similar eEects on the optical po-
tential. To this extent our interpolated sLi- C optica
potential, deduced from C- C data, already includes
the back-coupling effects of the Li and i2C excitation.
We thus use the interpolated Li-i2C potential directly
in our Glauber calculations and add the C inelastic
processes in a DWBA step as follows.

To calculate the DWBA cross sections to the 2+ and
3 states of 2C within the Glauber model, we have de-
formed the "Glauber optical potential"

deformation lengths of hq
—1.648 fm and 6s = 1.00 fm

f th ~C 2+ and 3 states, respectively. These inelastic
'

1 tiecross sections are now used to construct the quasie as ic
cross section.

Figure 3 shows the quasielastic cross sections for the
difFerent models of iiLi. In this figure the higher curves
are from the models with large (Opiyz) configurations
and give a better fit in the midangles. The models o
iiLi with large nn correlations lead to lower cross sec-
tions in this range. At large angles the data do not permit
us to properly discriminate between the models. These
conclusions could however easily be changed by adjust-
ments to the sLi- C optical potential, estimated here
from C- C data. Clearly the measurement of sLi an-
gular distributions will be vital to the clarification of the
core-target interaction and an unambiguous understand-
ing of the iiLi reaction mechanisms.

The first calculation of ii Li elastic scattering [23] made
use of C-12C data to construct a 11Li optical poten-
t' 1 d' ctly. They determined what renormalization
of an M3Y double-folded potential was required to fit
the izC-i2C data, and then applied the same factor
(N = 1.175 + 0.725i) to a double-folded potential us-

ing iiLi and C densities. The neutron halo enters here
through the disuse tail in the 1 Li density. This renor-

1' d d uble-folded potential was used in [8] as the
bare potential for a coupled-channels calculation of the
12C ground, 2+ and 3 states. The resulting sum of these
quasielastic channels produce fits to the data [8] of com-
parable quality to those obtained here. However, for the
reasons given above, we believe that these inelastic c an-
nels should be calculated using a DWBA rather than a

1 d- hannels method. Had the DWBA results for the
inelastic channels been used, the quasielastic sum wou
have been larger by more than a factor of 2, suggest-
ing that this approach underestimates the absorption in
the core potential and/or in the reactions of the valence
neutrons.

A second calculation [14] used potentials similar to
ours, based on the observed C-i C energy dependence

10
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This scheme reproduces f,i(6i) very closely [14]. The de-
formed Glauber optical potential is then included in a
FRESCO [22] DWBA calculation. We follow [8] and use

lated Li- C quasielastic scattering at 637FIG. 3. Calcu ate i-

Me V from different three-body models for Li, an w en

using the core potential only. The data are from [8].
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[20], though for elastic scattering only and using an un-
correlated (OpiI2) wave function for iiLi. Their inter-
polation procedure, however, underestimated the radius
of the imaginary potential, and predicted a cross sec-
tion that must become too large with the addition of the
DWBA inelastic cross sections.

A feature of all these theoretical calculations is the
presence of a sharp minimum at 4 in the calculated an-
gular distributions. This discrepancy with experiment
remains unexplained.

The calculation of the elastic angular distributions is
the first result of our Glauber four-body model for the
reaction mechanism of Li. We have included all the
ground-state correlations in the structure of Li given by
various models, and determined their effect on the elas-
tic and quasielastic scattering cross sections. The errors
on the available data do not yet permit us to properly
discriminate between the models. The general conclu-

sion, however, is that the elastic scattering oscillations
are shifted to smaller angles by the polarization eKects,
and that there is increased absorption for small impact
parameters. Those models of Li with large nn correla-
tions result in lower cross sections in this angular range.

In principle, measurement of elastic angular distribu-
tions should provide a useful indicator of the nature of
the iiLi ground state, and help to decide between com-
peting theoretical models of the ground-state structure.
Moreover, since the Glauber four-body model provides a
theoretical description of the scattering process in which
all ground-state correlations can be accounted for, the
coincidence breakup distributions calculated using this
model should provide a sensitive probe of the nature of
the neutron halo.
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