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Anatomy of the soft photon approximation in hadron-hadron bremsstrahlung
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A modified Low procedure for constructing soft-photon amplitudes has been used to derive two gen-
eral soft-photon amplitudes, a two-s —two-t special amplitude M„' " and a two-u —two-t special ampli-
tude M„" ", where s, t, and u are the Mandelstam variables. M„' "depends only on the elastic T matrix
evaluated at four sets of (s, t) fixed by the requirement that the amplitude be free of derivatives (BT/Bs
and/or BT/Bt). Likewise M„"""depends only on the elastic T matrix evaluated at four sets of (u, t) also
fixed by the requirement that the amplitude M„u "be free of derivatives (BT/Bu and/or AT/tjt). In—TsTts
deriving these two amplitudes, we imposed the condition that M„' " and M " " reduce to M„and—Tu Tts ~. . . . —Ts TtsM„, respectively, their tree-level approximations. The amplitude M„represents photon emis-
sion from a sum of one-particle t-channel exchange diagrams and one-particle s-channel exchange dia-—Tu Tts
grams, while the amplitude M„represents photon emission from a sum of one-particle t-channel ex-

change diagrams and one-particle u-channel exchange diagrams. The precise expressions for M „' "and—Tu TtsM„are determined by using the radiation decomposition identities of Brodsky and Brown. We also
demonstrate that two Low amplitudes M„"'"'"' and M„'"'"",derived using Low's standard procedure,
can be obtained from M„' " and M„"" ", respectively, as an expansion in powers of K (photon energy)
when terms of order K and higher are neglected. We point out that it is theoretically impossible to de-
scribe all nuclear bremsstrahlung processes by using only a single class of soft-photon amplitudes. At—Ts Tts
least two different classes are required: the amplutides (such as M„' ", M"'"'"', and M„),which de-—Tu Tts
pend on s and t, and the amplitudes (such as M„" ", M„"' '"", and M„), which depend on u and t.
When resonance effects are important, the amplitude M„' ", not M„"'"'"', should be used. For processes
with strong u-channel exchange effects, the amplitude M„" "should be the first choice. As for those
processes which exhibit neither resonance effects nor u-channel exchange effects, all amplitudes converge
essentially to the same description. Finally, we discuss the relationship between the two classes.

PACS number(s): 13.75.Cs, 21.30.+y

I. INTRQDUCTIQN

Hadron-hadron bremsstrahlung processes have attract-
ed much attention during the last three decades. Process-
es, such as nucleon-nucleon bremsstrahlung (ppy and
npy) [1—3], proton-deuteron bremsstrahlung (pdy) [4,5],
proton-helium bremsstrahlung (p ay ) [4,6], proton-
carbon bremsstrahlung (p ' Cy ) [7), proton-oxygen
bremsstrahlung (p

' Oy ) [8], and pion-proton bremsstrah-
lung (tr py) [9], are the best-known examples, because
they have been studied both experimentally and theoreti-
cally. There exist a variety of reasons for investigating
these processes. (i) One of the important goals is the in-
vestigation of off-shell effects in the scattering amplitude.
For instance, the ppy and npy processes have been ex-
tensively studied since 1963 to investigate the off-shell be-
havior of two-nucleon interactions. Most theoretical
studies have focused on nonrelativistic potential model
calculations using various phenomenological potentials as
input, with the goal that the best potential could be
selected from comparison with ppy and/or npy data
[1—3]. Recently, the observation of energetic photons
from heavy-ion collisions has created a growing interest
in understanding the basic production mechanism of

these high-energy photons [10]. The npy process has re-
ceived new attention because it appears to be the most
likely source of these energetic photons. Moreover, npy
is probably an ideal process for studying meson exchange
effects [11,12]. (ii) Bremsstrahlung processes have been
used as a tool to investigate electromagnetic properties of
resonances. The most successful example is the deter-
mination of the magnetic moments of the b, ++(b, ) from
the vr py (vr py) data in the energy region of the
b, (1232) resonance [9,13]. (iii) The study of nucleon-
nucleus and nucleus-nucleus bremsstrahlung processes in
the vicinity of resonances, such as the p

' Cy process near
the 1.7- and 0.5-MeV resonances [7] or the p

' Oy process
near the 2.66-MeV resonance [8], was originally suggest-
ed for investigating details of nuclear reactions. Such
bremsstrahlung measurements can be used to extract the
nuclear time delay, and the time delay can be used to dis-
tinguish between a direct nuclear reaction and a com-
pound nuclear reaction. That bremsstrahlung emission
can be used as a tool to measure time delay has been
confirmed experimentally: Three separate experimental
groups have measured the p

' Cy cross sections and then
used these cross sections to extract nuclear time delays
[7]. (iv) Testing theoretical models and calculational ap-
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proximations has been another important aspect of study-
ing hadron-hadron bremsstrahlung processes, especially
those processes containing significant resonance or ex-
change effects. The combined experimental and theoreti-
cal investigations of the ~—py and p' Cy processes led
to a surprising conclusion [14,15]: These cross sections
cannot be described by the conventional soft-photon am-
plitudes (evaluated at a single energy and scattering an-
gle), which had been the standard since 19S8 when Low
first derived them. They fail completely to fit the experi-
mental data. These observations indicate why the study
of bremsstrahlung processes with significant resonance
effects or meson exchange effects can provide a sensitive
test of theoretical models and approximations.

Among the various models and approximations pro-
posed during the past three decades for bremsstrahlung
calculations, the best-known approach is the soft-photon
approximation. This approximation is based upon a fun-
damental theorem: the soft-photon theorem or the low-
energy theorem for photons. The theorem was first de-
rived by Low [16]; it was extended and generalized later
by many other authors [17,14,9]. Various soft-photon
amplitudes, which are consistent with the theorem, have
been constructed by using the standard Low procedure
[16]. This involves the following steps: (a) Obtain the
external amplitude M„' ' from the four external emission
diagrams and expand M„' ' in powers of the photon ener-

gy K. (b) Impose the gauge invariant condition
M'I'Ki'= —M~+'K", to obtain the leading term (order
K ) of the internal emission amplitude M„' '. (c) Combine
M„' ' and M„' ' to obtain the total bremsstrahlung ampli-
tude M„' '. Low's soft-photon amplitude M"', which is
independent of off-shell effects, is defined by the first two
terms of the expansion of M~ '. A universal feature of all
soft-photon amplitudes is that they depend only on the
corresponding elastic amplitude and electromagnetic con-
stants of the participating particles. Therefore, the soft-
photon approximation is referred to as the on-shell ap-
proximation, and calculations based on the soft-photon
approximation are classified as model independent.

The reader will note that the standard procedure can-
not be used to obtain an internal contribution which is
separately gauge invariant [9,18]. Therefore, it is difficult
to obtain a general form for the internal amplitude by us-
ing the standard procedure. In order to derive the gen-
eral soft-photon amplitude, a modified Low procedure
was proposed recently [9,18]. The modified procedure in-
cludes four steps. Because the determination of the gen-
eral amplitude M„ is guided by the derivation for the cor-
responding special amplitude M„, which can be rigorous-
ly derived at the tree level, we first apply the modified
procedure to find M . (1) Obtain the external amplitude
M from a set of tree-level external diagrams. (2) Con-
struct the internal contribution M„, which represents
photon emission from a dominant internal line (or lines),
and split M „into four quasiexternal amplitudes by using
the radiation decomposition identities of Brodsky and
Brown [19]. (3) Obtain an additional gauge invariant
term M „by imposing the gauge invariant condition
M K"= —M K". Here M is the sum of M and

M„: M„=M„+M„. (4) Combine M and M„ to ob-
tain the total amplitude, M =M +M . The ampli-
tude M„, especially the expression for M „, can then be
used to determine the general amplitude M„by applying
the modified procedure again. (1) Obtain the external
amplitude M„ from four general external diagrams.
(This step is identical to the first step of the standard pro-
cedure. ) (2) Construct an internal contribution M„,
which reduces to M „at the tree-level approximation. (3)
Obtain an additional gauge invariant term M„by impos-
ing the gauge invariant condition, MGK"= —M~1K".
Here, M =M +M . (4) Combine M, with M to ob-
tain the total amplitude M„=M„+M„,which should
reduce to M„at the tree-level approximation. The first
two terms of the expansion of M„, which can be written
in terms of the complete elastic T matrix and electromag-
netic constants of the participating particles, define a gen-
eral soft-photon amplitude. We emphasize that the ex-
pansion of M„ is performed in such a way that the ex-
panded M„will depend on the elastic T matrix, evaluated
for two Mandelstam variables, but it will be free of any
derivative of the T matrix with respect to those two
specified Mandelstam variables.

The purpose of this work is to study the soft-photon
approximation systematically. We apply both the stan-
dard procedure and the modified procedure to derive
various soft-photon amplitudes, which fall naturally into
two classes delineated by the choice of Mandelstam vari-
ables. We find that one of these two classes is completely
new; it has been totally ignored in the literature. We
show that these two classes are independent and they are
equally important for describing bremsstrahlung process-
es. In order to make this point more precisely, let us con-
sider photon emission accompanying the scattering of
two particles A and 8 (s-channel reaction):

A (qt')+8 (pt')~ A (qg)+8 (pj")+y(K") .

Here, qt' (qg) and p/' (pg) are the initial (final) four-
momenta for particles 3 and 8, respectively, and K" is
the four-momentum for the emitted photon with polar-
ization c". We assume that the particle A has mass mz
and charge Qz, while the particle 8 has mass ms and
charge Qs. For simplicity, we also assume that both A

and B are spinless particles, since our problem does not
depend on the spin of the participating particles. From
the process (1), we can define the following Mandelstam
variables: s, =(q, +p, ), s~=(q&+p&), t =(pI —p;),
t =(q& —

q, ), u, =(p& —
q, ), and uz=(q& —p, ) . Since a

soft-photon amplitude depends only upon two indepen-
dent variables, chosen from the above possible Mandel-
stam variables, we can express the two independent
classes of soft-photon amplitude as M „'"(s, t ) and
M„''(u, t). Here, M"'(s, t) includes all amplitudes that
depend upon s [choosing from s, , s&, and other linear
combinations s &=(as;+psI)/(a+p), aWO and p&0]
and t [choosing from tz, t~, and other linear combinations
t .ti =(a'tp+P'tq )l( +aP'), a'%0 and P'WO], while
M„' '(u, t) involves all those amplitudes that depend upon
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u [choosing from u i, u 2, and other combinations
u &=(au i +pubs)/(a+p), a&0 and p&0] and t.

The first class, M„'"(s, t), contains three interesting am-
plitudes: (i) the conventional Low amplitude M„' '"'
(s, t), (ii) the Feshbach-Yennie amplitude M„" (s;, s&', t)
[20,14], and (iii) the two-s two —tspe-cial amplitude
M„' "(s, ,s&,'t, t ) [or the special two-energy —two-angle
amplitude M„(s;,s&, t, t )) [9,15]. The M„'"'"' am-
plitude can be derived using the standard Low procedure.
Since this latter amplitude depends on
s=s» =(s, +s&)/2 and t=t„=(t +t )/2, it is a one-
energy —one-angle (OEOA) amplitude [14]. M„'"'"' has
been widely used to calculate cross sections for many
bremsstrahlung processes for more than 30 years. How-
ever, recent investigations have shown that it fails to de-
scribe those bremsstrahlung processes which are dom-
inated by resonance effects. The Feshbach-Yennie ampli-
tude is a special two-energy —one-angle amplitude [14]. It
is interesting primarily because it was the first soft-
photon amplitude that was used to describe some brems-
strahlung processes with scattering resonances and to ex-
tract the nuclear time delay from bremsstrahlung cross
sections. The amplitude M„' ", as we will see later in
this work, is the most general amplitude in the M„"'(s, t)
class, since all other amplitudes, such as M„"' '"' and
M„", can be reproduced from it. Because the modified
procedure is used to derive M„' ", the amplitude will be
shown to be independent of the derivatives of the elastic
T matrix with respect to s or t. The amplitude has been
tested experimentally. The amplitude M„,which is a
practical version of M ' ", has been used to describe al-

p
most all available m

—py and p' Cy data. It has been
used to determine the magnetic moments of the 6++ and
the 6 from ~+py and m py data, respectively. Al-
though the M„amplitude should be used, it has nev-
er actually been applied to extract the nuclear time delay
from the bremsstrahlung data.

The second class M„' '(u, t) is completely new. It has
not been previously studied or discussed in the literature.
Here, we show (i) how the standard procedure can be
used to derive another Low's amplitude,
M„'"'""(u»,t„) where u» =(u, +u2)/2 and (ii) how
the modified procedure can be used to obtain the general
amplitude for the second class, the two-u —two-t special
amplitude M„" "(u„uz, t, t ). We explain why we ex-
pect M„" " to play a major role in predicting and
describing those processes that are dominated by ex-
change current effects.

We also discuss the relationship between M~" (s, t) and
M„''(u, t). In particular, we show that the two classes
can be interchanged, M„'"(s,t)~M„' '(u, t), if Qs is re-
placed by —Qz, Qii ~—Qii, and pt' is interchanged with

py l p&"~ py.

II. ELASTIC SCATTERING T MATRIX

q,~+p,~=qj"-+p~~+K" . (2)

and

q ~= lim q~K~O

p~=lim p~ .
K~O

The energy-momentum conservation relation defined in
Eq. (2) becomes

q,~+p,~=q ~+p ~ .

A diagram which represents the A-B elastic scattering
process is shown in Fig. 1(a). In this diagram, T
represents the 3-B elastic scattering T matrix. T is an
on-shell T matrix because all four external lines (legs) are
on their mass shells. For the bremsstrahlung process,
which will be discussed in the next section, the exact
bremsstrahlung amplitude (without the soft-photon ap-
proximation) involves half-off-shell T matrices. Each of
these T matrices, on-shell or half-off-shell, can be written
in terms of six Lorentz invariants, chosen from s (s; or
s&), t (t or t ), u (u, or u2), q& [q& or b,, =(q&+E) ],
q,

'
[q, or bb=(q, —E) ] pt .[p/ or A, =(p&+K) ], and

p [p; or b, d =(p, —K) ]. Thus, any T matrix can be
written as

l2 l2 l2 l2T(s, t, q;,p;, q/, p/ )

or
l2 l2 l2 l2T(u, t, q, ,p, , qf pf ) .

As in the examples, let us define the following T matrices,
which will be used later.

(i) The elastic (on-shell) T matrix can be written as a
function of two independent variables, e.g. ,

T (s, t):T(s, t, m „,m~,—m „,mti )

or

T(u, t)= T(u, t, m~, ming, mz, mii) .

This is because q, , p;, q&, and p& satisfy the on-mass shell
conditions,

q. =m&

p pl

2= —2= 2
q~

——q ~=m„,

In the limit when K approaches zero, the bremsstrahlung
process (1) reduces to the corresponding A-B elastic
scattering process,

A (qf')+B(p/')~ A (q ~)+B(p ~~),

where

The bremsstrahlung process, which we wish to study,
is given by Eq. (1). The five four-momenta in Eq. (1)
satisfy energy-momentum conservation:

and only two of the three Mandelstam variables are in-
dependent, since they satisfy the following condition:



976 M. K. LIOU, DAHANG LIN, AND B.F. GIBSON 47

s+t+u =2m&+2m&,

where

s =(q, +p; )'=(qf +pf )',
t =(pf —p; )'= (qf —

q; )

u =(qf —p;) =(pf —q;)' .

(8b)

(ii) Five diagrams that represent the bremsstrahlung
process (1) are shown in Fig. 2. A half-off-shell T matrix
can be defined if a photon of momentum E" is emitted
from the outgoing A particle [see Fig. 2(a)]. This T ma-
trix can be written as a function of three independent
variables,

A B
K

qt

q, +K~TU
q /i lip

A B

A B

~c pt +K

q Ii lip
A B

A
]i

~L
q ]i lipL

A B

(d)

B
]4

qt pt

K
iraq, imp,

A B

(b)
B
]'lL

p

or

T(s;, t b,, )—= T(s;,t, m„,mz, b,„mz)
(10)

A KB
'll,

q) p)

T(u„t,h, )—:T(u, , t, m„, mtt, h„m~),
where

q. ]4 ]kp.
A B

(e)

A B
/l

Pt

~T

FIG. 2. Feynman diagrams for bremsstrahlung: (a)—(d) are
the external emission diagrams; (e) is the internal emission dia-

gram. These diagrams are generated from the source graph,
Fig. 1(a).

A B
I'4

Pt

T(s,t)

A

rA
n

A B

(a)

Cn

A

Z'A
CB D +'"

s, =(q, +p, )

=(Pf P; )

u, =(pf —
q, )

b,, = (qf +E) =m „+2qf .K .

It is easy to show that

A B

q„
A B

A qL

s,. +t +u& =5, +m~+2mz . (12)

A

q„
A

i'4

A B

A B
I( i(

pf

=Jr„
q p, fl

Cn

(c)

cB +g rA
J

q„
A

F;

A

AFB + ~ ~ ~ ~

or

T(sf, ti„hb )—= T(sf, tp, hb, mt', m„,mB )

T(u2, t~, hb ) = T(u2, t~, h&, mz, m „,mz ),
(13)

where

(iii) A half-off-shell T matrix can be defined if a photon
of momentum E" is emitted from the incoming A parti-
cle [see Fig. 2(b)j. This T matrix is a function of three in-

dependent variables,

FIG. 1. (a) Graphic representation of the A-B elastic scatter-
ing process. (b) Feynman diagrams for the A-B elastic process
at the tree level. The amplitude is approximated by a sum of
one-particle t-channel exchange diagrams (exchange of C„parti-
cles, n = 1,2, . . . ) and one-particle s-channel exchange diagrams
{exchange of DI particles, I =1,2, . . . ). (c) Feynman diagrams
for the A-B elastic process at the tree level. The amplitude is

approximated by a sum of one-particle t-channel exchange dia-

grams (exchange of C„particles, n =1,2, . . . ) and one-particle
u-channel exchange diagrams (exchange of F, particles,
j=1,2, . . . ).

f (qf Pf )

2 (qf Pi )

b, i, =(q; —K) =m„2q, .K . —

We can show that

(14)

sf+t~+u2 —kb+m~+2m (15)

(iv) A half-off-shell T matrix can be defined if a photon
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or

T(u2, t,b, )—:T(u2, t,m„, mti, m„,h, ),
where

and

t =(q& —q;)

5, =—(p~+K) =mtt+2p~ K .

of momentum K" is emitted from the outgoing 8 particle
[see Fig. 2(c)]. This T matrix is a function of three in-
dependent variables,

T(s;, t, b )=T(s;, tq, mz, me, m~, b )

ed in Fig. 1(b) and the second case in Fig. 1(c).
In the case shown in Fig. 1(b), the elastic A B-scatter-

ing process is determined by a sum of one-particle t-
channel exchange diagrams and one-particle s-channel
exchange diagrams. In other words, we assume that the
3-8 system involves the t-channel exchange of particles
and the s-channel exchange of particles (an intermediate
state or scattering resonance). The one-particle s-channel
exchange diagrams are the dominant elastic diagrams in
the resonance regions. [Two well-known examples are
m.X scattering in the b, (1232) resonance region and p' C
scattering near either the 1.7-MeV resonance or the 0.5-
MeV resonance. ] The elastic scattering T matrix corre-
sponding to Fig. 1(b) has the form

The following relation can be easily proved:

si + tq + u 2 ~c +mB +2m g

T(s, t) = Tc(t)+ TD(s),

(18)
where

(22)

(v) A half-off-shell T matrix can be defined if a photon
of momentum E" is emitted from the incoming 8 particle
[see Fig. 2(d)]. This T matrix is a function of three in-
dependent variables,

T(sf tq kd)=T(sI'tq mA ~d mA mB)

and

T (t) yl Ac i IcB
t (m—„) +iE

T (s)=+I I"
s —(mi ) +iE

(23a)

(23b)

or

T(u„tq, hd )—:T(u„tq, m„,hd, m„,m~),

(19)

where

b, d—:(p; —K) =me —2p, K .

It is not difficult to prove that

sf +tq +u 1 ~d ™B +2m~

(20)

(21)

The above discussion illustrates clearly that there are
at least two different ways of choosing independent vari-
ables for each T matrix. The first choice involves s and t,
while the second choice involves u and t. In the case that
one is dealing with the exact amplitude for bremsstrah-
lung (in contrast to the soft-photon approximation, which
is the subject of this paper), these two choices must be
equivalent. Howeuer, we shall see below that if one soft
photon amplitude is parametrized in terms of s and t and
another soft photon amplitud-e is parametrized in terms of
u and t, then the two amplitudes are no longer equivalent.
The soft-photon approximation makes the two resulting
amplitudes different. Which independent variables to
select and how to pararnetrize T matrices in terms of
them is an important question, which must be carefully
considered in order to establish the optimal soft-photon
amplitude for specific bremsstrahlung processes. Since
the elastic scattering diagrams serve as the ultimate
source graphs from which all bremsstrahlung diagrams
are generated, the independent variables in a soft-photon
amplitude are specified by the choice of independent vari-
ables made in expressing the elastic T matrix.

In order to illustrate this point, let us consider two spe-
cial elastic scattering cases. In each case, we assume that
the elastic scattering process is determined by a set of
one-particle exchange diagrams. The first case is depict-

In Eq. (23), m„(n =1,2, . . . ) are the masses of the t
channel exchange particles C„,I „are the 3-C„-A ver-
tices, I „are the B-C„-8 vertices, m& (I = 1,2, . . . ) are
the masses of the intermediate particles (s-channel ex-
change particles) DI, I I" are the A DI Bvertic-es, -and s
and t are defined by Eq. (9). Conservation of charge re-
quires that a11 t-channel exchange particles C„be neutral
and the charge of every s-channel exchange particle D&

must be Q„+Qe. If these diagrams are used as source
graphs to describe internal emission, t-channel exchange
particles make no contribution to internal emission be-
cause they have no charge. Therefore, photon emission
from the s-channel exchange determines the entire inter-
nal amplitude in this case.

In the second case, as shown in Fig. 1(c), the elastic A

8 scattering process is determined by a sum of one-
particle t-channel exchange diagrams and one-particle u-
channel exchange diagrams. In other words, we assume
that the A-8 system involves the t-channel exchange par-
ticles and the u-channel exchange particles F.
(j =1,2, . . . ). The elastic scattering T matrix corre-
sponding to Fig. 1(c) has the form

T(u, t) = Tc(t)+ TF(u), (24)

where Tc(t) is given by Eq. (23a) and

TF(u)=y r"F' ' f ~Fe.
u —(m ) +iE

In Eq. (25), m. (j =1,2, . . . ) are the masses of the u-

channel exchange particles F., I " are the A-F.-B ver-

tices, and u is defined by Eq. (9). The charge of every u-

channel exchange particle is Q„—Q~. If Q„—Q~&0,
then photon emission from the u-channel exchange parti-
cles determines the entire internal amplitude in this case.
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III. BREMSSTRAHLUNG AMPLITUDE
AT THE TREE LEVEL

A. Photon emission from the tree diagrams given by Fig. 1(b)

If the elastic scattering diagrams given by Fig. 1(b) are
used as source graphs to generate bremsstrahlung dia-
grams, then we obtain Fig. 3. Figures 3(a)—3(d) represent
the external emission diagrams and Fig. 3(e) represents
the internal emission diagram. The external bremsstrah-
lung amplitude corresponding to Figs. 3(a)—3(d) has the
form [21]

Tc(t~) and Tc(t~) are defined by Eq. (23a), and TD(s, )
and TD(sf ) are defined by Eq. (23b). The internal brems-
strahlung amplitude corresponding to Fig. 3(e) can be
written as

M I(D) —y (Q +Q )I ADB

(qf+Pf) —(mi ) +iE

X [
—i(q, +p, +qf +pf +K) ]

X p ADB

(q; +p; )' (—mi )'+i E

Applying the radiation decomposition identity of Brod-
sky and Brown to split the amplitude M „' ', we obtain

where

+Qs " T(s;, t ) —Qs
" T(sf, t ), (26)

Mt(D) T
«+P )y

Mp =QATD(sf)(
)

—
QA( )" TD(s)

ql ~1 Pf '

(q;+p, )„'f'(, +, ) K
T(s, , t )=Tc(t )+TD(s, ),
T(sf tp) Tc(tp)+TD(sf ),
T(s, , t, ) = Tc(t, )+ TD(s, ),
T(sf, t )= Tc(t )+ TD(sf ) .

(qf+pf )v-—
Q~

" TD(s) .
qf +pf 'K (28a)

This can be expressed directly in terms of the T matrices
defined above plus an exchange term:

M ' '=QA[TD(sf)+Tc(t )
—Tc(t )] " —Q„"[TD(s; )+Tc(t )

—Tc(t )]
(q;+p; )„(qf+pf )„
q;+p; K " qf+pf K

( q, +p;)„(qf +pf )„
+Qti[TD(sf)+Tc(t )

—Tc(t )] " —
Qii

" [TD(s;)+Tc(t )
—Tc(t )]q+p; .K qf+pf K

(q;+p; )„(qf+pf)„(q;+p;)„(qf+pf )
QAT(sf t ) QA T(s t)+QsT(sf't ) Qs T(s tq)+M

q, +p; K (qf+pf K "~ f' ~
q, +p, K qf+pf K

(28b)

(28c)

where

(q;+p;) K "
(qf+pf) K

(q;+p; )„(qf+pf )„

We emphasize here that the expression for M „' ' given
by Eq. (30) is general. That is, neglecting M"„can be
justified on quite general grounds. To see this, consider

A (q/")+&(pP )~A'(qg)+&'(p~~)+r(K~) .

(29)

Neglecting M „(M„.c,"=0because the T channel contri-
bution=0), the expression for M ' ' in terms of the four
quasiexternal amplitudes becomes

—t(D) &
— (q P )u & (qf Pf )V

(q;+p;)„
+Q~T(sf, t )

(q, +p, ) K

We assume that particles A and 8 have charges QA and

Qs, respectively, while particles A' and B' have charges
Q„' and Qii, respectively. In this case, the amplitude
M „' ' given by Eq. (26) becomes M „'

+Qs " T(s, , t ) —Qs
" T(sf tq),

(31)
(qf +Pf )„

( + )KPf
(30) while the amplitude M „given by Eq. (28c) becomes

p
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M ( )=Q„T(. , t )
(q;+p;)

(q, +p, ) E

(qf+pf)„——Q~
" T(s, , tp)

qf pf E

(q;+p;)„
+Q~T(sf, t )

q, +p, E

so that the term M „' in Eq. (32) is completely canceled by
the additional gauge term M „. Hence, we can in general
ignore the term M „in Eq. (32), and therefore in the spe-
cial case of Qz =Q„' and Qz=gz described by Eq.
(28c).

Combining the external amplitude of Eq. (26) and the
quasiexternal amplitudes of Eq. (30), we obtain the total
amplitude M „' ",

where

—g, " ""T(.„t )+M. ,
(q+p )

(qf +pf ) K

(q;+p; )„(qf+pf )„

f.A CB

A

Aq K B
A

q

l-AD BI~

I-ADB

A

(q, +p, ) K (qf +pf ).K

Obviously, the amplitude n K

A

1-AD 8

l-AD 8

'+M" '
P P P

A " B

is not gauge invariant, since
A K B

p

K

q

= —Q~ Tc(tt, )+Q~ Tc(t, )

—Q~Tc(t )+Q~Tc(t )%0 (35)

A

(c)
A

pADB
CB

l-ADB

if Q&WQ& and Qz&Q&. Therefore, we must construct
an additional gauge term by imposing the condition that
the total amplitude must be gauge invariant. Let M„be
the total amplitude which is the sum of M and an addi-

+ p
tional gauge term M „,

M =MF-'+M'.
P P P

The gauge invariant condition demands that

A

A

A

q

l-AD 8
+ g ~ iiD

I-ADB

q„

A

q

=M Z~+M'+~=0.
P p (37)

A

A

It is clear that we may choose

p p ~ (38)

FIG. 3. Feynman diagrams for bremsstrahlung at the tree
level; (a) —(d) are the external emission diagrams; (e) is the inter-
nal emission diagram. These diagrams are generated from the
source graphs, Fig. 1(b).
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I TsTts M E(CD)+~ I(D)
V P

Q
qfP

qf .K

+Q fP

pf .E

(qf +pf)„q;„(q,+p; )„
T(s;, t )

—Q~T(sf, t )
(qf+pf)K ' ~ '~

q; K q;+p; .K

(qf +pf)„p;„(q;+p;)„
T(s, , t )

—QsT(s, t )
(qf+pf) K''q f' q p; K (q+p )K (39)

It is easy to show that M „' " is gauge invariant; that is,

~ T$Tts~P O (40)P

Here, we have used "TsTts" to identify the amplitude
given by Eq. (39), because the amplitude can be classified
as the two-s two t—specia-l ( TsTts) amplitude [22].

Tc(t ) and Tc(t ) are defined by Eq. (23a), TF(u, ) and
TF(u2) are defined by Eq. (25), and u

&
and u2 are defined

by Eqs. (11) and (14), respectively. The internal brems-
strahlung amplitude corresponding to Fig. 4(e) can be
written as

B. Photon emission from the tree diagrams given by Fig. 1(e)

Using the elastic scattering diagrams given by Fig. 1(c)
as source graphs to generate bremsstrahlung diagrams,
we obtain Fig. 4. Figures 4(a) —4(d) represent the external
emission diagrams and Fig. 4(e) represents the internal
emission diagrams. The external bremsstrahlung ampli-
tude corresponding to Figs. 4(a) —4(d) has the form [23]

qf.E

pfp — p&p+Qs T(u2, t )
—Qs T(u, , t ),

pf E ~
p; K

X [ i (q—; —pf +q; —pf —K)„]

X I
(q, —pf) (m,—) +iE

(42)

which can be decomposed by using the Brodsky-Brown
identity as was done with Eq. (27). The decomposed am-
plitude

M I(F)—y (Q Q )I AFB

(q; —pf —K) —(m ) +ic.

where

T(u, , t )=Tc(t )+TF(u, ),
T( ~u, t ) = Tc(t )+TF(uz),

T(u2, t )=Tc(t )+TF(u~),

T(u„t )=Tc(t )+TF(u, ) . can be written as

(q; —pf) K (p; —qf) K

(p; —qf) K (q; —pf) K

(43a)

M„' '=Q„[TF(u2)+Tc(t ) —Tc(t )] " —Q~
" [TF(u, )+Tc(t ) —Tc(t ))

(q; —pf ).K (p, —
qf ) K

+Qa [TF("i )+Tc(tq ) Tc(tq )] Qa [Tz("2)+Tc(tq ) Tc(tq)]
(p; —

qf )~ (q; —pf )„
p, —qf) K (q; —pf .K

(K Pf )p (Pi qf )p
=QA T(u2, t~ ) QA

" T(u&, tp)
q;

—pf .K p; —
qf K

(p; —
qf )„(q;—pf )„+Q Tii(u, , t )

" —Qs
" T(u2, t )+M

p; —
qf K q,

—pf .K
where

(43c)

(44)

Again, we can apply the same reasoning given in the last section, Sec. III A, to neglect the term M „(—=0 in this case).
Hence, we obtain the four quasiexternal amplitudes

M„=Q~T(u2, t ) —Q~ T(ui, t ) +~QT(ui, t ) —
Q~ T(ui, t ) . (45)

(q' pf )p (pi qf )p. — — (pi 'qf )p. (qi pf )p

(q; —pf) K (p; —qf) K ' ~ ' q (p; —qf) K (q, —pf).K

The total amplitude M„" "is therefore the sum of M„' ' and M„' ' [given by Eq. (45)]:
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M Tu Tts M E ( CF) +M I ( F)
)IL

Q
fIJ

qf.K
p qf — — q„q pf „

(p; —qf) IC ' ~ " ' ~
q E (q; —pf) E

+Q fP
Pf.K T(u2, t ) —Q~T(u„t )

q,
—pf .E p, .E

(pg qf )p

(P; —qf) K

Obviously, the amplitude M „"" is gauge invariant; that
is,

Qg
—

Qg

M TuTts M TsTts
P PpP~ —pPi f

(48)

M '""'V&~=O
P (47)

A

qf

rA
n

A

Cn CB + g rA

A

FJ

A

qf

AFB

A

A

B
p(

-C" rcB+gr
q. p. J K

A

A

AFB

A

rAC. =
C

n

A

B B
p( p

CB + g rA

(c)
A

K

FJ

A

AFB

B

A

rA

B

cB + g rA
'F

AFB

A B A B

We have classified this amplitude as the two-u —two-t
special (TuTts) amplitude [24].

It should be pointed out that if we change pf' to —p",
pg to pt', a—nd Qz to —Q~, then the amplitude M „""
becomes the amplitude M „' ":

The reverse is also true. This interchange equivalence is
expected from a close examination of Figs. 1(c) and 1(b).

IV. SOFT-PHOTON AMPLITUDE

If the elastic scattering diagram given by Fig. 1(a) is
used as the source graph to generate a set of bremsstrah-
lung diagrams, we obtain Fig. 2. Figures 2(a) —2(d) are
the external emission diagrams and Fig. 2(e) is the inter-
nal emission diagram. T„Tb, T„and Td in these dia-
grams represent the half-off-shell T matrices. It is well
known that there is no general method which can be
used to determine the exact internal amplitude without
introducing dynamical models. It is also true that it is
difficult to calculate all internal terms derived from a
given model without introducing some approximations.
This is why various soft-photon amplitudes, approximate
amplitudes consistent with the soft-photon theorem, have
been constructed and applied to describe many different
nuclear bremsstrahlung processes. In the past, the utility
of these amplitudes was determined only by comparison
with experimental measurements. Recently, however,
there has been some effort to determine the range of va-
lidity of various soft-photon amplitudes theoretically
without comparing with experimental data. Here, we in-
vestigate methods for selecting optimal independent
Lorentz invariants to par ametrize the T matrices
(T„T~,T„Td ) in the soft-photon amplitudes. We show
that the question of validity of a given soft-photon ap-
proximation is directly related to the choice of indepen-
dent Lorentz invariants. Four different soft-photon am-
plitudes are derived using two different procedures: the
standard Low procedure and our modified Low pro-
cedure. The first two amplitudes are derived in Secs.
IVA and IVB and the last two amplitudes, which are
more general, are derived in Secs. IV C and IV D.

A

Z r„

A

B
K p

B

CB + g rA
F

n J

p
A

A
K q

I.AFB
F

FICx. 4. Same as Fig. 3, but the diagrams are generated from
the source graphs, Fig. 1(c).

A. Low's original soft-photon amplitude M„' '"'

Below, we review the procedure for deriving the first of
two Low's soft-photon amplitudes. The independent
Lorentz invariants are s (x =i,f), t (y =p, q), and 6,
(z =a, b, c,d). (These invariants were defined in Sec. II).
In other words, the four half-off-shell T matrices are
chosen to be
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T, = T(s;, t, b., ),
Tb = T (s~, t, b b ),
T, = T(s;,t, b,, ),
Td —T(sf tq Ad ) .

(49)
s =

—,'(s, +s&),
t= ,'(t, —+t,) .

(5 I)

Following Low, we introduce the average values of s and

In terms of the above T matrices, the external amplitude
can be written in the familiar form

M„(s, t, b, )=Q~ " T(s;, t, ts, , )
gyp

q~.K

—Q„T(s&,t, bb)p 7

+Qs " T(s, , t, b, , )'p~ X

It is easily demonstrated that

s, =s+(q, +p;) K =s+(q&+p~) K,

s& =s —(q,. +p; ) K =s —(q&+p~).K,
t = t (q, ——

q& ) K = t + (p, —
p& ) K,

t = t + (q, —
qt ) K = t (p, ——

pg ) K .

(52)

—QaT(s&, q,
pl p

p; K
(50)

If all half-oft'-shell T matrices are expanded about [s, t,
b, = (mass) ], then we obtain

—Qz T(s, t) — '
(q, +p, ) K+ '

(p, —p&).K — 2q, KaT(s, t ) aT(s, t) aTb

os
' ' at ' ~~b '

q &

+Qs " T(s t)+ ' (q+p)K — '
(p; —

p&) K+ 2p~ Kpy„aT(, t) aT(, t)
pg. & '

(3s
' '

Bt

aT(s, t) aT(s, t ) aTd p;„—Qs T(s, t) '(q —+p ) K — '
(p —p ) K — 2p K '" +O(K),

a Bt p, K (53)

where T(s, t)—:T(s, t, m„, mz, mz, mz) is the elastic scattering (on-shell) T matrix evaluated at s and t. Now, we im-
pose the gauge invariant condition

[M„(s,t, b, )+M„(s,t, b )]K"=0,
which gives

aT(s t ) aT. aTb aT, aTd
M„K = —2(Q~+Q~) '

(q, +p, ).K —2gq qt. K —2gq q, K —2Q~ pt K —
Q~ p, K . (54)

Hence, the leading term of M„(s, t, 6) has the form

M„(s, t, h) = —2(Q~ +Qs )
'

(q, +p, ) —2g„q~ —2Q„q; —2Q~ p~
—2Q~ p;~ . (55)

Combining Eqs. (53) and (55), we obtain the total bremsstrahlung amplitude M„' '"',

~Low(st) ~E(st) +~I(st)
P P p

where M„'"' is the on-shell part of the external amplitude which depends on s and t,

(56)
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MF (st) g fPq

qf.K
q yi, pfp p(I

qK ' pfK pK T(s, t)

g fP + &IJ

qfK q;K

q'v.

qf K q;.K

Pfp Pi}' pfK pK
Pfp Prl

pf K p;.K

( )
r)T(s, t)

dT(s, t )
pi pf 'K

r

and M„'"' is the on-shell part of the internal amplitude
which depends on $ and t,

M""' = —2(g~+Qa )(q;+p; )„
9$

(58)

It is clear that M„'"'c." contributes nothing to the brems-
strahlung cross section, since (q;+p;)„E"vanishes in the
c.m. system and in the Coulomb gauge.

B. A new Low amplitude M„' '""

A second Low soft-phonon amplitude can be derived
if the independent Lorentz invariants are chosen to be u.
(j =1,2), t~ (y =p, q), and b,, (=a, b, c,d) Here, .u, and

uz are defined by Eqs. (11) and (14), respectively. With
this choice, the four half-o6'-shell T matrices are
parametrized in terms of u j p ty p and 6, as

The external amplitude has the form

M„(u, t, b, )=g„"T(u„t,h, )
qf .K

ql p—Q„T(u2, t, bb)
q;.K

+Q~ T(u2, t, b,, )
pf K

pi I—Q~T(u„t, bd) p;-K

Introducing the average u,

u =
—,'(u, +uz),

we have

u, =u —(pf —
q ) K=u —(p —

q ) K

(60)

(61)

T, = T ( „ut~, 6, ),
Tb = T(u2, t~, bb),

T, = T(u2, tq, b, , ),
Td=T(u„tq, bd) .

(59)

and

u2=u+(pf —
q ) K=u+(p —qf) K .

(62)

If we expand all half-off-shell T matrices in Eq. (60) about
[u, t, h=(mass) j, we find

MF. qfP —— ~T(uet ) dT(u, t ) a
&(u, t b)=go T(u, t) — '

(pf —
q,. ) K+ '

(p,. —pf) K+ 2qf K
Ou

' at

aT—Q T( )+ '
( — )K+ '

( — )K — 2 K
BQ at

pt pf ~~
q'E

qt

BT

pf .K 0

—
Q~ T(u t) — '

(p —q)K — '
(p —p )K— 2p K " +O(K).BT(u, t) BT(u, t) dTd P „

Q
(63)

Here, T(u, t)—:T(u, t, mz, mz, m„, mz) is the elastic (on-shell) T matrix evaluated at u and t. To obtain the leading
term of the internal amplitude M„(u, t, b, ), we again impose the gauge invariant condition

[M„(u, t, h)+M„(u, t, b, ) jK"=0, (64)

from which we obtain

QT(u t ) BT r)Tg BT dTd
M K =2(g„—Q~)

'
(pf q, ).K —2g„qf K —2—g„q, K —2Q~ pf K —2Q~ p;.K .

8L7
(65)



984 M. K. LIOU, DAHANG LIN, AND B. F. GIBSON

Equation (65) gives

BT(u, t )M'(u. t.b}=2(QA QB)
'

(pf q—, )
—2Q. 'qf —2Q. q,

—2QB B~'pf. QB Bb, p.
0l7 a b C d

The total bremsstrahlung amplitude M„' ~"" is the sum of Eqs. (63) and (66):

MLow(ut) ME(ut) +MI(ut)
P P p

where

(66)

{67)

ME( i)
Q

qadiM„q + T(u, t)
r

+ Q
qfj + q~) +Q pfv + p~p

qI E q, -K p&.K p, .I{
aT(u, t)

py q; 'K

Q
fP

q~ -K
q;

q; K
pII pi).

pf K p;.K
aT(u, t)

pi py
Bt

(68)

(69)

Again, M„'"" is the on-shell part of the external ampli-
tude which depends on u and t while M„'"" is the on-
shell part of the internal amplitude, which depends on u
and t. Unlike the internal amplitude M„'"'e" [Eq. (58)],
which is identically zero, the internal amplitude M„'""c"
does not vanish when Q„AQs. (It should be remem-
bered that we consider specifically an s-channel reaction
here. ) Thus, we see by this simple example that different
choices of independent variables (Lorentz invariants) can
lead to different soft-photon amplitudes. We shall discuss
this further in Sec. V.

C. The general soft-photon amplitude M„' "
As we have already mentioned, more general soft-

photon amplitudes can be derived by using the modified
Low procedure described in Sec. I. In using this new pro-
cedure, the construction of the internal amplitude is
guided by the elastic scattering and the bremsstrahlung
processes at the tree level. For example, if the A-B elastic
scattering is dominated by the one-particle s-channel ex-
change diagrams, then the internal amplitude will be
determined by photon emissions from the s-channel ex-
change particles. (Since a t-channel exchange particle
should be neutral, there is no internal emission from it. )

In this case, we should choose a set of independent
Lorentz invariants which includes s and t. On the other
hand, if the A-B elastic scattering is dominated by the
one-particle u-channel exchange diagrams, then the
internal emissions will come from the u-channel ex-
change particles, and we should choose a set of indepen-
dent Lorentz invariants which includes u and t. In this
subsection, a general bremsstrahlung amplitude for a pro-
cess whose elastic scattering is dominated by the dia-
grams shown in Fig. 1(b)will be derived. [The derivation

of another general bremsstrahlung amplitude for a pro-
cess, whose elastic scattering is dominated by the dia-
grams shown in Fig. 1(c), will be discussed in IV D.]

Choosing the set of independent Lorentz invariants,
which includes s„(x=i,f), t~ (y =p, q), and b.,
(z =a, b, c,d), the external emission amplitude M„(s, t, b, )

is identical to that given by Eq. (50). Because we assume
that the elastic scattering depicted in Fig. 1(a) is dominat-
ed by the diagrams shown in Fig. 1{b) and, likewise, that
the bremsstrahlung processes represented in Fig. 2 are
dominated by the diagrams shown in Fig. 3, we can write
the interna1 emission amplitude in the form

M„' '(s, t, b, )= Y, T(s, , t, b, )+T(s~,t, hb)Yb

(qr+pI)~

qg pg p( + )

(q;+p; ).K

( + )

(q&+p&) K '

ql pl p( + )

(q;+p;) K

(71)

Now, combining M(s, t, 5) given by Eq. (50) with
Mt'D'(s, t, b, ) given by Eqs. (70) and (71), we obtain

+Y, T(s, , t, b,, )+T(s~, t, hd)Yd, (70)

where Y, (z =a, b, c,d) are electromagnetic factors to be
specified. To determine Y„we demand that M„'
reduce to the expression for M„' ' given by Eq. (30)
when the general diagram in Fig. 2(e) reduces to the tree
approximation in Fig. 3(e). Since T(s„t,b,, ) reduces to
T(s, t ) in the tree approximation in this special case, we
find
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M TsTt g fttq

qf E
(q+p )

T(.„t„~.)
(qf+pf } K

MTsTts —g ftt f f tt T( t )
(q+p )

qf K (qf+pf) K
r

—Q„T(sf, tt, bb)
q;.K

(q;+p;)„
(q, +p;) K

( + )
g T( )

qtjll ql Pt tt

q; K (q;+p;).K

Pft qf Pf t T( g )
(q+p )

pf K (qf+pf) K

+g ftt

Pf E T(s;, t )
(qf+pf) K

( + )
T( )

Ptt qt pt t.f'q
p, .K (q+p ) K (75)

pip—QET(sf tqyAd) p;.E
(q, +p, )„

(q;+p, } K
(72)

Because M„' ' is already explicitly gauge invariant,

M""Z&=O
P 7

no additional gauge term is needed. The amplitude M„' '

is an off-shell two-s —two-t (TsTt) amplitude derived for
the A-8 bremsstrahlung process when internal emission
from the s-channel exchange particles is dominant. To
obtain an on-shell TsTt special amplitude M„' ", which is
free of any derivative of the T matrix with respect to s or
t, we expand T(s„tr, b,, ) only about the on-shell point
(mass) in b., :

M ' '"=Q "T(s,t )
—Q T(s, t )

q,

q E "~ " f'~ qzf

+QE T(s, , t ) —QET(sf, t )
pfI plf

(76)

and M„' '"' represents those terms involving off-shell
derivatives of the T matrix. The amplitude M'+"' isI
neglected in the soft-photon approximation. The soft-
photon amplitude M„' " is the on-shell TsTt special am-
plitude and is more general than the amplitude M„' '"'
given by Eq. (56), the soft-photon amplitude derived by
using Low's standard procedure. To see this point, let us
rewrite M ' " in two parts, an external term M
and an internal term M ' ' ":

AT(s;, t~, h, )
T(s;,t, h, )=T(s;, t )+ ' '

2qf
a

t}T(sf,t, At, )
T(sf t 5$ )=T(sf, t ) — 2q;.K

b

BT(s;,t, A, )
T(s, , t, b,, )=T(s;, t )+ 2pf K,

C

AT(sf, tq, b,d )
T(sfytqylhig)= T(sfpt ) — 2p; K,

d

where

T(s, , t ) = T(s;, tz, m„),

T ( sf, t~ ) = T ( sf, t, m ~ ),

T(s;, t )—:T(s;,t, mtt ),
and

T(sf, t )=T(sf, t, mE) .

Inserting Eq. (73) into Eq. (72) gives

M TsTt M TsTts +M off(st)
P P p

where

(73)

(74)

M„" ' "=—[Q„[T(s,, t ) —T(sf, t, )]

(q, +p;)„
+QE[T(s, , t ) —T(sf, t )]]

(q, +p, ) K

(77)
in a manner analogous to Eqs. (57) and (58). Here, we
have used the fact that (q;+p,. )„E"=(qf+pf)„e" and
(q, +p;).K=(qf+pf). K. [Again, the amplitude M„' ' "
vanishes in the c.m. system and the Coulomb gauge,
since M„' ' "e" is proportional to a factor (q;+p;)„E".]
If we use Eq. (52) to expand all T matrices in Eqs. (76}
and (77) about (s, t ), then we can prove that

M"""'=M '"'+O(K)
p p

M"""'=M""'+O(K)P P

(78a)

(78b)

Here, s and t are defined by Eq. (51), M '"' is the exter-
nal term given by Eq. (57), and M '"' is the internal term
given by Eq. (58). Equations (78a) and (78b) show clearly
that the amplitude M„'"'"', derived by using Low's stan-
dard procedure, is a special case of the amplitude M ' ".
In other' words, ME ( Ts T ) reduces to M E (s') and Mt(TsT

I(',t) P
reduces to M„' when T matrices, T(s, t ), in the ex-
pressions for M ' ' " and M ' ' " are expanded about
(s, t) and the O(K) term is neglected. It should be em-
phasized that if T matrices T(s, t ) vary rapidly with s„
and/or t„ in the vicinity of a resonance, then the expan-
sion of T(s, t ) about (s, t ), which is the essential step in
the derivation of the amplitude M„"' '"', is obviously not
valid. In that case, the amplitude M„' ", which is free of
AT/8s and/or BT/Bt, is the proper choice. In fact, re-
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cent studies reveal that the amplitude M ' " (or more
precisely the special two-energy —two-angle amplitude
M ) can be used to describe almost all the available
p' Cy data (near both the 1.7 and 0.5-MeV resonances)
and ~—py data [near the b, (1232) resonance]. These
studies also show that the amplitude M„" " fails to de-
scribe both data adequately.

D. The general soft-photon amplitude M„" "
In this subsection, we derive a second general brems-

strahlung amplitude, in the soft-photon approximation,
for a process whose elastic scattering is dominated by the
diagrams shown in Fig. 1(c). Since photon emission from
the u-channel exchange particles, F, are involved, we
choose the set of independent Lorentz invariants that in-
cludes u~ (j =1,2), t~ (y =p, q), and b,, (=a, b, c, d). The
external emission amplitude is identical to the amplitude
M„(u, t, h) given by Eq. (60). Since Fig. 1(a) is now dom-
inated by Fig. 1(c) and Fig. 2 is dominated by Fig. 4, the
internal emission amplitude can be written as

M ' '(u, t, b, )=X,T(ui, t, b., )+T(u2, t, b, q)Xq

+X,T(u2, t, b,, )+T(u„t,bq)Xq, {79)

where X, (z =a, b, c,d) are coefficients to be specified.
They can be uniquely determined if we demand that
M„' ' reduces to M „' ' [given by Eq. (45)], with
T(u , t~, b,, ) redu. ces to T(u , t ), wh.en Fig. 2(e) reduces
to Fig. 4(e). We find

M TEETt~P Op

The amplitude M„" ' is an off-shell, two-u t—wo-t (TuTt)
amplitude that can be derived by using the modified Low
procedure for the A-B bremsstrahlung process when
internal emission from the u-channel exchange particles
is dominant. To find an on-shell TuTt special amplitude
M„" ",we first expand T(uf, t~, b, ):

BT(u „t,b,, )T(u„t, h, )=T(u„t )+ 2qf K,
a

BT(u2, t, bq)
T(uz, t, b&)=T(uz, t )

— 2q; K,
b

(82)
8 T(u 2t, h, )

T(uz, t, b, , )=T(uz, t )+ 2pf K,
C

BT(u„t,bq)T(u„t,bz)=T(u, , t )
— 2p; K, .

d

where

T(u„t )—= T(u„t,m„),
T(u2, t )=—T(ui, t, m„),
T(u2, tq )—:T(u2, tq, mii ),

T(u„t )—= T(u„t,mii) .

(p; —
qf )

Pf pbA()K
(q; —pf )„

pi qf p

(p, —qf) K

(80) MTuTts
Q

fP ' f & T(u t )
qf K (p; —qf) K

—Q„T(u2, tp )
qlp

q.E
(q; —pf )„

(q, —pf) K

We then substitute Eq. (82) into Eq. (81) to obtain

M TuTE M Tubs +Mo6'(u&)
p p p

where

(83)

Now, combining M ( u, t, b, ) given by Eq. (60) with
M„' '( t,ub, ) given by Eqs. (79) and (80), we obtain

(q, —p )

pf K (q, —pf) K

MTuTt Q
fl i f P

qf K (p; —qf) K

qlp—Q~ T(u2, t~, bi, )
q, K

(q; —p )

pf K (q; —pf) K

(q; —pf )~

(q; —pf) K

Again, no additional gauge term is required, since M„" '

is manifestly gauge invariant; that is,

—Q~T(u„t )
+Ep

p, .K (p; —qf) K
(84)

and M„' '"" includes those terms that involve off-shell
derivatives of the T matrix. Again, the off-shell ampli-
tude M„' '"" is ignored in the soft-photon approximation.
The amplitude M„"""is the on-shell TuTt special ampli-
tude, which should be used when internal emission from
the u-channel exchange particles, F, are important. It is
easy to demonstrate that M " "given by Eq. (84) is more

ral than the amplitud~ M„' ~"'~ given by Eq. {6
Again, we divide the amplitude M„" "into two parts, an
external term M ' " "and an internal term M '

p p
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j=Q ~ T(tt r ) —Q T(g r )p A ~ 1& p A 2& pqf' q,

—TsTts P„= = —
P&

—Tu Ttsp p

M& (S„,S(;tp, tq) M(t (U~, U2', tp, tq)
QB =-Q~

and

+Qs T(u 2, t )
—QET(u„t )

I'fp Pl p

Pf.K 'q
p, E P

TsTts
M& (s, , st;tp, tq) Q QB B

Tu Tts- Mjt (U), U2, tp, tq)

M'„(T"T"= —(Q~ [T(u„r„)—T(u„r, )]

+QE[T(u2, t )
—T(u„t )]J

(q, —pf K

(86)

ME( TuTtj ME(ut) +O(K) (87a)

M"'""'=M"""+O(K).
p p (87b)

Here, M '"" is the external term given by Eq. (68), and
M '"" is the internal term given by Eq. (69), and we have
used the relation, (q; —

qf ) K= —(p, —pf) K. Eqs. (87a)
and (87b) demonstrate that M„' ' " and M„' " " reduce
to the Low amplitudes M„'""and M„'"",respectively, if
the T(u, t ) in Eqs. (85) and (86) are expanded about
(u, t ) and if 0 (K) terms are neglected.

To summarize brieAy, we have derived four soft-

M ' '"j(s,t) and M '"(""(u,t) were derived using Low's
standard procedure, while M„' '(s;, sf', tz, tq) and
M„" "(u„u2;t„,tq) were derived using a modified Low
procedure. The amplitudes MLo '"' and M ' " depend
on a set of Lorentz invariants that include 5 and t. The
amplitudes M " and M ",on the other
parametrized in terms of Lorentz invariants u and t. In
deriving M„' "(s;,sf, t„,t ), we have imposed a condition
that it reduce to the amplitude M „' "(s;,sf, t„,t ), which
represents photon emission from a sum of one-particle t-
channel exchange diagrams and one-particle s-channel
exchange diagrams (the tree approximation). Similarly,
in our derivation of the amplitude M„" "(u&, u2, tz, tq),
we have imposed the condition that it reduce to the tree
approximation amplitude M „""(u „uz, t„,t ), which
represents photon emission from a sum of one-particle t-
channel exchange diagrams and one-practice u-channel
exchange diagrams. Note that the expressions for
M „' " and M „"" were derived in last section by using
the radiation decomposition identities of Brodsky and
Brown. We have proved that M '"' and M ' '"" can
be reproduced from M„' " and M„" ", respectively; fur-
thermore, the amplitudes M ' "and M„" "are the most
general soft-photon amplitudes for hadron-hadron brems-

Here, we have used the following relation:

(p; —
qf )„E" (q; —pf )„E"

(p, —qf) K (q; —pf) K

If we use Eqs. (52) and (62) to expand all T matrices in
Eqs. (85) and (86) about (u, t ), then we obtain

p p

M~ (S, t) =
Q

= M~ (U, t)
Low(st) —— pj pf Low(Ut)

B B

FIG. 5. Schematic representation of the relations among the
six soft-photon amplitudes derived in this work. Five important
relations are shown here: (i) These six amplitudes can be divid-
ed into two independent classes (M ' ", M ' ", M"'"'"') as the
first class and (M """,M " ",M"'"'"")as the second class. (ii)
The general amplitudes for the first and second classes are
M„' " and M„" ", respectively. (iii) In the tree-level approxi-
mation, M ' " reduces to M ' ", while M " " reduces to
M„" ". (iv) When all T matrices in M„' " are expanded about
(s, t ) and all T matrices in M„" " are expanded about ( u, t ),
then M„"'"'"' and M„'"'""can be obtained. (v) The two classes
of amplitude can be interchanged (M „' "~M „"",
M * " M " " M '"""~M '"'"") when Q is replaced byP P ' P P B—

Qtt (Qtt ~—
Qtt ) and p/' is interchanged with —

pfu

(pI"~—pf)" ).

strahlung processes which can be constructed by using
the modified Low procedure. Finally, it is easy to show
that the amplitudes M„"' '"' and M„' '"" and the ampli-
tudes M ' " and M " " can be interchanged when p,~,

pg, and QE are replaced by —pg, —p/', and —QE, respec-
tively. The relationships among the amplitudes M„' ",
M TuTts MLow(st) MLow(ut) M TsTts nd M TuTts e yll

p ~ p ~ p ~ p ~ p
trated in Fig. 5.

V. DISCUSSION

Six soft-photon amplitudes, M „' " [Eq. (39)], M „""
[Eq. (46)], M„' '"' [Eq. (56)], M"' '"" [Eq. (67)], M ' "
[Eq. (75)], and M„" " [Eq. (84)], have been derived in
Secs. III and IV. A primary purpose of this investigation
is to explicate their relationships and to explore their
ranges of validity. These six amplitudes can be divided

MT" "as the second class [M( '(u, t)]. As shown in Fig.
5, the following relationships have already been estab-
lished: (a) M„' " and M„" " reduce to M „' " and
M „"", respectively, in the tree level approximation. (b)
If MT'T" is expanded about (s, t ) and M„" "is expanded
about (u, t), assuming that such expansions are valid,
then the first two terms of the expansions for M„' " and
M„" " give M„'"j and M ' '"", respectively. (c) If
p,("~ pft", pf ~—p/' — and Qs —+ —Q~, then

M Low(st) M Low( ut)
p p

M„' "~M„'" ", and vice versa.
Now, let us consider the question about their ranges of

validity. Which amplitude, M ' " or M " ", should be
used to describe a particular bremsstrahlung measure-
ment? The answer will depend upon the nature of the
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bremsstrahlung process. Let us examine three cases.
(a) For a process whose elastic scattering is dominated

by the tree diagrams shown in Fig. 1(b) or whose internal
emission is dominated by the diagrams shown in Fig. 3(e),
we must use the amplitude M ' "for bremsstrahlung cal-
culations. That is, when the process is resonance dom-
inated, M ' " is the correct choice. Some well-known ex-
amples are the ~ py —processes near the b(1232) reso-
nance [9], the p' Cy process near either the 1.7-MeV
resonance or the 461-keV resonance [7], and the p' Oy
process near the 2.66-MeV resonance [8]. These radiative
resonant scattering processes have been systematically
studied both experimentally and theoretically. The fol-
lowing findings illustrate why the amplitude M„' ", not
M„' '"', should be used to describe bremsstrahlung pro-
cesses involving a resonance: (i) Using a one-
energy —two-angle amplitude, which is slightly diA'erent

from the amplitude MLo '"', a UCLA group has calculat-
+ p

ed the ~—py cross sections in order to compare with the
cross sections measured by the group [25]. The UCLA
calculations have been repeated but using the amplitude
M„'""" [14,15]. These two independent calculations
yield essentially the same result. Typically, the calculat-
ed spectra at 298 MeV, for example, rise steeply with in-
creasing photon energy above E =80 MeV in complete
disagreement with the experimental data. The amplitude
M„"' '"' has also been used to calculate the p' Cy cross
sections at 1.88 MeV for a scattering angle of 1 5S
[14,15]. The calculated cross sections show a large reso-
nance peak around K =270 keV in stark contrast with
the small peak observed experimentally around K =13S
keV. In short, neither the ~—py nor the p' Cy data can
be described by the amplitude M„"' '"' or any other one-
energy amphtude. These studies also show that the terms
which involve BT/Bs and/or BT/Bt cause the problem.
This is because the elastic T matrix, which has been used
as an input for bremsstrahlung calculations in the soft-
photon approximation, varies rapidly with s and/or t in
the vicinity of a resonance. In other words, the problem
is directly related to the invalid expansions of the four
half-off-shell T matrices about (s, t) [or about (s &,t,&, ),
where s &=(as;+psf)/(a+p) and t &

=(a'tz+p't )/
(a'+P')], which are used in Low's standard procedure
for the derivation of M ' '"' and other one-energy ampli-
tudes. These expansions give rise to those terms which
depend upon BT/Bs and BT/Bt in all one-energy ampli-
tudes. (ii) From the amplitude M„' " one may define an
amplitude called the special two-energy —two-angle (TE-
TAS) amplitude M„,which is free of BT/Bs and/or
BT/Bt. The amplitude M„has been thoroughly test-
ed and has been found to describe the data well for
bremsstrahlung processes near a scattering resonance.
For example, M„has been successfully applied to ex-
tract the magnetic moments of the b, ++(1232) [9] and
b, (1232) [13] from the experimental m+py data and
~ py data, respectively. It is now well established that
this amplitude can be used to describe almost all available
p' Cy and ~—py data. Furthermore, a direct, sensitive
experimental test of various soft-photon amplitudes was
made recently by the Brooklyn group [7]. This test

showed that the amplitude MT provides an excellent
description of the p

' Cy data not only in the soft-photon
region but also in the hard-photon region.

(b) For a process whose elastic scattering is dominated
by the tree diagrams shown in Fig. 1(c) or whose internal
emission is dominated by the diagrams shown in Fig. 4(e),
M " " should be used for bremsstrahlung calculations.
That is, when the process is exchange-current dominated,
M„" " is optimal. An example of this is neutron-proton
bremsstrahlung ( np y ): (i) In the one-boson-exchange
model, the np interaction involves the u-channel ex-
change of charged bosons. (ii) The npy cross section is
dominated by the internal emission from the exchanged
bosons. More precisely, Brown and Franklin have calcu-
lated the npy cross sections using a nonrelativistic poten-
tial model [11]. The electromagnetic Hamiltonian used
by these authors includes the coupling of the electromag-
netic field to the nucleon currents V,' and the coupling
of the electromagnetic field to the exchange currents V, .
As a result, large exchange eAects from V, were predict-
ed. The inclusion of the V, term has been found to in-
crease the npy cross section by about a factor of 2. This
finding has been confirmed very recently by Nakayama
[12]. (iii) The npy cross sections at 200 MeV have been
calculated by Baier, Kuhnelt, and Urban [26] using a
one-boson-exchange model and by Nyman [27] using a
soft-photon amplitude derived via Low's standard pro-
cedure. The amplitude used by Baier, Kuhnelt, and Ur-
ban is equivalent to the amplitude M „"", while the am-
plitude used by Nyman is equivalent to M„' '"'. When
those two calculations are compared, one can see that the
npy cross sections obtained by Baier, Kuhnelt, and Ur-
ban are consistently a factor of 1.8 —2 times larger than
those obtained by Nyman. The obvious explanation of
this result is that the amplitude M ' ' does not contain
any exchange efII'ect, since we have shown above that its
internal contribution is identically zero, while the ampli-
tude M „"" used by Baier, Kuhnelt, and Urban does in-
clude a nonzero internal contribution from all charged
bosons. [Note that the internal contribution of the am-
plitudes M ' "and MLo '"' involves a factor of the form
(q;+p, )„s",which vanishes in the c.m. system and in the
Coulomb gauge. ] Thus, the finding of Brown and Frank-
lin that the internal exchange contribution dominates the
npy cross section could also have been observed by com-
paring the relativistic calculations of Nyman and Baier
et al. The one-boson-exchange calculations of Baier,
Kuhnelt, and Urban are in much better agreement with
the experimental data of Brady and Young [28] than
many other calculations. This illustrates why the ampli-
tude M„" "', not the amplitude M„' " (or M„' '"'),
should be used for npy calculations.

(c) For a process that involves little resonance effect
(i.e., it contains no resonant state or is observed in an en-
ergy region far from resonance) and has very little contri-
bution from exchange effects (those due to the u-channel
exchange particles), we expect all six amplitudes M „' ",
M TsTts MLow(st) M TuTts M TuTts d MLow(ut) to ieldv ' v ' v '

)

similar results, at least in the soft-photon region. This
does not mean that they will give identical results but



47 ANATOMY OF THE SOFT PHOTON APPROXIMATION IN. . . 989

that the differences should not be large. A typical exam-
ple is proton-proton bremsstrahlung (ppy): (i) As we
have already mentioned, there is no internal contribution
from the amplitudes M rssTts M TsTts and MLow(st since j
vanishes in the c.m. system and in the Coulomb gauge. If
M„' "is expanded about (s, t ), we obtain

MTsTts MLow(st) +O(~)
JM P,

which is exactly the sum of Eqs. (78a) and (78b). Here,
0 (I(. ) involves the derivatives of T matrix with respect to
s and t. If there is no resonance effect, then derivatives of
T with respect to s and t will not produce significant
structure and such an expansion is valid. Hence, the con-
tribution from the O(K) term will be small, and we ex-
pect the amplitudes M ' "and M"' '"' to give similar re-
sults. (ii) For a process that has very little contribution
from exchange effects, the amplitude M„" " may be ex-

panded about (u, r ). We find

M TuTts MLow(ut) +O(~)p p,

which is identical to the sum of Eqs. (87a) and (87b).
Again if the derivatives of T with respect to u and t are
small, we expect that the contribution from the O(K)
term will be small. Therefore, the amplitudes M„" "and
M„' '"" should predict similar cross sections. (iii) From
Eq. (69), we can see that the internal amplitude M„'"" (of
the amplitude M„'"'"')) contributes nothing if Q~ =Q~.
Thus, like the amplitude M"' '", there is no internal
contribution from M„"' '"" for the ppy process. We
therefore do not expect that the ppy cross sections calcu-
lated using the external part of the amplitude M„"' '"' to
be very different from those calculated using the external
part of the amplitude M„'"'"". (iv) The gpss process has
been extensively studied, both experimentally and
theoretically, during the last three decades. Many
different calculations (based on various models and ap-
proximations), including a soft-photon approach, which
uses an amplitude equivalent to M„"' '"' and a one-
boson-exchange approach, which uses an amplitude
equivalent to M „"", have been performed. The results
of these calculations do differ, but their differences are
indeed not large [29]. (v) Since two-nucleon interactions
have been successfully described by the one-boson-
exchange model, we expect the difFerence between M
and M ' " or the difference between M „"" and M„" "
to be small when these amplitudes are applied to predict
the ppy cross sections.

VI. SUMMARY AND CONCLUSIONS

In conclusion, the primary purpose of this work is to
point out that there exist at least two independent classes
of soft-photon amplitudes, both of which are equally im-
portant for describing hadron-hadron bremsstrahlung
processes. The two-s-two-t special amplitude

Mtt (s ' sf ttt tq ), Eq. (75), is the general amplitude for

the first class, and this amplitude should be used to de-
scribe those processes which are resonance dominated.
The two-u t—wo-t special amplitude M " "(u (, u 2, t, t ),

Eq. (84), is the general amplitude for the second class,
and it should be used to describe those processes, which
are exchange current dominated. These two amplitudes
can be derived using a modified Low procedure, but not
the standard (Low's original) procedure. The modified
procedure involves one additional step, which allows us
to take into account photon emission from the internal
line by imposing the condition that M„' " and M„" "
reduce to M Ts Tts and M Tu Tts respect jv e1y at the tree 1

el approximation. The M ' " and M " " amplitudes
can be rigorously derived from the relevant set of funda-
mental bremsstrahlung diagrams at the tree level, if we

apply the radiation decomposition identities of Brodsky
and Brown to decompose the internal amplitude into four
quasiexternal amplitudes.

If M„' " is expanded about (s, t ) and M „"" is ex-
panded about ( u, t ), assuming that such expansions are
valid, the first two terms of the expansions yield
M ' (")(s,t) and M„"'"'""(u,t), respectively. Here,
M„' '"' is a one-s —one-t (or one-energy —one-angle) am-

plitude, a typical Low amplitude, which can be derived
using the standard procedure. This amplitude has been
regarded as the sole soft-photon amplitude in the past,
and it has been applied to describe all possible brems-
strahlung processes without justification. In addition to
exploring why M„"' '"' cannot be used to describe pro-
cesses containing significant resonance effects, we also
demonstrated why it should fail to describe those pro-
cesses with large exchange eff'ects. The amplitude
M„"' '"", on the other hand, is a one-u —one-t amplitude.
It is a new Low amplitude, which can also be derived by
using the standard procedure. This new amplitude has
never before been studied.

We have demonstrated that we can transform the soft-
photon amplitudes in the first class (M„' ", M „'T",
M„' '"') into the soft-photon amplitudes in the second
class (M„" ", M „"", 'M„"'"'"")by making the following
variable transformations: pt'~ —

pg and Qi) ~—Qs.
This establishes the relationship between the two in-
dependent classes.

Many amplitudes, especially those in the second class,
discussed in this work are new. Their ranges of validity
and other properties are not well understood. Further
systematic studies are required to understand these am-
plitudes thoroughly. These studies should include com-
parison with new experimental work, since the ultimate
test of the utility of these soft-photon amplitudes lies in a
comparison between the theoretical predictions and the
experimental data.
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