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The inelastic reactions H(m+, m+)X, H(m, m )X, H(m+, p)X, and H(m, p)X are studied within a
relativistic three-body model. Single and double differential cross sections are calculated and compared
with available data and predictions are made where no data exist. Several approximate theoretical
prescriptions are compared with the full calculation as well as the results from two different deuteron
wave functions.

PACS number(s): 25.80.Gn, 13.75.Gx, 21.45.+v

I. INTRODUCTION

Pion-deuteron breakup processes have been studied ex-
tensively during the last ten years [1—12]. Kinematically
complete experiments have been performed to measure
the differential cross section [1,2,6,8, 10—12] and the vec-
tor analyzing power [5,7,9] covering large regions of the
available three-body phase space. In these kinds of ex-
periments at least two particles must be detected; usually
the proton and the pion in the case of the normal break-
up [1—11]or the two protons in the case of the charge ex-
change reaction [12].

In contrast, the inclusive breakup processes require the
detection of only one particle in the final state and are
therefore much easier to study experimentally. It is thus
somewhat a paradox that much less data exist on them:
just a few differential cross sections [13—18] and no polar
ization data of any kind. In this paper we will describe a
formalism to calculate the complete set of observables
corresponding to an initially polarized deuteron. We wi11
then apply this formalism to compare the predictions of
our model with the existing differential cross section data
as well as to present predictions where no data exist. We
will explore the sensitivity of the inclusive m.d breakup re-
actions to higher-order effects and to the use of different
deuteron wave functions.

The inclusive ~d breakup reactions are the link be-
tween the elastic md process and the kinematically com-
plete breakup reactions. Thus, they constitute an essen-
tial part of the md system and must also be studied if one
aims at a complete understanding of this system.

II. FORMALISM

A. Relativistic three-body model

If we call the pion particle 1 and the two nucleons par-
ticles 2 and 3, the relativistic Faddeev equations for m.d
elastic and inelastic scattering are written as

where t; is the off-shell scattering amplitude of particles j
and k and Gk is the propagator of the exchanged particle
k, that is, iWkWj The i.ntegral equations (1) correspond
to the spectator-on-mass-shell prescription in which all
the spectator particles in the initial, final, and intermedi-
ate states are required to be on their mass shells [19,20].
Since the spectator-on-mass-shell condition eliminates the
fourth component in the loop integrations of the inter-
mediate states, Eqs. (1) are three-dimensional integral
equations with the same degree of complexity as the usu-
al nonrelativistic Faddeev equations. The operator
describing vrd breakup is

A = T(+ T2+ T3, (2)

T, =t, G3T2+t, G2T3 . (4)

If one uses in Eqs. (2) and (4) the single-scattering ap-
proximation for T2 and T3, Eq. (2) corresponds to the
distorted-wave impulse approximation

A ' =(1+t,G, )t, +(1+t,G, )t, ,

since

(6)

where the physical amplitude is obtained by taking the
matrix elements of this operator between the initial state
wave function consisting of a free pion times a np bound
state and the final state wave function consisting of three
free particles.

The impulse approximation corresponds to taking just
the single scattering terms, that is,

=t2+I3

since the Faddeev amplitude T& does not contribute in
first order, that is,
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is a nucleon-nucleon distorted wave of relative momen-
tum p.

We now introduce the quasiparticle or isobar approxi-
mation for the two-body amplitudes t, as [19]
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APE
= J .

where s, , j, , and m;, are the invariant mass squared, spin,
and helicity of the isobar. P

' are isobar spinors of mass
t

V s;, and I J,J+i is the vertex that couples the isobar I
to particles j and k. In general one can have more than
one isobar corresponding to the various spin and isospin
channels of the two-body subsystem that are kept. The
on-shell T matrix is given by the matrix elements of Eq.
(7) between on-shell spinors for the two initial and the
two final particles. In the c.m. system this is

I I

t;' "' ' "(p,', p;;s;)= g (u,'(p,')u, "(—p,')(I t, +k[(/
' (0))r;(s;)(P ' (0)(l t J+&(u '(p;)u "(—p, )) .

m = J.
l

where o. - and v- are the spin and helicity of particle j.
The general form of the vertex is

(y ' (0)~l t, „~u,'(p;)u, "(—p;))

=b, ' "(p;)+2j;+le ' 'd ', , (0, ), (9)

with p,. = ~p;~, and 8;, P; the corresponding directions,
while

2l, +1
b, ' "(p;)=g 2j;+1

4+s,r;(s;)=— i5(s,. )

e ' sin5(s, ) .

Thus, for the ~N subsystem we constructed the ampli-
tudes r;(s;) using directly the experimental ~N phase
shifts in the physical region s, ~ (M +p), and the
partial-wave amplitudes deduced from fixed-t dispersion
relations [21] and crossing symmetry [22] in the unphysi-
cal region 0 &s, & (M+@) . If we substitute the isobar
ansatz (7) into the integral equations (1) and define new
amplitudes F;, as (here to simplify the notation we
suppress the helicity index m, )

where l; and S, are the orbital angular momentum and
total spin of the pair jk. In the case of uncoupled waves
(~N subsystem) 1; has only one value while in the case of
coupled waves (NN subsystem) l; can have two values.

The functions g (p; ) are form factors that will be
specified later. The normalization of the two-body ampli-
tudes is such that in the case of uncoupled waves the
functions r;(s,. ) are given in terms of the phase shifts by

The transition potentials (14) can be of two kinds. Either
a pion is exchanged between two mN isobars or a nucleon
is exchanged between a mX and a NN isobar. We show
these two possibilities in Fig. 1, where 6 denotes a ~N
isobar and d denotes a NN isobar. Since in this theory all
the spectator particles are required to be on-mass-shell,
the space and spin dependence of the transition potentials
V; is obtained by taking the matrix elements of Eq. (14)
between spinors for the four external particles of Fig. 1

(actually two particles and two quasiparticles).
The b, —+mN vertices that appear in Eq. (14) and Fig. 1,

are given by

I =a(p, ), for the S&i and S3i channels,

I =b(p;)hays, for the P» and P» channels,

I „=c(p, )q„, for the P33 and Pi3 channels .

(15a)

(15b)

(15c)

A=1 GeV/c . (17)

The spinors of the ~N isobars are spin- —, Dirac spinors

q„ in Eqs. (15) is the pion s four-momentum, while p, is
the magnitude of the pion-nucleon relative three-
momentum in the c.m. frame of the pair (which is a
Lorentz invariant [19]). The functions a, b, and c, are

j,.chosen such that the form factors g, '(p;) in Eq. (10) be-
come

1,.

~/ J/'( )=
P/.

with

(12)

where Pd is the initial deuteron wave function, then the
amplitudes F, i obey the quasi-two-body equations [19]

F;i=(1—5;i)V, i++ V; r F, ,
JW/

where

+ij ~I~j +k +k FJ~k+i (14)

FIG. 1. Transition potentials of the mNN system. (a) Transi-
tion from a ~N isobar (denoted as 6) to another m.N isobar by
means of pion exchange. (b) Transition from a NN isobar
(denoted as d) to a ~N isobar by means of nucleon exchange.
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for the S», S3&, P& &, and P3& channels and spin- —',
Rarita-Schwinger spinors 8" for the P33 and P&3 chan-
nels.

In order to include the coupling to the NN states the
amplitude r;(s;) corresponding to the pion-nucleon P»
channel is decomposed into pole and nonpole parts [19]
such that the pole part can be identified as a nucleon
propagator multiplied by the square of the pion-nucleon
coupling constant. Then, the transition potentials con-
necting to the pole part of the P» amplitude are the ones
describing the pion-absorption process; that is, they cor-
respond to the transitions md ~NN, N 6~NN, and
NN ~NN (b, is used from now on to denote any mN iso-
bar other than the pole part of the P» isobar). Since
both the pole and nonpole parts of the P» channel are
small [19],the effect of pion absorption on the elastic and
breakup channels is not very large. Notice from Eq.
(15b) that our NA~NN and NN~NN one pion ex-
change (OPE) potentials are defined with pseudovector
mNN coupling.

In the transition potentials depicted by Fig. 1(b) we
also need the vertex I d z~ (here d denotes any NN iso-
bar). Since we take into account only the 'S0 and
S, - D

&
nucleon-nucleon channels, the corresponding

vertices are [23—25]

I „=y„A (p, ) q„B(p—, )+ [&„D(p, ) &„E(p, )]-
2M

(18)

for the S, - D, channel and

/+M /+M
qa

—
q

—M q0
—E (q)

uk(q)uk(q)
M 1

&(q) q0
—&(q) k

1+ X k( —q) k(
—q)qo+Z q

(21)

where E(q)=+q +M, uk are positive-energy spinors
of mass M and helicity X, and u& are the corresponding
negative-energy spinors [Eq. (21) can be easily checked by
explicitly constructing both sides using the Dirac y ma-
trices and spinors as shown in Appendix A]. If we use
Eqs. (14) and (20) to evaluate, for example, the on-shell
NN —+NN transition amplitude in the c.m. system, we
have that q0=0 and consequently each time ordering
contributes exactly —,

' of the total OPE amplitude. Thus,
it is very important in this case to keep both time order-
ings in Eq. (20). For the NN ~Nh and NB~Nb transi-
tion amplitudes, we have q0&0 for physical deltas (that is
when the mass of the isobar is larger than M +p, ); howev-
er, since the nucleon and delta masses are not so different,
it is also important to keep both time orderings. If, on
the other hand, we use Eqs. (14) and (21) to calculate the
on-shell ad~NA transition amplitude depicted in Fig.
1(b), then q0=M and the second term in Eq. (21) is much
smaller than the first. Thus, there is no compelling
reason in this case to keep the second term in Eq. (21),
and therefore we will drop it. That is, we approximate
the nucleon propagator as

M 1
Gk ~ ~ X ~k(q)~. (q)F. q q0 Eq— (22)

r=y, c(p, )+ 1',F(S
2M (19)

for the 'So channel. q„ is the four-momentum of the ex-
changed nucleon, p, is the magnitude of the nucleon-
nucleon relative three-momentum in the c.m. frame of
the pair (which is a Lorentz invariant [19]),and the func-
tions A, B, C, D, E, and F, are form factors that will be
discussed later. The isobar spinors are spin-1 spinors e"
in the case of the S, - D, channel and 1 in the case of the
'So channel.

The exchanged particles in Figs. 1(a) and l(b) are off-
mass-shell and they are represented by the propagator G&
in Eq. (14). The propagator of the exchanged pion in Fig.
1(a) is given by

In the transition potentials (14) corresponding to Fig.
1(b), both the nucleon propagator and the dNN vertex
enter; therefore, due to the fact that

uk(q) = uk(q) =0,g —M g —M
(23)

r"=y„A (p;) q„B(p;), for—the S, D, channel, -

(24a)

the form factors D (p; ) and E (p, ) in Eq. (18) and F (p; ) in
Eq. (19) do not contribute. That is, the dNN vertices be-
come effectively

I =y&C(p;), for the 'SD channel, (24b)

1

qo

1 1

2'(q) q0
—co(q)

1

qa+ co(q)
(20)

~(q)=Vq +p, and we have decomposed the
propagator into its two possible time orderings. The
propagator of the exchanged nucleon in Fig. 1(b) can also
be decomposed into its two possible time orderings as

A (p, ) =A[md —2E(p, )] $0(p, )+ P,(p, )
1

2 (25)

as a consequence of the approximation (22). If the NN
isobar in Fig. 1(b) is a physical deuteron (i.e., its invariant
mass is equal to the mass of the deuteron), the form fac-
tors 3 and B can be related to the S- and D-wave com-
ponents of the deuteron wave function as [19,25] [notice
that due to a misprint the form factors 2 and B were in-
terchanged in Eq. (78) of Ref. [19]]
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E(p, ) —. M
B (p, ) =k[md 2—E(p;)], 1to(p; )

p'=( '+ ' —q')'/

E(p;)=+M +p;

2E(p;)+M
4zp

2pi
(26)

(27)

(28)

where A, is a constant, q is the four-momentum squared
of the off-shell nucleon, and md is the mass of the deuter-
on. If the mass of the NN isobar is not equal to md, then
the form factors A and B are taken also as (25) and (26)
except that now

p; =(s;+M —
q ) /4s, —M (29)

where s; is the invariant mass squared of the isobar. No-
tice that if both nucleons are on-mass-shell then q =M
and Eq. (29) gives p; =s;/4 —M as expected.

We have introduced the approximation (22) in order to
simplify the structure of the dNN vertex. A more com-
plete treatment taking into account both terms of the
propagator (21) would require also the inclusion of the
form factors D and E in Eq. (18). In order to determine
all four form factors that enter into Eq. (18) one would
have to use a model which takes into account the
negative-energy components of the deuteron wave func-
tion ( P& and 'P, components) such as, for example, the
model proposed by Buck and Gross [25].

The form factor C of the 'S0 channel can formally be
related to the wave function of the 'S0 antibound state
similarly as Eqs. (25) and (26), or equivalently

C(p,. )=Ato(p, ,p =0;E =0), (30)

for the S
&

- D
&

channel and

I, =0,2, (31)

&2E (p; )
g, (p;)= [md 2E(p, )]to—(p, ,p,'=0;E =0),

(32)

for the 'S0 channel. We obtained therefore

where to(p,. 0;0) is the nonrelativistic half-off-shell T ma-
trix of the '$0 channel with p, given by Eq. (29). We used
for the wave functions fo, g2, and the half-shell T matrix
to, the solutions of the Paris potential [27].

The functions r;(s;) for the NN isobars were obtained
by requiring (a) that they satisfy the normalization condi-
tion (11), and (b) that the wave function of the NN
scattering states be orthogonal to the NN bound state.
The orthogonality property, as we will see when we give
the results, is very important for the breakup reactions.
If we use Eqs. (9) and (10) to calculate the form factors

I,,

g (p;) by taking matrix elements of I d aviv between spi-
nors for the isobar and nucleons (the correct prescription
in this case [23—25] is to use u21 U, for the 'So channel
and u2e"I „v, for the S,- D, channel, where u2 is a spi-
nor for nucleon 2, v

&
is a charge-conjugated spinor for

nucleon 1, and e" is a spin-1 spinor for the NN isobar) we
get

+2E (p; )
g, "(p;)=~

M [m~ —2«p;)]A, .(p;»

2Jl dry Ii 2 1 1
r, '(s, )=l — [g (p;)]

o 2E(p;) i
' ' 4E(p;) qo E(p;)+ie— (33)

with

s

2
(34)

In the case of the S, D, channel, the para-meter A, was chosen such that r;(s;) has a pole at s;=md, while in the case
of the 'So channel it was chosen such that r;(s;) has an antibound state at s; =m, . Notice that in the nonrelativistic
limit Eq. (33) would correspond to the unitary pole or PEST1 approximation [28].

The integral equations (13) are written in explicit form as

F;,'~ (kr;, k, ) =(1—5;, ) V;,'Jr~(k;, k, )+g g V j'Jr'~(k, , kj )~~ (s~ )FJ,'Jz-'(k, , k, ),
~ ~ 0 2'~J

(35)

with coj=+k +M~, (38)

k max
J

s =(V'S —co ) —k.J

(S+M )
1/2

—M
4S (36)

(37)

where S, J, and T are the invariant mass squared, total
angular momentum, and total isospin of the system, while
MJ and k. are the mass and the magnitude of the three-
momentum of particle j in the three-body c.m. frame.



47 INCLUSIVE md BREAKUP REACTIONS 961

k. '" corresponds to the value of k. for which s =0 in
Eq. (37) [20]. The discrete quantum numbers a; are

a;=[1;S;tj;m,v;.], (39)

where l;, S, , t, , and j;, are the orbital angular momentum,
spin, isospin, and total angular momentum of the pair jk,
while m; and v; are the helicity of the pair jk, that is, the
magnetic projection of j,. along the direction k +RA. and
the helicity of particle i. The transition potentials

V~j JT ( k;, k, ) in Eq. (35) are obtained by partial-wave pro-

jecting the expression (14). The input of the integral
equations (35), as already mentioned, consists of the six S-
and P wa-ve pion-nucleon channels (S», S3i, P», P,3,
P3), and P33) and the nucleon-nucleon 'So and S, D-,
channels.

B. The md breakup amplitude

The amplitude for the md breakup process is obtained
from the solution of the integral equations described in
the previous section as

~M' ' '(kI k2 k3 qo) = y y&p, k, ;p, IT, Iki;Mo & wp, '.
,M', '(P; k;)

i=1 P,.
(40)

where due to energy and momentum conservation only five continuous variables are independent in the final state.
Qo=zk, is the initial momentum of the deuteron and Mo its spin projection (which is identical to the helicity since the
deuteron is moving in the positive z direction}, while k'„kz, k3 are the final momenta of the three particles and p„pz, p3
their spin projections. p,. is the relative momentum of the pair jk measured in the c.m. frame of the pair. The discrete
quantum numbers are

P; = [l;S; t j;L;Z;JT],
and the matrix elements and angular functions in Eq. (40) are given by

(pk;;P;IT Ik, ;Mo& = g Q(2L;+1)/(2J+1)C " „" oC
' ' ' 2+2cod(ki)gi(p;)r (s, )F;,"JT'(k, ,k)),

m,.v,.

(41)

(42)

I 't. j, , z,. I,.s,.j,.
&p. , Mo (P(~k() —Cv +v v Cv'. , v„g Cg,. +p m g p Cg I 'Cg '

I. p p +@~CD'p~ YI g p I «(P~)YL M g p (k(),
"II

(43)

l»=ltJk=123&,

I2& = lijk =231&,

I
3 &

= Iij k =321 &,

(44a)

(44b)

(44c)

which means that

13& =P„I2&,

where P23 is the permutation operator of particles 2 and
3. Then, the Pauli principle requires that

where cod(k, )=Qmd+k, with md being the mass of
the deuteron. o.;,o. , o.

I, are the spins and 7.„~,~& the
isospins of the three particles. I.; is the orbital angular
momentum between particle i and the pair j,k, and Z, is
the total effective spin between particle i and the pair j,k.
gI (p; ) are the form factors defined by Eqs. (9) and (10).

Since we have assumed particle 1 to be the pion and
particles 2 and 3 the two nucleons which are identical
particles, the basis states of the expansion (40)—(43) will
be chosen of the form

Fi,' JT(k3, k, ) = —F2,' JT'(k2, kl ),
if az=a3 and k2=k3 (46)

I

Since the amplitude F ii'Jr(k'„k, ) results from having a
nucleon-nucleon interaction in the final state, the quan-
tum numbers a', that enter there are only those allowed
by the Pauli principle. Thus, the full breakup amplitude
(40) which involves all three amplitudes is guaranteed to
satisfy the Pauli principle.

The expansion of the final three-body state in Eqs.
(40)—(43) does not correspond to helicity states but to the
standard choice where the spins of the three particles
refer to a fixed set of axes. This does not mean, however,
that they are nonrelativistic states, since the momenta p,.

and k, are calculated with exact relativistic kinematics.
Only the treatment of the spin is at this stage not fully
relativistic. Due to the discontinuities of the helicity
states [29,30], we have found that the expansion in terms
of three-body helicity states [30,31,6] becomes problemat-
ic when the three particles do not lie in a plane with the
incident momentum. Thus, the three-body states of Eqs.
(40}—(43) do not take into account the "Wigner rotation
of the spin in a Lorenz transformation" which is a rela-
tivistic effect [30] due to the fact that in a velocity dia-
gram the sum of the internal angles of a triangle is less
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than ~. This effect, however, is quite small as we have
checked in the case when the three particles lie in a plane
with the incident momentum. For example, at 256 MeV
incident pion energy, the kinematically complete
differential cross section changes by less than l%%uo due to
the Wigner rotation of the spin. The effects are conse-
quently smaller in the case of the inclusive reactions.

C. The inclusive m.d breakup observables

In order to calculate the differential cross section and
initial-state polarization observables in the case of the
kinematically complete reaction, one needs the fivefold
trace and initial deuteron density matrix defined respec-
tively as

P ("i k 4k p, 0p ) .X— l~M, ( 1 2, 3, Q0)l
0|"1I 2)"3

PM'M, (k;, gk, $k, gp, pp )= g AM' ' ' (k(, k2, k3, QO)AM',
' '(kI, k2, k&', Qo) .

PlP2P3

The kinematically complete observables are then given by [32]

(47)

(48)

0
dk;dQk dO~

4k 2

6k(+S(M +k )(M + )
(49)

T(5) —~ Q3( 1 ) OC 1(L
MO, —MO, M (5)(k g y g y )

(50)

where in Eq. (49) the magnitude of the relative momen-
tum p; is determined by k; and the invariant mass
squared S as

[s; —(M +Mk ) ][s;—(M —Mk) ]

4s,

s, =S+M, —2+S(M; +k; ) .

(51)

(52)

P"'(k gk, 4k, )=f d&p, P.
'"(k; gk, 4k, g.

p, 4p, ». .

PM M' ( i gk ~4'k. ) f d+p PM M (kiigk ~4'k &gp ~Op ). . . . .

(54)

The inclusive differential cross section and initial-state
polarization observables are then given by

In order to calculate the inclusive observables one
needs the threefold trace and initial-state density matrix
which can be obtained from those of Eqs. (47) and (48) as

III. RESULTS

Data on inclusive md breakup reactions are naturally
divided into two sets, depending on whether a pion or a
nucleon is detected. If a pion is detected, one can have
the normal breakup reactions H(rr, ~+)X where X—=pn,
or a charge exchange process H(m. +—

, m. )X, where X
represents either two protons or two neutrons depending
on the charge of the incident pion. If a nucleon is detect-
ed, one can have either a pure breakup reaction like
H(m+, n)X and H(n, p)X, where X =a.+p and

X =m n, respectively, or a mixture of breakup and
charge exchange like H(~+,p)X and H(m. , n)X, where
in the first case X=~+n or X=+ p, and in the second
case X =~ p or X =~ n.

We will calculate the differential cross sections for all
the existing d.ata where a pion or a nucleon is detected
and we will present predictions where no data exist. We
will, however, exclude any comparison to older bubble-
chamber data [13—15], since nowadays this is an outdated
experimental technique [33] and in our opinion those
data should be remeasured.

A. Pion detection data

d 0
dk, dQq

4k 2

6k(+S(M, +k, )(M, +p,. )

LM
I Mo, —MD, M (3)(k g

0 0 j

(55)

(56)

The reaction H(rr+rr+)X has been measured recently
by Khandaker et ai. [18], for an incident pion energy of
96.5 MeV. We show in Fig. 2 the differential cross sec-
tion da /dQ of Khandaker et al. [18] and compare it
with our theoretical results. The dashed line is the im-
pulse approximation, while the dot-dashed line is the
distorted-wave impulse approximation, and the solid line
refers to the full calculation. The result of the full calcu-
lation when we use the Bonn deuteron wave function [34]
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10- .. d(7r', 7t') X

~ ~ ~ ~ ~

LI

Q.f
0 60' 120' 180

FIG. 2. Differential cross section of the inelastic reaction
H(m, m. +)X at 96.5 MeV. The dashed line is the result of the

impulse approximation, the dot-dashed line the result of the
distorted-wave impulse approximation, the solid line the result
of the full calculation, and the dotted line the result of the full
calculation with the Bonn deuteron wave function. The experi-
mental points are from Ref. [18].

satisfied exactly, since first of all, Eq. (58) is only an ap-
proximation, and secondly, due to the binding energy of
the deuteron, the point k', =k, is never reached in the
breakup process. However, as one can see in Fig. 2, the
effect of orthogonality is to suppress strongly the cross
section in the forward direction as compared with the im-
pulse approximation [35]. In the case of the impulse ap-
proximation [see Eq. (3)], the distorted wave &y' '~ in
Eq. (6) has been replaced by the plane wave &p~ and
therefore the effect of orthogonality is destroyed. We
show in Figs. 3 and 4 the corresponding results for the
double differential cross section d o /d APE for the five

outgoing pion angles measured by Khandaker et al. [18].
The small peak seen in the 0 =40 spectrum at low mo-
menta is most likely due to experimental background
since none of the theoretical curves generate such a struc-
ture and also it does not show up in the remaining experi-
mental spectra. Again as in the previous figure, the
distorted-wave impulse approximation and the two full
calculations describe the data reasonably well, while the
impulse approximation fails badly as one approaches the
forward direction.

The differential cross section of the charge-exchange
reaction H(7r, ~ )X where X=nn has been measured
by Moinester et al. [17] for an incident pion energy of
164.1 MeV. We show these results in Fig. 5 where we

instead of the usual Paris wave function [27] is shown by
the dotted line. The distorted wave impulse approxima-
tion and the two full calculations describe the data
reasonably well. The impulse approximation, on the oth-
er hand, disagrees strongly with the data and with the
other calculations, in particular, as one approaches the
forward direction. The failure of the impulse approxima-
tion is a consequence of the fact that in that approxima-
tion the wave function of the two final nucleons is not or-
thogonal to the deuteron wave function. In order to un-
derstand these results, let us consider the simpler case of
the distorted-wave impulse approximation. We notice
from Eqs. (5) and (6) that

&k;p~~ "'
~y, k, &= g &k;y,'-'~t, ~y, ki&,

I —2, 3

where k, and k', are the initial and final momenta of the
pion and Pd is the deuteron wave function. Since the
pion-nucleon amplitude t; varies slowly in momentum
space as compared with the nucleon-nucleon wave func-
tions Pd and g' ', the matrix element (57) can be factor-
ized as

& k~p~ g DwIA~y k )
I

&k', ~t, ~k, ) I dry' '(r)*e ' ' Pd(r), (58)
I =213
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therefore, since the functions y' ' and Pd are orthogonal
to each other, one must have that

&kip~A '
~pdk, )~0 if k', ~k, , (59)

so that the cross section must vanish in the forward
direction k', =k, . Of course, this condition is never

e~
20 40 60 80 20 40 60 80

T~(ve v)

FICx. 3. Double differential cross section of the inelastic reac-
tion H(m+, sr+)X at 96.5 MeV for two outgoing pion angles.
The labeling of the curves and the data are as in Fig. 2.
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tory system. The raising of the cross section at high pion
energies for 0 =25' and 75' is the result of the final-state
neutron-neutron interaction in the 'So channel. 100- d(~', p) X

B. Nucleon detection data

100-

1

0' 60' 120 180'

ep
FICx. 7. Differential cross section of the reaction H(~,p)X

at 256 MeV. The labeling of the curves is as in Fig. 2.

We have calculated the predictions of our model for
the reactions H(~, p)X and H(m+, p)X [which are the
isobaric analogs of the reactions H( sr+, n )X and
H(~, n )X, respectively] at T =256 MeV. We show in

Figs. 7 and 8 our predictions for the differential cross sec-
tions using the same four theoretical prescriptions as in
the previous results. The main feature of these results is
that while the ~ cross section stays relatively Aat, the
~+ cross section falls down by almost two orders of mag-
nitude as one goes to large angles. We will discuss next
the meaning of these results.

The reaction H(n, p)X is dominated by the single-
scattering term m n —+~ n with the proton acting as
spectator, since the contribution of the ~ p —+pm pro-
cess comes into the amplitude reduced by a factor of 3

due to isospin (assuming delta-isobar dominance). Thus,
the protons that are detected are mostly spectator pro-
tons which always tend to be produced with zero momen-
tum and therefore they give rise to an isotropic angular
distribution. We have checked that including only the

n ~~ n term leads to an essentially constant
differential cross section of about 10 mb/sr. Thus, the
small anisotropy observed in the impulse approximation
result of Fig. 7 is produced by the contribution of the
~ p~p~ term. The effect of the higher-order scatter-
ing terms is to lower the cross section and to increase
somewhat the anisotropy.

The reaction H(m, p)X is dominated by the single-
scattering term ~+p ~pm+ with the neutron as spectator
since the term ~+n ~~+n with the proton as spectator
enters into the amplitude reduced by a factor of —,'. Thus,

m o ~ ~ ~ ~ ~

00 60' 120' 180'

FIG. 8. Differential cross section of the reaction 'H(m+, p)X
at 256 MeV. The labeling of the curves is as in Fig. 2.

the protons observed here are essentially those knocked
out by the pion and the differential cross section follows
the general shape of the free ~+p~p~+ cross section.
Since in the laboratory system the free a+p~pm+ cross
section is zero for 0) 90', this explains the dramatic fall
off of the H(sr+, p)X cross section in the backward hemi-
sphere that is observed in Fig. 8. As a matter of fact the
protons observed at large angles in Fig. 8 are essentially
the spectator protons connected with the process
~+ n ~m. +n. Thus, ignoring the contribution of the
charge-exchange reaction and assuming delta-isobar
dominance implies that the cross section of the
H(sr+, p)X process at backward angles should be a factor

of 9 smaller than the corresponding cross section of the
H(vr, p)X process. The factor that we get, however, is

closer to 4 as a consequence of the presence of the
charge-exchange cross section and the interference of non
delta-isobar contributions.

Finally, we would like to notice from the results of
Figs. 7 and 8 that the full calculation lies below the im-
pulse approximation, in some cases by as much as a fac-
tor of 2, and the results with the Paris or Bonn deuteron
wave function are essentially indistinguishable.

We show in Fig. 9 the double differential cross section
of the H(m. ,p)X reaction at 8 =25'. One sees clearly
the two peaks at 0 and 130 MeV. The dominant peak is
the one at T =0 which is due to the spectator protons
connected with the process m. n ~m n as mentioned be-
fore. The smaller peak at T =130 MeV is produced by
the knocked-out protons coming from the process

p ~p m with the neutron acting as spectator. We
show in Fig. 10 the corresponding double differential
cross sections for the proton angles 75 and 125'. At
0 =75 only the peak at T =0 due to the spectator pro-
tons is seen, although the peak from the knocked-out
protons should have appeared at T = 10 MeV. However,
this second peak is completely wiped out by the dominant
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FIG. 9. Double differential cross section of the reaction
H(~,p)X at 256 MeV for one outgoing proton angle. The la-

beling of the curves is as in Fig. 2.

FIG. 11. Double differential cross section of the reaction
H(~+,p)X at 256 MeV for one outgoing proton angle. The la-

beling of the curves is as in Fig. 2.

spectator-proton mechanism. At L9 =125 only the spec-
tator protons can contribute and indeed the only peak
that is seen is that at T =0.

We show in Fig. 11 the double differential cross section
of the H(m. +,p)X reaction at 6I =25'. Again, as in Fig.
9, one sees two peaks at 0 and 130 MeV. In this case,
however, the dominant peak is the one at T = 130 MeV
which is due to the process ~ p ~p~+ with the neutron
as spectator. The peak at T =0 due to the spectator pro-
tons connected with the process ~+n~~+n is much

weaker as a consequence of isospin. We show in Fig. 12
the corresponding double differential cross sections for
the proton angles 75' and 125'. At 0 =75' one sees
clearly the peak at T = 10 MeV due to the process
m+p ~p~+ with the neutron as spectator. At T =0 one
has a narrow peak due to the spectator mechanism plus
the protons coming from the charge-exchange reaction.
At 0 =125 there is only one peak at T =0 from the
only single-scattering process that is allowed, i.e., the
spectator mechanism. However, here the full calculation
gives rise to a very pronounced shoulder at T = 50 MeV.
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FIG. 10. Double differential cross section of the reaction
H(m, p)X at 256 MeV for two outgoing proton angles. The la-

beling of the curves is as in Fig. 2.

FIG. 12. Double differential cross section of the reaction
H(~+,p)X at 256 MeV for two outgoing proton angles. The la-

beling of the curves is as in Fig. 2.
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We have found that this shoulder is the signature of the
pion-nucleon double-scattering term in which the pion
scatters first on the neutron and then on the proton.
Thus, in our opinion, this is a very interesting region to
be studied experimentally since it provides a clean way to
explore the effects of the pion-nucleon double-scattering
term.

The reactions H( m, p )X and H( m. +,p)X have been
measured at an angle 0 =90' as a function of the energy
of the incident pion by Arvieux et al. [16], considering
several fixed proton momenta. We show these data for
the reaction H(m. ,p)X in Fig. 13 and compare them
with the predictions of our model. As one sees, the re-
sults are considerably sensitive to the deuteron wave
function being used, and the predictions of the full calcu-
lation with the Bonn deuteron wave function are the ones
that describe the data better. In Fig. 14 we show the cor-
responding results for the reaction H(~+,p)X In th. is
case the data shows no preference for the predictions of
either the Paris or Bonn deuteron wave function. How-
ever, one should keep in mind that in this case there is a
third contribution to the cross section coming from the
process m+d ~ypp which we have not taken into ac-
count (the data points at low energies where our theoreti-
cal curves give zero, are entirely due to this process). Al-
though it has been estimated in Ref. [16] that the ypp
cross section is important only at low energies, it will
nevertheless have the effect of increasing somewhat the
theoretical cross sections of Fig. 14. Thus, it seems likely
that the Bonn deuteron wave function may at the end de-
scribe the data better. Of course, this should not be taken
to indicate that the Bonn deuteron wave function is
better than the Paris wave function since some additional

effects like higher NN and ~N partial waves, two-pion
states, etc. , have not been taken into account. Moreover,
one would also need data on the polarization observables
in order to distinguish clearly which deuteron wave func-
tion is better.

IV. FINAL REMARKS

We have performed a relativistic Faddeev calculation
of inclusive nd breakup reactions at medium energies and
found satisfactory agreement whenever data was avail-
able. We have studied the sensitivity of the differential
cross sections to multiple scattering effects and to the use
of different deuteron wave functions. The reactions
H(m. , m. )X are quite insensitive to which deuteron wave

function is used. The reactions H(rr, N)X, on the other
hand, appear more promising for the purpose of learning
about the deuteron wave function.

We were also able to isolate the various kinematical re-
gions that are sensitive to specific multiple scattering pro-
cesses. For example, the H(~,p)X and H(~+,p)X
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FICr. 13. Double differential cross section of the reaction
H(m, p)X at an outgoing proton angle of 90 for three values of

the proton momentum (in MeV/c), as a function of the incident
energy of the pion. The labeling of the curves is as in Fig. 2.
The experimental points are from Ref. [16].

FIG. 14. Double differential cross section of the reaction
H(m. +,p)X at an outgoing proton angle of 90' for five values of

the proton momentum (in MeV/c), as a function of the incident
energy of the pion. The labeling of the curves is as in Fig. 2.
The experimental points are from Ref. [16].
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cross sections in the forward direction are essentially
determined by the pion-nucleon single-scattering terms.
A similar thing happens with the H(~, m )X cross sec-
tion where the Pauli principle also plays an important
role. The reaction H(m +, m+ )X is determined by the
pion-nucleon single-scattering term followed by a final-
state nucleon-nucleon interaction. Finally, the reaction
H(m+, p)X in the backward direction and for large pro-

ton momenta is dominated by the pion-nucleon double-
scattering term. More experimental data on the various

kinematical regions would be very helpful to isolate and
study each reaction mechanism separately.
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APPENDIX A: THE NUCLEON PROPAGATOR

We want to check that Eq. (21) is correct. Let us consider a matrix A defined as

A =g+M=qay q, y—' —
q2y

—
q3y +M

=qoy —q„y' —q y —q, y +M . (Al)

Using the definitions of the Dirac y matrices given in Appendix A of Bjorken and Drell [26], we have that

1 0 0 0
0 1 0 0
0 0 —1 0
0 0 0 —1

0—
q

0 0 0 1

0 1 0
—1 0 0

—1 0 0 0

0 0 0 —i 0 0 1 0 1 0 0 0
0 0 i 0 0 0 0 —1 0 1 0 0
0 i 0 0 q' —1 0 0 0 0 0 1 0
—i 0 0 0 0 1 0 0 0 0 0 1

q,

qz + le
qx le

—q,

qo+M
0 q0+M

—q,

q~ le
—q0+M

—
q +iq„

z

0
—q0+M

(A2)

The positive-energy spinors are given in Eq. (3.7) of Bjorken and Drell [26] as

u+(q) = 1

&2M(M +E)
q +iq

(A3)

1 M+E
u (q)=

&2M(M+E) (A4)

where

E =+M +q
Then the adjoint spinors are

(A5)

and

u+(q)=u+(q)y =
1 0 0 0

1 0 1 0 0

2M(M+E) 0 0 1 0(M+E, O, q„q„iq )—
0 0 0 —1

1 M +E,O, —q„q„+iq-v'2M (M +E) (A6)
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u (q)=u (q)y =
1 0 0 0

1 0 1 0 0

2M(M+E) & 0 0 1 0(O, M+E, q„+iq, —q, )

0 0 0

1
(O, M +E, —q„iq—,q, ) .

&2M(M +E) (A7)

We now introduce a matrix B as

B =2M[u+(q)u+(q)+u (q)u (q)],
then using Eqs. (A3) —(A4) and (A6) —(A7) we have that

(A8)

1

M+E
q~ +lqy

M+E
(M+E 0, q, q +iq )+ ~ (0 M+E, q iqy, q )M +E qx &qy

(M+E) 0 (M +E—)q, (M +E)( q. +iq,—)

1

M+E
0

q, (M+E) qz

(q +iq )(M+E) 0 —(q„+iq )q,

q, ( —q„+iq )

qx qy

T

0 0
(M+E)

M+E 0

0
1

M +E 0 (q„iq, )(M —+E)
0 —q, (M+E)

(M +E)( —q„i' )—

q, (q„+iq~ )

—
q +iq

(M+E)q,

(q„iq )q, —

qz

q~ + lqy

M+E qx 'qy

q„iq ——q /(M+E)
q,

—q /(M+E)

(A9)

M+E —
q

—iq

M —Eq~ lqy

qx +~qy

so that using Eq. (A5) we get finally

'M+E 0 —q, —
q +&q

q,
0 (A10)

The negative-energy spinors are given in Eq. (3.7) of Bjorken and Drell [26] as

qz

1 x + lqy
U+(q)=

&2M (M +E) M +E
0

q
—iq

(A 1 1)

so that

(q)= 1

&2M(M+E)
qz

0
M+E

(A12)
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1
u~( —q)=

/2M (M +E)

qz

lq

M+E (A13)

1

&2M(M +E)

Then the adjoint spinors are

qx + lqy

q,
0

M+E
(A14)

and

u ( —q)=vt ( —q)y =
1 0 0 0

1 0 1 0 0
( —q„—q„+iq,M +E,O)&2M(M+E)

0 0 0 —1

1
( —q„—q„+iq, —M —E,O)&2M(M+E) (A15)

v ( —q)=u (
—q)y =

1 0 0
0 1 0

&2M(M+E) (
—

q iq, q„—O, M +E) 0 0 —1

0 0 0

1
( —q iq», q„—O, —M E-

&2M(M+E)

0
0
0

(A16)

We now introduce a matrix C as

C=2M[v+( —q)u+( —q)+u (
—q)u ( —q)],

then using Eqs. (A13)—(A16) we have that

—q, q~ +lqy

(A17)

C= 1

M+E
qx lqy

M~E ( q q +iq M E 0)+ M+E
0

0
M+E

(
—q, iq, q„O, ——M E)—

2
qz

—q, (
—q„+iq )

(q„+iq» )q, qx +qy

M+E (M +E)q, (M—+E)( —q„+iq» )

0 0

q, (M+E) 0

(q„+iq )(M+E) 0
—(M+E) 0

1

M+E

2 2
q~ +qy

—q, (q, +iq )

0 0
—(M+E)—(M +E)(q„+iq» ) (M +E)q,

( —q„+iq )q, 0 (q„iq )(M+E)—

q, 0 —q, (M+E)
0 0

q /(M+E)

—q,

lqy

q,

q~ + lqy

q, 0

q /(M+E) q +iq
—M —E

lqy

—q,

—M —E

(A18)
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so that using Eq. (A5) we get finally

E —M 0 q, q
—iq

0
—q,

1qy

qx + ~qy

—
q +E'q —M —E

0

—q,
0 (A19)

In order to check Eq. (21), let us consider the matrix

1 B C
E qo E qo+E

We first notice from Eqs. (A2), (A10), and (A19), that the off-diagonal elements of the matrices A, B, and C, satisfy

A„=B„=—C„, , (A20)

and therefore we have that for these elements

B C„+
2E qo E qo+E qo

—E
1

qo+E q2 E2 (A21)

1 M+E E —M
2E qo

—E qo+ E

and the same holds for the element 11. Similarly,

In the case of the diagonal elements, we have that
T

Boo Coo+
2E qo E qo+E

qo+M A oo
(A22)

+
2E qo E qo+E

M —E —M —E —qo™+
2E qo

—E qo+E q

322
q2 E2 (A23)

and the same holds for the element 33.
Therefore, we have shown that

1 B C
2E qo

—E qo+E q2 E2 (A24)

so that using Eqs. (Al), (A8), and (A17), Eq. (A24) can be rewritten as

g ~~(q)~~(q)+E qo
—E~ qo+E & qo

—E

which is Eq. (21).

(A25)
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