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Pion elastic, charge exchange scattering, and induced eta production on the trinucleon systems
are investigated in a coupled-channels approach in momentum space with Faddeev wave functions.
The channel AN —+ gN is included using an isobar model with S-, P-, and D-wave resonances.
While the coherent reactions like He(7|., vr) He can be reasonably well reproduced up to T =500
Mev, large discrepancies appear for the incoherent processes He(~, vr ) H and He(vr, rt) H at
backward angles and energies above 4 resonance. In the forward direction, the (vr, rt) calculations
underestimate the experimental measurements very close to threshold, but agreement with the data
improves with increasing pion energy. Predictions are made for the asymmetries of the various
reactions on polarized He.

PACS number(s): 25.80.Dj, 25.80.Gn, 25.80.Hp

I. INTRODUCTION

For many years there has been a great interest in un-
derstanding the pion-nuclear interaction at low and in-
termediate energies. A recent review of achievements in
this field can be found in Ref. [1]. Originally, the phe-
nomenological Kisslinger potential in coordinate space
was derived for spin and isospin zero nuclei only as a
erst step. After that numerous modifications and im-
provements were suggested to correct the optical poten-
tial: real pion absorption, Fermi motion, Lorentz-Lorentz
effects, Pauli blocking effects, etc.

On the other hand, a microscopic description of
the pion-nuclear interaction in momentum space was
developed based on Kerman-McManus-Thaler (KMT)
[2] or Watson [3] multiple-scattering theories. In the
framework of such an approach the nonlocalities of the
pion-nuclear interaction, off-shell extrapolations of pion-
nucleon scattering amplitudes, and exact treatment of
Fermi motion have been taken into account [4, 5]. In
a further step the phenomenological p term has been
added [6—8] which is responsible for real pion absorption
and second-order effects. The momentum space formal-
ism was not only successful in the description of the pion-
nuclear interaction in the 6 resonance region but also at
low energies for a large set of nuclei with A = 4—40. In
Refs. [9, 10] this method has been extended successfully
to the description of pionic atoms as well.

At the present time studies of the pion interaction with
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the trinucleon system have become very attractive. First,
this is due to the development of new experimental tech-
niques at TRIUMF, PSI, and LAMPF which allow rnea-
surements of polarization observables. Second, one al-
ready has a large set of previous measurements for the
differential cross section. On the theoretical side the nu-
clear structure of the trinucleon system is well known.
All these circumstances create ideal conditions to study
in detail the pion interaction mechanisms with very light
nuclei.

Previous theoretical investigations of the pion inter-
action with the trinucleon system were mostly based on
the multiple-scattering theory and, according to a recent
analysis by Gibbs and Gibson [ll], the KMT version of
this approach is preferable. In this framework Landau
[4] and Mach [5] studied the sensitivity of pion elastic
scattering and single charge exchange (SCE) on sHe and

H to the details of the nuclear wave function. While
Mach used semiphenomenological wave functions, Lan-
dau extracted the four nuclear form factors required for
the optical potential from the electromagnetic form fac-
tors of He and sH. Clearly these two approaches differ
since the parametrized form factors contain meson ex-
change current (MEC) contributions. Nevertheless, both
achieve a good description of experimental data up to
pion kinetic energy of T =200 MeV.

At higher energies large discrepancies appear between
the measurements and theoretical calculations of elastic
scattering and SCE at backward angles. For example,
in the SCE reaction at T =300 MeV and at pion angles
0 & 90 basically all calculations yieM differential cross
sections which fall two orders of magnitude below the
data. Only calculations in the framework of the Glauber
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approach [12,13] reached better agreement in this region.
However, we concur with Ref. [14] that in the large-angle
region Glauber theory cannot be reliable.

The solution to this problem could involve corrections
to the impulse and coherent approximations in form of
second-order effects. Several attempts to incorporate
such corrections for the pion interaction with very light
nuclei are discussed in Refs. [14—17]. A full analysis of
second-order effects including spin and isospin degrees of
freedom has been performed by vVakamatsu [14]. Ac-
cording to his work these contributions are larger in pion
SCE than in elastic scattering and they can enhance the
differential cross section at backward angles by a factor
of 2. This, however, is not sufficient to explain the data.

Another approach was developed by Gibbs et at. [11,
18]. Here the s- and p-wave parts of the first-order po-
tential were calculated using the frozen nucleon approx-
imation; then, the obtained potential was averaged over
realistic nuclear configurations. In such an approach part
of the second-order effects are automatically included via
the NN correlations in the nuclear wave function. Ref-
erences [ll, 18] yield good agreement for pion energies
T =24—180 MeV; however, applying this approach to
higher energies where higher pion-nucleon partial waves
become important encounters computational difficulties.

The aim of the present work is a systematic investiga-
tion of the pion interaction with the trinucleon systems
(sHe and sH) in the region of pion kinetic energies of
T =100—600 MeV, including spin and isospin degrees of
freedom on the microscopic level and using only elemen-
tary amplitudes extracted from xN scattering data and
realistic three-body wave functions obtained as a solution
of the Faddeev equations. Because of the last circum-
stance, we are in a very good position to fix the nuclear
structure input in order to shed more light on the reac-
tion mechanism. In the framework of such an approach
in our previous studies of pion scattering on unpolarized
and polarized sHe targets [19,20] we have reached a good
description of older and recent measurements at low pion
energies. This has motivated us to extend our molnen-
tum space approach for pion energies up to the eta pro-
duction region. This is the kinematical region T ( 600
MeV and momentum transfer Q ( 6 fm i, where Fad-
deev wave functions give an excellent description of the
electromagnetic form factors in the A = 3 system. This
gives us confidence to study the reactior, mechanism. In
this kinematical region we will check cur model by com-
parison with all available experimental data and present
predictions for forthcoming experiments at LAMPF, PSI,

and TRIUMF.
The main aspects of our formalism based on the

KMT multiple-scattering approach and coupled-channels
method are given in Sec. II. In Sec. III we describe the
nuclear models: (1) a simple S-shell model which is very
useful for a qualitative (and in some kinematical regions
even quantitative) description of the main features of
the pion interaction with the trinucleon [20], (2) a phe-
nomenological model employing nuclear form factors ex-
tracted from electron scattering data which was often
used in previous calculations, and (3) a three-body model
with realistic wave functions obtained from solutions of
the Faddeev equations [21]. The aim of this comparison
with different nuclear models is to estimate the upper
limit of uncertainty which was present in earlier investi-
gations of pion interaction with He.

In Sec. IV, our results for elastic scattering and single
charge exchange on unpolarized and polarized targets are
discussed. Furthermore, we briefiy consider the "super-
ratio" which has been used [ll] to find charge symmetry
breaking in strong interactions.

We will complete our analysis with the investigation
of eta production by pions. This is a relatively new field
of theoretical [22—24] and experimental [25] study in pio-
nic physics which promises to be very useful to obtain a
global picture of the meson-nuclear interaction. On the
other hand, these studies could give very important infor-
mation on the excitation of nucleon resonances in nuclei
[such as the Sii(1535) and the Dis(1525)] that could be
applied to other nuclear reactions with eta mesons (i.e. ,
eta production in heavy-ion collisions and eta photopro-
duction) .

Our results and conclusions are summarized in Sec. V,
and we will give the main expressions for the pion-nucleon
and eta-nucleon interactions in the Appendix.

II. FORMALISM

A. General expressions

The general formalism for the description of the
pion-nuclear scattering is based on a momentum space
coupled-channels method which was developed in detail
in Ref. [26]. Here we merely summarize its main features.

In the framework of the KMT version of multiple-
scattering theory, the scattering amplitude is constructed
by solving the Lippmann-Schwinger integral equation
with relativistic kinematics:

E ~ (q', q) = V (q', q) —,) dq" U ~ (q', q")E - (q ",q)
M(q") E(q) —E(q") + ie

where q is the pion momentum, and E(q) = E (q) +
E~(q) is the total pion-nuclear energy. The pion-nuclear
reduced mass is given by M(q) = E~(q)E~(q)/E(q) and
the coefficient a = (A —1)/A is important to avoid double
counting.

V (q, q) = Vco i(q —q; R) + V~ l (q, q) (2)

contains the Coulomb potential in the momentum space,

The momentum space potential of the pion-nuclear in-
teraction
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cut at point R, and a potential of strong pion-nuclear in-

teraction V, which is related to the free ~N scattering
t matrix:

V„, (q', q) =—QM(q') JH(q)

A

x vr'(q'), f ) t iv(j) i, vr( q), (3)
j=1

where
~

i ) and
~ f ) denote the nuclear initial and final

states, respectively, and j refers to the individual target
nucleons.

The pion-nucleon scattering t matrix is defined in the
following way:

27r

gv(q', p') v(q, p)

x App + Ap1t T

between the results of partial wave analysis of different
groups is small (much smaller than the accuracy of the
nuclear data). For example, a comparison of CERNTH
and VPI [30] analyses show no difFerence in the Pss wave
up to ur = 1.6 GeV. Also Pii and Dis phase shifts are
very similar in this region. Only for Si& does the difFer-
ence between results of these two groups become sizable
at ui ) 1.5 GeV [22], i.e. , in the region were the eta chan-
nel is open. Note that recently a new xN scattering par-
tial analysis was published by the VPI group [31] which
gives a new determination of S11 resonance parameters
consistent with results of other groups.

The off-shell extrapolation of vrN partial amplitudes
was obtained using the separable form

with vrK form factors

+icr [q, x q~](Aip+ Ai&t ~)
(+)

[1+(«q)']' (6)

where p(q, p) = E (q)E~(p)/w is the pion-nucleon re-
duced mass, p and p' = p+ q —g' are the nucleon
mornenta in the initial and final states, respectively, and

q, and qf are the unit vectors for the initial and final
pion momentum in the 7t.N c.m. system. The vectors
rr, a, and t are the usual spin and isospin operators of
target nucleon and pion, respectively.

The scalar functions As~(cu, cos 0') (S = 0, 1 and
T = 0, 1), which depend on the total pion-nucleon en-
ergy w and the pion angle 0' in the vrN c.m. system,
are the usual combinations of partial srÃ scattering am-

plitudes fi (w) and Legendre polynomials Pi (cos 0'),
where t„ is the pion-nucleon angular momentum and
(+) corresponds to the total spin j = l + 2i of the
vs% system. These amplitudes are constructed from the
pion-nucleon phase-shift parametrization of Ref. [27] at
m +Miv & u & 1.3 GeV and the CERNTH parametriza-
tion [28] at 1.3 GeV & w & 2.2 GeV.

The discussion of all problems connected with the par-
tial wave analysis of different groups is beyond the scope
of this paper. A review of this subject can be found in the
last compilation of [29). Note only that in the kinemati-
cal region considered here (cu & 1.6 GeV), the difference

I

u) = 8+m +M~
1

(m + Miv)'+ (q'+ q)

1

(A —1) M~+ (q'+q)A —1
2A (7)

Such an approach allowed us to improve the impulse ap-
proximation in accordance with the results of Ref. [33].

B. Partial wave decomposition and the amplitudes
Hand g

In our numerical applications we express the scatter-
ing amplitude in terms of partial amplitudes using the
representations of total isospin I and projection (,

Here we employ the value rp = 0.47 fm consistent with
the analysis of the separable 7rN potential in Ref. [32].

To connect the total pion-nucleon energy w, at which
these partial amplitudes are calculated, with the total
pion-nuclear energy E, we will use the results of a rela-
tivistic generalization for the three-body model [6, 26]:

Z. .(q', q) =) (2I+1)
I

' ~, '
I
+1(q', q),

(1 —,
'

I,g
ger v, — ) vr' vf

(8)

and of total angular momentum j with projection m,

+i(q', q) =«) (2j+ 1)&M'(q')+J' (q', q)&M (q) I (9)

where (
'

) stand for the 3j symbol, v, , vf are the isospin

projectors of the initial and final nucleus, YM (q) are
spherical harmonics for the pion waves, and L is the pion
angular momentum. Note that in the case of isoelastic

I

pion scattering on the A = 3 system the pion orbital
angular momenta in the initial and final states are equal
due to parity conservation. For the potential V~ we
perform an expansion identical to Eqs. (8) and (9).
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Substituting the above expansions of V„„and I'
into Eq. (1) we obtain the following integral equation for
the partial wave amplitudes:

F~' (q', q) = V~' (q', q)

q'" V~ (q', q")F~ (q", q)

JH(q") E(q) —E(q") + ie
(10)

This equation is solved using the matrix inversion
method. To obtain the final values for the partial ampli-
tudes we also take into account the Coulomb interaction,
applying the matching procedure developed by Vincent
and Phatak [34].

Now let us consider some isospin symmetry proper-
ties that follow from Eq. (8) when the Coulomb force is
turned off. Overall, this is a good approximation except
for the small-angle region. In this isospin symmetric case
for the A = 3 system, we have the following relations: for
the sr+ elastic scattering amplitudes,

(7r+, H e~F
~

He, 7r+ &=(7r, H
~

F
~

H, 7r

—P3 (1la)

, sHe
~

F
~

sHe, ~ & = & sr+, 'H
~

F
~

'H, ~+ &
= s(Fg + 2Fg), (lib)

But taking into account the contributions of pion rescat-
tering by solving the integral equation (10) leads to a
more complicated situation. In this case both non-spin-
fiip and spin-fIip parts of the elementary amplitude give
contributions to EI and gI.

Expressions for the total amplitudes X and g can be
obtained by summing the partial amplitudes in Eqs. (9)
and (10). They are the same as in xN scattering, i.e. ,

& = &c..i+) .exp(»~i..) [(L +1)FI.+. '(q)

+L F~ l
(q)]PI,.(cos 0)

(13a)

g = ) exp(2i61 )[F~+ (q) —F~~ (q)]PI, (cosO),

where 6&+ is the point Coulomb phase shift, PI. and P I
are the Legendre polynomial and its derivative, respec-
tively, and (+) corresponds to the total spin j = L +&~ of
the ~A system. For the point Coulomb phase shifts 6&+

and the amplitude Pc,„~ we used standard expressions
given in Ref. [34]

The differential cross section gives information on the
incoherent sum of P and g, namely,

and for the single charge exchange reaction, +[gf sin 0. (14)
&~', 'H F 'He, ~ &=&~', 'He F

~

'H, ~+&

(F3 —Fi) . (1lc)

From relations (ll) it follows that the pion interaction
with the A = 3 systems is described by the independent
amplitudes Fi and F3 which correspond to scattering in

the channels with total pion-nuclear isospins I =
2 and

2, respectively. In general, these amplitudes are com-
plex. Moreover, the inclusion of spin degrees of freedom
leads to their additional decomposition into non-spin-Hip
and spin-Hip parts. Therefore, studying only differential
cross sections for elastic scattering and the SCE reactions
is not enough to obtain full information about these am-
plitudes.

Using the spin structure of the free ~N scattering am-
plitude [see Eq. (4)), the isotopic FI amplitude can be
represented as

FI(q, cos0) = PI(q, cos0) + i gI(q, cos0) sinOo n.

On the other hand, polarization observables offer the pos-
sibility of learning more about these two complex angle-
dependent functions. For example, the asymmetry ob-
servable depends on their interference

21m(&g*) sin 0
fPf2+fg/~sin 0 (15)

The real part could in principle be measured in a dou-
ble polarization experiment by detecting the recoil polar-
ization of the final nucleus after pion scattering from a
polarized target.

The full analysis of differential cross sections and polar-
ization observables for all the reactions listed in Eq. (11)
can give us complete information about the spin and
isospin parts of the pion interaction with the A = 3 sys-
tem. Thus we have the opportunity to test their symme-
try properties and to obtain new information about the
nature of the pion-nuclear interaction.

Here we assumed (in accordance with the Madison con-
vention) that the incident pion momentum q is along the
positive z axis and the vector n = (q x q') j ~ q x q'

~

is
along the positive y axis in the right-handed coordinate
system.

In the plane wave impulse approximation the ampli-
tudes Xl and gI are directly connected with the non-
spin-flip (Aoo, Aoq) and spin-flip (Aqo, Aqq) parts of the
elementary amplitude of Eq. (4) (see also next section).

III. NUCLEAR MODELS

A. Three-body model

Now we turn to the potential V „defined in Eqs. (3)
and (4). For the trinucleon system the nuclear wave
functions which enter this expression have to be given
by Faddeev calculations with realistic nucleon-nucleon
potentials. In our calculations we use a wave function
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which has been obtained in Ref. [21] with the Reid soft-
core potential. This wave function describes both static
and dynamical properties of the A = 3 system at momen-
tum transfers 0 ( Q ( 5 —6 fm i, provided one includes

I

meson exchange currents in electromagnetic observables.
Using this three-body wave function we can rewrite the

expression (3) for the potential V in the following way
[35]:

QM(q')M(q)
2K

dp dP 4'&(P, p ') t(a, q', q, pi) @,(p, p), (16)

where the arguments of the nuclear wave functions are
the Lovelace coordinates

p =p 1P =
2 (p2 —ps)

with the momentum transfer Q = q —q'.
The nuclear wave functions @(P,p) are expanded in

orbital momentum, spin, and isospin space as

@(P,p)

where P~(P, p) are numerical solutions of the Faddeev
equations. To shorten the notation we introduced a =
(LLCSST3, where L, S, and T are the total angular mo-

mentum, spin, and isospin of the pair (2) and (3) (L is
associated with momentum P), and l and 2 have an anal-
ogous meaning for the particle (1) (l is associated with
momentum p).

Nucleonic Fermi motion is treated as in Refs. [35, 36]
where it was found that the substitution

q A —1
pi p.e = ——— (q —q')

A 2A

=) p (P, p) i (Ll)L, (S-2')8, —,'M &i (T-2')-2'v), (factorization approximation) provides numerical results
very close to the exact ones. This approximation allows
us to express the isospin dependent potential VI(q', q)
in the form

1 J 1

V1=4vrW~( —1)~ j ) i + C AsTM (Q) K x Y'* (Q) (20)

where Asz (u1, cos 0*) are the vrN scattering amplitudes defined in Eq. (4), K = 1 and K = [q, x q&), and CI and
W~ stand for the isospin

CT ( 1)T T
&s(2 = 1

2(2T + 1)

and kinematical

Wg(q', q) = M(q')M(q)
~(q' pi')~(q pi)

(22)

factors. Using Faddeev wave functions from Eq. (18) we obtained the following expression for the nuclear form factor
MgL+ (Q):

MS'L (Q) = i ) OsL(o. ', n) dp Y' (Ap ) x Y'(Ap)
4vr 0

'l

P2dPQ (P, p')P (P, p),

pJT(&y o) 8ggjSStSLTp p p ( j )1+I,'+L c+s+s+T+s+T+3/—2

(23b)

~ ~ ~

where o = vrta + l, and ( ) and t t stand for the 6j and pj symbols, respectively.
~ ~ ~
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B. Phenomenological model

In Eq. (23) parity and angular momentum selection
rules determine which nuclear form factors can con-
tribute. In analogy with electromagnetic form factors we
refertothemasthe S=O, L=O, J =0, T=0
or 1 isoscalar or isovector CO form factor S = 1, L =
0, 2 J = 1, T = 0 or 1 isoscalar or isovector Ml form
factor

In fact, assuming that mesonic exchange currents
(MEC) contributions are small in elastic electron scat-
tering, these form factors had been extracted directly
from the electromagnetic form factors of sHe and sH [4,
37]. It was believed that this assumption is more reli-
able for the matter distribution described by CO form
factors. However, recent theoretical investigations of
the charge distributions of trinucleon systems show that
MEC contributions in CO transitions at transfer momen-
tum Q2 ) 5 fm z are important too [38]. Therefore,
the connection between matter distribution and experi-
mental charge form factors is not straightforward as was
suggested in many previous calculations.

In this paper we try to estimate the upper limit of
uncertainty, which was present in early investigations by
comparison of results obtained in phenomenological mod-
els with microscopical calculations. In our phenomeno-
logical model we express the CO form factors by the
charge form factors of sHe (F+h') [39] and sH (F+h) [40]:

27'
R"~&~

3

x ) CI AiT(u, cosO')

Mio (Q) — Mi2 (Q)
2

(25b)

where W~ is an additional kinematical factor arising due
to the Lorentz transformation of the vector [q, x qf] in
the elementary amplitude from the vrN c.m. to the vrA

c.m. system. Note that the expressions (25) are valid
not only for 3He or H, but for all nuclei with spin and
isospin one half ( C, N, . . . )

In the framework of the S-shell model the nuclear form
factors Mg&T(Q) are simply given by

Msl. (Q) = T~ Rs(Q) ~1.,0 @~7,
7r

(26)

where Rs(Q) = exp( —6 Q /6) with 6=1.65 fm as the
point radius of He, and the coefficients are @00=3 and
40y = IJ yp = —4 y y

= 1. In this case we can express T
and g for the reactions (11)via the analogous amplitudes
f and g for AN scattering: for elastic 7r+-sHe or sr+-sH
scattering,

& = (2f +q+ f +„)Rs (Q) WA = (3App+ Api) Rs (Q)WA,

(27a)

Mpp (Q) = T[2F.h'(Q)+( —1) F.h (Q)1/f."h(Q)

C. Simple S-shell model

Finally, we employ a very simple model where the nu-
cleons are in the 08qi2 shell of a harmonic oscillator po-
tential and, furthermore, pion rescattering and Coulomb
contributions are neglected, e.g. , F = V, (plane(1)

wave approximation). The last assumption allows ex-
pressing Xq and gl, introduced in the previous section,
directly via the non-spin-fhp (App, Api) and spin flip
(Aip, Aii) components of the ~N elementary amplitude
of Eq. (4).

Evaluating Eq. (20) in the frame with the initial pion
momentum q along the z axis and the vector [q x q']
along the y axis [as in Eqs. (12)—(15)] the plane wave
expressions for Xl and gl can be written as

Pr = v'27rWA ) CI A0T(~, cos0*) Mpp (Q), (25a)

(24)

where f,"h(Q) is the proton charge form factor.
For the Ml form factors we will keep the microscopical

description via the Faddeev wave function, because here
the phenomenological approach is clearly not applicable.
First, there are large MEC contributions in the M1 elec-
tron scattering form factor, and second, it is not possible
to unambiguously separate the contributions from spin
and convection currents. Therefore, we will use the Fad-
deev wave functions described in the previous subsection
for the J = 1 transition densities.

1
g = — (g +p —g +„)RS(Q)WAWB

2

~2A11RS(Q) WAWB ~ (28b)

The above expressions show that in the 8-shell model all
information about nuclear structure is contained in the
form factor Rs(Q). It divides out in the expression for
the asymmetry [Eq. (15)]; thus, A„ is given in terms of
the free xN scattering amplitudes only.

IV. RESULTS AND DISCUSSION

A. Pion scattering on unpolarized targets

We begin our discussion with the analysis of some main
features of the pion-nuclear interaction in the energy re-
gion of T„=100—300 MeV. The corresponding results of
our calculations are depicted in Fig. l.

One of the important properties of the AN interac-
tion in this energy region is the importance of the L-
isobar excitation, especially around T =200 MeU and,

0 = g + RS(Q)WAWB = (Alp W All)RS(Q)WAWB

(27b)

and for the sHe(vr, vr )sH or sH(~+, vr ) He reactions,

1
(f~+1 —f~+~)RS(Q)WA = ~2A01RS(Q) WA,

2

(28a)
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consequently, the large contribution from pion p waves.
This feature is reflected in the coherent scattering pro-
cess which is proportional to A (nuclear mass number)
and described by the scalar part (App) of the xN ampli-
tude. Since the p-wave part of this amplitude has a cos 0
dependence (see Appendix), the differential cross section
experiences a minimum around 0=90'. The position of
this minimum is in fact shifted due to the Lorentz trans-
formation of the pion angle from the aN to the vr- He
c.m. frame and due to the s- and p-wave interference.
With increasing pion energy the minimum disappears be-
cause the contributions of the other multipoles become
larger.

10
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FIG. 1. DifFerential cross sections for (a) 7t+ and (b) vr

elastic scattering on He at pion kinetic energies T =100, 200,
and 295 MeV calculated with three-body (solid curves) and
harmonic oscillator S-shell (dashed curves) wave functions.
The dotted curves are the PWIA results obtained in the S-
shell model. Experimental data are from Ref. [41] (~) aud
Ref. [42] (o).

The spin-Hip transitions due to the amplitudes Aic and
Aii are proportional to sino which in the 6-resonance
region fills in the minimum. Note that for m scatter-
ing the minimum is ulled in more than for x+ scattering.
This can easily be understood in the framework of the
S-shell model where the spins of the two protons are cou-
pled to zero. Therefore, because of the Pauli principle,
the spin-Hip transition can be realized only through the
neutron distribution in sHe. However, it is well known
that in the 6-resonance region the vr n interaction is
about 10 times stronger than the vr+n one. Hence the
strength of the spin-Hip transition in vr sHe scattering
is about one order of magnitude larger than in x+ He
scattering.

In Fig. 1 we compare the results obtained with cor-
related three-body Faddeev wave functions with calcu-
lations performed in the simple S-shell model. At pion
energies up to T =300 MeU, the momentum transfer to
the nucleus approaches Q = 3.6 fm, which is not yet
sufficient to difFerentiate between the phenomenological
and the full three-body model. At T =100 MeV even
the simple S-shell model agrees well with our full calcu-
lation. Thus, at this low energy, plane wave calculations
with S-shell harmonic oscillator wave functions are suK-
cient not only for a qualitative but also for a quantitative
discussion of the sr+ He interaction. The agreement with
experimental data from Refs. [41, 42] in all three models
is very good.

Moving into the region of the 4-isobar excitation the
contribution of pion rescattering becomes larger and
reaches its maximum at T„=180—200 MeV. At backward
angles the 9-shell model calculations (with rescatter-
ing) deviate significantly from our full calculations in the
three-body model, indicating that S-shell harmonic oscil-
lator wave functions have become insuflicient to describe
the nuclear wave function. At T =295 MeV the full cal-
culations fail to reproduce the experimental data from
Ref. [41] at large angles both in magnitude and in the
shape of the differential cross section. The measurements
indicate an additional dip around 0=120 while our cal-
culations yield smooth predictions for do/dA. Further-
more, around 0=90' our computation underestimates
the data in sr+ scattering but overestimates them in
vr scattering. Measurements of polarization observables
may be useful in this kinematic region since asymmetries
tend to be large where angular distributions have minima
and could thus be sensitive to subtleties in the reaction
mechanism.

We developed a similar approach for the pion-deuteron
interaction using a two-body wave function generated by
the Paris potential [43]. In Fig. 2 we present our results
for ~+ d elastic scattering at T„=180—300 MeV. Here the
agreement with experimental data is excellent even at
backward angles. Note that the main reason for that
may be connected with the dominance of the 4-resonance
contribution. In this case as have been shown in Ref. [45]
two-body approach is a good approximation for the more
elaborate three-body Faddeev calculations.

However, at lower energies (T ( 50 MeV) our model
fails to reproduce the experimental data for the elastic
7rd scattering. This is due to the well-known problem
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around 0=90' in terms of a broad bump. At larger an-
gles the angular distributions obtained with both models
go through a minimum that comes from the CO nuclear
form factor. However, even though the phenomenolog-
ical model predicts this dip at smaller angles than the
three-body model, the sr+ scattering data at T =350
MeV suggest a minimum at even smaller pion angles.
No conclusions are possible for vr scattering or higher
pion energies since the experimental information is insuf-
ficient.

10

10

B. Asymmetry and superratio

In Fig. 4 we present our results for the asymmetry
A„at T =100, 300, and 500 MeV both for x+ and

—5
I I I I I I I I I, i I I I I I I
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FIG. 2. Differential cross sections for sr+ elastic scattering
on the deuteron at pion kinetic energies T =180—300 MeV cal-
culated with the Paris potential wave function [43]. Solid and
dashed curves are full and PWIA calculations, respectively.
Experimental data are from Ref. [44].

of the description of the S-wave pion-nucleon interaction
in nuclei with zero isospin. In such nuclei the contribu-
tion from the large isovector AN scattering lengths are
canceled. Therefore the role of higher order eÃects in
the pion-nuclear potentials become important. But in
the case of sHe at low energies the scattering length is
entirely formed by the isovector part of pion 8-wave scat-
tering on the additional proton. Therefore in this case
our model with a first-order optical potential works much
better [19].

Since x d scattering in contrast to x sHe is realized only
via isoscalar transitions, we assume the discrepancy at
backward angles in msHe elastic scattering at T = 295
MeV to be due to isovector second-order effects. We
will continue discussing this issue in Sec. lVC where we
consider the pion charge exchange reaction which is de-
scribed solely by the isovector part of the pion-nuclear
interaction.

Figure 3 presents our results for higher pion ener-
gies T =350—500 MeV; experiments in this energy do-
main have been proposed at LAMPF. At these ener-
gies the momentum transfer to He for backward pion
angles approaches Q = 5 fm ~. These Q values are
large enough for differences between our three-body and
the phenomenological model to become visible. There-
fore, applying phenomenological models in this region
becomes questionable since at these momentum transfers
meson exchange currents give important contributions to
the charge form factors.

As mentioned before, the p-wave dominance of the
pion-nuclear interaction decreases with increasing of pion
energy, but it does not disappear entirely. There is still a
noticeable deviation from the exponential fall of da. /dA
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FIG. 3. Same as in Fig. 1 for pion energies T =350, 400,
and 500 MeU. The dash-dotted curves are the results of calcu-
lations in the phenomenological model with CO form factors
extracted from charge distributions of He and H. Experi-
mental data are from Ref. [45].
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FIG. 4. Target asymmetry A„ in (a) sr+ and (b) 7r elastic
scattering on He at T =100, 295, and 500 MeV. The nota-
tions for the curves are the same as in Fig. 1. Experimental
data at T =100 MeV are from Ref. [42].

scattering. In sr+ scattering A„approaches its maxi-
mum value of almost +1 at T =100 MeV around 0=90'
[Fig. 4(a)]. This is due again to the p-wave dominance of
the AN interaction which also causes the differential cross
section to go through a minimum near 90 . This large
asymmetry is not obvious since the analyzing powers of
the elementary 7rN reactions are quite small. In fact,
—0.2 & A„& 0.08 in rr+n scattering and 0 & A„& 0.5
in sr+a scattering. This indicates that the view of sHe
as a neutron target in the case of elastic pion scattering
would lead to the wrong conclusions. While the spin-
flip amplitude is similar to that of a neutron target, the
non-spin-flip term is quite different. A detailed analysis
of the asymmetry in this region has been performed in

a previous paper [20]. Up to T =180 MeV the results
of the simple S-shell model are very similar to the full
calculations in the three-body model. Therefore, we con-
clude that in this region the asymmetry contains very
little nuclear structure information. Purthermore, the
pion rescattering effects are minimal at these energies.

However, this situation changes drastically at higher
energies. In the full calculation A„goes through zero
around T =200 MeV and becomes large and negative in
the 260—300 MeV region. In contrast, the asymmetry in
the simple model remains positive at higher energies. As
discussed in Ref. [20], pion rescattering is mainly respon-
sible for this effect.

Our results at T =100 MeV have been confirmed by
first experimental measurements from TRIUMF [42]. As
can be seen from Fig. 4(a), except for the fact that the
maximum of the calculated asymmetry A„appears to lie
at slightly smaller 8, the agreement with the data is very
good.

In the case of 7r scattering at T =100 MeV [Fig. 4(b)]
the difference between the simple model and the full cal-
culation is larger than for the vr+ case. This is caused
mainly by the larger influence of pion rescattering. At 0
=90 the differential cross section shows no minimum in
contrast to sr+ scattering. Therefore, the absolute value
of A& is smaller and it has a less pronounced structure in
the angular distribution.

In the high-energy region around T„= 500 MeV the
contribution of the Dqs(1525) resonance to the spin-
flip part of the elementary amplitude becomes impor-
tant and Aqo and Aqq can approximately be written as
Ayy = —Aip Dys cos 0 (see Appendix). Thus, for sr+

scattering, the spin-flip amplitude G is proportional to
(Aqo —Aqq), while in case of x scattering G is propor-
tional to (AM + Aqq), which vanishes. Therefore, the
asymmetry for vr scattering at T =500 MeV is zero al-
most everywhere in the simple S-shell model. However,
this exact cancellation is destroyed in the forward direc-
tion by pion rescattering and at backward angles by the
D-state components of the He wave function.

In the case of sr+ scattering at T =500 MeV, where
G = Dqs cos 0, the asymmetry in the forward direction
is large and it depends neither on the nuclear model
nor on pion rescattering. Note that similar results for
the asymmetry at T =500 MeV have been obtained by
Chakravarti et aL [47]. Thus, in this kinematical re-
gion, the asymmetry can be described directly via the
elementary amplitude in accordance with Eq. (27). Mea-
surements in this region could extract information on the
D$3 resonance in the nuclear medium.

Concluding our analysis of the elastic channel in the
vr He interaction, we briefly consider the so-called "su-
perratio"

der(~+ sH) do (~ sH)
drr (sr+ He) der (vr He)

discussed in detail in Ref. [11].The main point of interest
is related to the attempt to find charge symmetry break-
ing in the strong interaction. It is expected that B is
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insensitive to the model uncertainties in the pion-nuclear
interaction and to the Coulomb interaction. Therefore, in
accordance with the relations (ll) this ratio would have
to be 1 at all angles and energies. But measurements
[48—50] obtained a value B & 1 along with angular and
energy dependence. The generally accepted explanation
[ll, 51] for this significant charge symmetry breaking ef-
fect assumes that the 2'%%uo difFerence in the sHe and sH

radius caused by the Coulomb repulsion between the two
protons in 3He is responsible. In Fig. 5 we compare our
full model with the results of our calculations in the S-
shell model using (1) 6 = 1.65 fm, for both H and sHe

(dashed curves); (2) 6 = 1.65 frn, for H and 6 = 1.68 fm
for sHe (dash-dotted curves).

Using different harmonic oscillator parameters for 3H

and 3He allows us to explain qualitatively the measured
values for R, except for the region where the differential
cross sections have the minimum. The deviation from
experiment at larger angles is clearly due to the fact that
harmonic oscillator wave functions at backward angles
are inappropriate at these momentum transfers (which
follows from our analysis of differential cross sections in
the previous subsection). In this region we certainly re-

quire a realistic three-body wave function of 3He that
includes the additional Coulomb interaction between the
two protons [52], such as the one used by Gibbs and Gib-
son [11].Our three-body model gives R = 1 at all angles
(except small angles).

In Fig. 6 we show the differential cross sections at
T =180 MeV for all of the four reactions entering the
superratio calculated with isospin symmetric Faddeev
wave functions. At backward angles preliminary data
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FIG. 6. Differential cross sections for 7t.+ elastic scattering
on (a) He and (b) H at T =180 MeV. The dashed and solid
curves show our calculations using three-body wave functions
with and without second-order potential from Ref. [8], respec-
tively. Experimental data are from Ref. [49] (~ ) and Ref. [50]
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FIG. 5. Nuclear structure effects in the superratio. Solid
curves are the results obtained using three-body wave func-
tions and the dashed curve the results using S-shell wave func-
tions with harmonic oscillator parameter 6 = 1.65 fm for both

He and H. Dash-dotted curves are the S-shell model results
with b = 1.65 fm for H and 6 = 1.68 fm for He. Experimen-
tal data are Refs. [48](x), [49] (~), and [50] (o).

of Briscoe et aL [50] show deviation from our calcula-
tions which we did not find for the T =200 MeV data
in Fig. l. As in our discussion about the discrepancies
with the T =295 MeV data, we find in accordance with
Ref. [14] the need of second-order effects. To illustrate
this we apply the p term of the pion-nucleus interaction
from Ref. [11]. In this way we obtain a better agreement
with the data; however, in the case ~ 3H and 7t.+ He a
large deviation remains at 0 )150'.

C. Pion single charge exchange

In the previous subsections we have demonstrated that
our formalism generally gives a good description of the
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elastic scattering data both for x+ and vr at pion angles
0'( 0 & 120'. Assuming charge symmetry it follows
that the isovector part of the pion-nuclear interaction
which is responsible for the pion single charge exchange
(SCE) reaction is accurately described in this kinemat-
ical region. Therefore we should not encounter serious
difficulties in the description of the SCE process.

The results of our coupled-channels calculations for
H(7r+, vr ) He at T„=130 MeV and for He(ir, pro) H

at T =200 MeV are presented in Fig. 7. Note that the
rescattering contributions in SCE are larger than in the
elastic channel. This is due mainly to the incoherent na-
ture of the SCE process. Therefore, the influence of the
elastic channel (proportional to A) on the pion rescat-
tering term becomes enhanced. Experimental data at
backward angles obtained in Ref. [53] by detecting the
recoiling He are in excellent agreement with our cal-
culations performed in the framework of the three-body
model. Similar results have been obtained by I andau
and Thomas [4, 6] with phenomenological nuclear form
factors.

The SCE reaction on He at T =200 MeV is at the
present time the only example where experimental data
at forward angles have become available [54] by directly
detecting the vr . The comparison with our full calcu-
lation shows a very good agreement up to 0=60'—70'.
However, at larger angles there is a small deviation which,
as we will see below, grows with increasing pion energy.

In Fig. 7 we also show the contribution from the spin-
flip and non-spin-flip part of the elementary vrN scat-
tering amplitude separately. As in the case of elastic
scattering, the non-spin-flip transition experiences a min-

1

10

0
10

imum around 0=90' due again to the p-wave nature of
the vrN interaction. The spin-Hip contribution which has
a sin 0 angular dependence fills in this minimum. Note
that for the SCE reaction the relative strength of the
spin-flip transition is larger compared to elastic scatter-
ing. This can be attributed to the incoherent nature of
both the spin-flip and the non-spin-flip mechanism of the
SCE process.

Figure 7 demonstrates that there is interference be-
tween spin-Hip and non-spin-Hip transitions due entirely
to rescattering effects. For example, the non-spin-
flip transition in the plane wave impulse approximation
(PWIA) can be realized only through the non-spin-Hip
part of the vrN amplitude; in this case no interference
is present. However, if pion rescattering is taken into
account in a coupled-channels framework the non-spin-
Hip transitions can be realized through double spin-Hip
transitions as well.

We now proceed to consider the high-energy region.
The results depicted in Fig. 8 show dramatic discrep-
ancies between theory and experiment. Our coupled-
channels calculations with three-body wave functions un-
derestimate the data at backward angles about two or-
ders of magnitude at T =285 MeV and about one order
of magnitude at higher energies.

At present there is no explanation for this disagreement
except some calculations in a Glauber multiple-scattering
formalism performed in Refs. [12, 13]. However, we feel
that this approach is inappropriate for an analysis in the
large-scattering-angle region.

As discussed in Sec. IV B, one of the reasons for such a
large discrepancy could be due to second-order contribu-
tions in the isovector part of the pion-nuclear interaction.
A microscopic analysis of corresponding effects in sr sHe
scattering has been performed by Wakamatsu [14]. How-
ever, the contributions he found are not large enough to
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FIG. 7. Differential cross sections for H(m+, vr ) He at
T =130 MeV and He(n, 7r ) H reaction at T =200 MeV.
In the latter case the contributions of spin-flip (long-dash-

dotted) and non-spin-flip (long-dashed curve ) parts of xN
amplitude are shown separately. The notations of other
curves are the same as in Fig. 1. Experimental data for the
(m+, vr ) reaction are from Ref. [53], data for the (vr, vr ) re-

action are from Ref. [54] (~) and Ref. [55] (o).

10

10

30 60 90 120 150 180
8 (deg)

FIG. 8. Differential cross sections for He(7r, vr ) H at
T„= 285, 428, and 525 MeV calculated in the three-body
(solid curves) and phenomenological (dash-dotted curves)
models. Experimental data are from Ref. [56].
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explain discrepancies of two orders of magnitude. One
can remove this discrepancy by artificially enhancing the
isovector second-order interaction whose influence on the
SCE reactions is much stronger than on elastic ones. To
check this assumption qualitatively we followed the pre-
scription given in Refs. [8, 14] and introduced a second-
order potential of the form

V, (q', q) (A —1) (Bi + Ciq' q)
( $Q2)x exp I I

r t, (30)

with real parameters Bi and Ci. Treating Bi and Ci
as free parameters, we extract Bi = 0.086/m4 and
Ci ———0.058/ms from a fit to the SCE data. These val-
ues are of similar magnitude as the parameters Bo and
Cp extracted from an isoscalar second-order potential in
Ref. [8]. In principle, Bi and Ci would have to be com-
plex. However, a microscopic derivation of V~2~ would
in some way involve the square of the elementary vrN t
matrix and since the imaginary part dominates this am-
plitude around T =300 MeV the main contribution to
Bi and Ci should be real. The results of our calcula-
tion including V( ) are shown in Fig. 9. We confirm that
the contribution of this potential in the charge exchange
channel is in fact much larger than in the elastic one. At
the same time the second-order effects in elastic scatter-
ing at backward angles are of the same order as the dis-
crepancy with experimental data. Thus the longstanding
problem in the description of the SCE reaction and elas-
tic scattering at T =300 MeV at backward angles might
have the same origin. Again, an isoscalar second-order
potential [8] has to be included in the elastic scattering
reactions before final conclusions can be drawn. To clar-

ify the situation additional theoretical studies and exper-
imental measurements in this region are required.

Note that the necessity of a second-order potential fol-
lows also from three-body unitarity which requires to ex-
tend the nuclear model space by including the breakup
channels. Our results show that the coupling with this
channels is probably very important at large momentum
transfer, in particular for SCE reactions at high energies
and backward angles.

In Figure 10 we present results for the asymmetry A„ in
the SCE reaction on sHe at T~=100, 300, and 500 MeV.
As in the case of elastic scattering at T =100 MeV, the
simple 8-shell model approximately reproduces the re-
sults of the full calculation. The small difference is caused
mainly by pion rescattering. Note that if in Eq. (28) for
the simple model we neglect the small kinematic correc-
tion from the factor W~, we obtain a simple relation
between A& for sHe and the elementary asymmetry:

Ay( He) —Ay(p). (31)

The minus sign in this relation results from the opposite
sign between spin-flip and non-spin-flip nuclear matrix
elements [see Eq. (26)] in sHe(vr, pro)sH compared to
the free process iH(vr, 7ro)n

Moving into the 6 resonance region, the pion rescatter-
ing contribution becomes enhanced, changing the sign of
the asymmetry around T =220 MeV. However, increas-
ing the pion energy decreases the role of pion rescatter-
ing. Therefore, at T =500 MeV in the forward direction
the simple S-shell model results are again close to the
full calculations. In this region the simple relation (31)
is again fulfilled as in the case of T =100 MeV. However,
while at lower energies the role of the Pss wave was dom-
inating A„, at 500 MeV it is the Dis resonance which has
become important.
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FIG. 9. Phenomenological isovector second-order contri-
bution in SCE and elastic channels at T =290 MeV. Solid and
dashed curves are the results without and with V term, re-
spectively. Experimental data are from [53] for SCE and [41]
for elastic scattering.

FIG. 10. Target asymmetry A„ for sHe(m, n ) H at T =
100, 295, and 500 MeV. The notations are the same as in
Fig. 1. The dash-dotted curves are the results of calculations
in the phenomenological model.
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D. Pion-induced eta production T= 1
(33b)

Eta production by pions is another important vrN in-
elastic channel. Interest in the physics with eta mesons
has grown significantly in recent years; experiments us-
ing hadronic probes to produce rl mesons have been per-
formed at LAMPF, Brookhaven, and Saclay. On the
other hand, electron accelerators such as BATES, ELSA,
and the Mainz Microtron open the possibility to produce
eta mesons with electrons or real photons.

At the present time little is known about the na-
ture of the eta-nucleus interaction. For the elemen-
tary xN -+ AN process the experimental data is much
less complete and accurate in contrast to ~¹cattering
data. There are also only few theoretical investigations
of this reaction [22—24] based on the coupled-channel iso-
bar model for the xN, gN, and vrmN systems without
background. In accordance with a recent analysis by
Benmerrouche and Mukhopadhyay [57], where eta pho-
toproduction has been studied, the role of background
could be important. However, the corresponding con-
tribution strongly depends on the value of the not well-
defined rlNN coupling constant gz (0.6 & gz/4vr & 6.3).
In such a situation the investigations of pion-induced eta
production on lightest nuclei could give additional infor-
mation about the elementary amplitude. But before that
we have to be sure that all other ingredients connected
with the reaction mechanism and nuclear structure input
are well under control.

Below we will concentrate mainly on the study of the
initial and final state interaction and nuclear structure
effects. The elementary processes with eta mesons will
be described in the framework of the coupled-channels
isobar model of Ref. 24] with parameters extracted from
available data (see a so Appendix).

The amplitudes for the nuclear processes have been
obtained by solving the system of equations similar to
Eq. (10) but extended to include the ri channels. In this
case (omitting the index L ), Eq. (10) can be rewritten
the following way:

&."',.(q' q)

Ay'"i(sHe) Ay'" (p). (34)

10 I ~
J

~ ~

10

10

10
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10

55(680) Mev

Results of our calculations for the differential cross sec-
tion at T„=555MeV are shown in Fig. 11. First we point
out that we achieve a good description of recent mea-
surements [25] in the forward direction. Our agreement
with the data is in contrast to the distorted wave impulse
approximation calculations in Ref. [25] which underesti-
mate the data by a factor of about 3. The corrections
from two-step processes, such as (vr, 7ro)(m, rl), are not
very large (about 10%). The main effect of the pion- and
eta-nuclear interactions in the initial and final state is
to fill in the diffraction minimum in the differential cross
section.

The situation changes dramatically in the backward
direction. Here our full calculation with three-body
wave functions underestimates the experimental mea-
surements by a factor of about 50. Employing phe-
nomenological nuclear form factors for the J = 0 transi-
tion densities reduces the disagreement with the data to
a factor of 2—3, similar to the findings of Ref. [25]. How-
ever, the application of the phenomenological approach,
as mentioned before, is questionable because we are again
in a high momentum transfer region. The origin of this
discrepancy may be similar to the one encountered in the
pion SCE reaction.

In contrast to the difFerential cross section, the asym-
metry A„ is less sensitive to the details of nuclear struc-
ture. Therefore, in the forward direction, as in the pion
SCE reaction, we can approximately write

= &",' (q', q)
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where n = vr, rj with vr and rl labeling the irA and rlA
channels, respectively.

Since the isospin of' the eta is zero, only contributions
to the channel with total isospin 1/2 are possible. The
definition of the corresponding isospin dependent am-
plitudes I"I or Vl is the same as in Eqs. (8) and (20).
However, the isospin factors Cl+ in Eq. (20) have to be
changed to

(33a)

for (rl, rl) scattering and for the (m, rl) reaction to
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FIG. 11. (a) DifFerential cross section and (b) target
asymmetry for He(n, g) H at T =555 MeV. The solid
(dashed) curves are the results of full (PWIA) calculations
with three-body wave functions and the dash-dotted curves
are results obtained in the phenomenological model. The dot-
ted curves are PWIA results obtained with S-shell wave func-
tions. Experimental data are from Ref. [25].
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FIG. 12. Eta c.m. momentum dependence for the differ-
ential cross section of He(n, g) H at O'. The dash-dotted
and solid curves show our full calculations using phenomeno-
logical and three-body wave functions, respectively. The
dotted curve is obtained with three-body wave functions in
PWIA. Experimental data are from Ref. [25].

V. CONCLUSION

In this paper we have studied the interaction of pi-
ons with sHe and sH in a coupled-channels, multiple-
scattering approach carried out in momentum space. Our
investigation covered a wide energy region: from T„=100
MeV—well below the 4 resonanc"- beyond the L region
into the domain of the Dis(1525) resonance and up to
the g production threshold. Correlated three-body Fad-
deev wave functions were employed to describe the trin-
ucleon ground state. Phase-shift parametrizations were
used for the elementary AN amplitudes, along with a
separable potential for the off-shell extrapolation. The
eta-production channel AN ~ gN was described in an
isobar model that includes the Sii(1535), Pii(1440), and
Dis(1525) resonances as S-, P , and D-wave interac-tions
and reproduces available low energy m p —+ gn cross sec-
tion data.

Figure 12 presents the dependence of the difFerential
cross section at 9„=0'on the eta momentum in the g He
c.m. system. These data can be reproduced only for
q„) 150 MeV/c, which corresponds to T )490 MeV,
while at lower eta rnomenta our calculations (similar to
Ref. [25]) significantly underestimate the observed cross
section regardless which nuclear model is used.

As pointed out in Ref. [25], this is a region where the
(7r, rl) reaction proceeds below the free eta production
threshold. Here the corrections to the impulse approxi-
mation as well as different off-shell behaviors of the el-
ementary amplitude could be important. These effects
may lead to significant enhancements of the cross section
similar to those observed, for example, in vr photopro-
duction at threshold on very light nuclei [58].

The sr+ and vr elastic scattering on He were well
reproduced in our model in almost the entire kinemati-
cal region considered here. Only for pion kinetic energies
above 180 MeV and backward pion angles —a region with
few experimental data —hints of an inadequate descrip-
tion appear. In this kinematical region phenomenologi-
cal CO nuclear form factors extracted from charge form
factors should not be used any more because MEC con-
tributions have become substantial. The asymmetries for
sr+ He elastic scattering are large in contrast to asym-
metries measured on p-shell nuclei. Noteworthy is the
change of sign in A„ from +1 to —1 when one moves into
the 6-resonance region; this effect—caused by pion mul-
tiple scattering —should be verified experimentally. At
T„=500MeV and in the forward direction the asymmetry
is entirely determined by the Dis resonance contribution.

In contrast to pion elastic scattering the pion single
charge exchange calculations agree with the data only
up to T =200 MeV; at higher energy the theoretical de-
scription dramatically fails to explain the measurements
by underestimating them up to two orders of magnitude.
Since the vrN amplitudes and the nuclear wave function
is presumably well known, this discrepancy may be an
indication for two- and three-body processes that go be-
yond the impulse approximation. We note that a simi-
lar phenomenon has been observed in the photoproduc-
tion process sHe(p, m+)sH at large momentum transfers.
Since, on the other hand, sr+ d elastic scattering data
can be reproduced very well in our model, we have in-
troduced a phenomenological isovector second-order po-
tential and adjusted the parameters to reproduce the
SCE data. This is very much connected to the prob-
lerns we have found for back-angle elastic scattering at
T =180 MeV. Further investigations of second-order po-
tential has to be done. Clearly, it would be desirable
to derive such a potential microscopically. Again, the
asymmetry of the process sHe(x, ere)sH is predicted to
be large.

Finally, we discussed pion-induced eta production,
He(vr, g) H, in the framework of our coupled-channels

model, At T ( 490 MeV, which is a region below the free
production threshold, our results for forward eta produc-
tion significantly underestimate the data. We found good
agreement with the few available data at small momen-
tum transfer and T ) 560 MeV but large deviations in
the backward direction with large Q. We believe that the
same mechanism in both incoherent processes is respon-
sible for this puzzle. Future theoretical studies should re-
veal if these discrepancies present a clear indication of a
breakdown in the impulse approximation. Very recently
a paper by Liu has been published which confirms our
conclusion on the importance of two-nucleon effects in
nuclear eta production [59].
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APPENDIX

In this appendix we define our partial wave amplitudes
for AN scattering, eta production, and gN scattering
which in the past have been given by different authors
using various conventions.

As in Eq. (4) the elementary amplitudes for all three
processes are defined as

Keeping only the contributions from S, P, and D
waves in the expansions (A3) and (A4) and using stan-
dard notation ft = t2I 2~ for the AgT amplitudes, we
arrive at

3Aoo = 2 S31 + S11 + (4 P33 + 2 P13 + 2 P31 + P11) cos 8

+(3 D13 + 2 D13)P2(cos8), (A6)

3Ao1 = S31 —S11+(2P33 —2P13+ P31 —P11) cos8
—(3 D1q + 2 D13)P2 (cos 8), (A7)

fm, n —Aoo+Aol tm, n'7 +&~ [q, x flf ] (Alo+All tm, n'&) 1

(Al)

where n and m label the 7t. or g mesons. Here we intro-
duce the auxiliary matrix t . The cyclic components
of this matrix are the following: (1) For vrN scattering
(t )p = (t)p is the standard pion isospin operator, (2)
for the nN &—& gN reaction (t,z)g = (—1)~, and (3) for
qN scattering (t„„)~= 0.

The differential cross section for the elementary pro-
cesses in the meson-nucleon c.m. system is given as

do m, n Qf
fm, „fm,n .

Qi
(A2)

A0T = ) [(l + 1) fIT+ (u') + l ftT (m)] Pt(cos8)
l

and for spin-fiip amplitudes

The expansion of the AsT amplitudes in partial ampli-
tudes with orbital angular momentum l and total angular
momentum j = l + 2 is identical for all three processes:
For non-spin-fiip (S = 0) amplitudes

3A11 —P33 P13 P31 + P11 —3(D13 —D13) cos 8.
(A9)

2. m'N ~ gN reaction

In this case, because of the isospin zero nature of the
eta meson, only a total isospin I =

z is allowed. There-
fore, in accordance with definition (8) we obtain

Ao
(6) and S/2

A1 = —
~3A~ (A10)

The amplitude f z in this process is purely isovector,
e.g. , Aog = A1g = 0. The isovector amplitudes A '"

01
and A11 are given by

v 3A01" ———[S»"+ P»'" cos 8 + 2 D13"Pa (cos 8)],
(All)

3A10 = 2 P33 + P13 —2P31 —P1 1 + 3(D15 D13) cos 8 )

(A8)

A1T = ) .[f~'~'(~) —f~'T'(~) ] &i'(cos8)
l

(A4) v 3A11" ——P11'" + 3 D13"cos 8, (A12)

The main difference arising in the formalism for AN
scattering, gN scattering, and 7t.N ~ gN lies in the ex-
pansion of the partial amplitudes f&T in terms of contri-
butions with total isospin I =

& (ft+ ) and I =
2 (f&+ ),

where + corresponds to j = l + 2. Therefore, below these
reactions are presented separately.

where we have neglected Pq3 and Dj5 contributions.

3. gN scattering

In this case the amplitude fz „consists of an isoscalar
part only. Therefore,

1. vr N scattering
(+) i/2

Ao =A~ A1
(+)

Because of the isospin 1 of the pion, isoscalar and
isovector amplitudes exist,

Aoo'" = S11"+ P11"cos8+ 2D13"P2(cos8) (A14)

~{2:) (2f2/2 ~ /I/2) Aio" ———(PPP + 3Do1g cos8) . (A15)

f{2) (f2/2 f1/2)ll

(A5) The expressions for the Sqq, Pqq, and Dq3 amplitudes for
the AN ~ gN reaction and gN scattering are taken from
Ref. [24].
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