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Gamow-Teller matrix elements for two-neutrino double P decay
within a second quasi-random-phase approximation
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A second quasi-random-phase approximation (QRPA) procedure is employed to perform calculations
of the Mo'r matrix elements for several PP emitters. It is found that higher-order QRPA (HQRPA}
corrections display a weak dependence on particle-particle (pp) strength gpp and, in the physical region
(around g„„=1.0), they become important by comparison with QRPA predictions. It turns out that a
further investigation of the HQRPA corrections could be illuminating to obtain more stable and reliable
values for MGT matrix elements in this region, where they are very sensitive to the pp strength.

PACS number(s): 23.40.Hc, 21.60.Jz, 23.90.+w

In the last decade the double-P-decay phenomenon has
been the subject of many experimental as well as theoreti-
cal investigations [1—7]. The interest in this field is main-
ly related to the neutrinoless double beta decay (OvP}tl)
mode since its discovery would imply that (i) lepton num-
ber is not conserved; (ii) v, is a Majorana particle with a
nonvanishing mass and/or there is a small right-handed
component in the weak interaction. Reliable predictions
for upper limits of neutrino mass and right handedness of
the weak interaction are possible only if we have reliable
calculations for the nuclear matrix elements (ME) which
enter the half-life formulas. Since there are no experi-
mental data to confirm the existence of the OvPP decay
mode, a good test for nuclear ME would be to use them
for computing the two-neutrino double beta decay (2vPP)
rates and then to compare the predictions to the existing
data [8—11]. One of the many-body methods which were
successfully used to compute the nuclear ME in double /3

decay is the proton-neutron (QRPA) (pn QRPA) [12—16].
In the frame of this approach the agreement with the ex-
periment, for the predicted 13@ half-lives, was achieved
only when pp interactions are taken into account
[14—17]. However, the drawback of these calculations is
the fact that the Gamow-Teller (GT) ME (M&z) are func-
tions very sensitive on gpp especially in the physical re-
gion. An attempt to improve the calculations has been to
use a projected-QRPA procedure in order to restore the
particle number and spin symmetries [17]. Another one
has been to go beyond QRPA and to include HQRPA
corrections in computing the GT ME [18].

The present work reports the results of the computa-
tion of Mor ME for several PP emitters, performed in the
frame of a second QRPA-type approach. This means
that we used improved QRPA wave functions (by includ-
ing HQRPA corrections) but we kept the HFB vacuum
unchanged. The procedure is described in more detail in
references [18]. Here we have extended the calculations
to several PP emitters in order to reach a final conclusion
about the infiuence of HQRPA corrections upon the GT

ME. We have shown that these corrections are functions
slightly sensitive to the g „parameter and, in the physical
region, they become important by comparison with
QRPA predictions. To describe the properties of the
parent, daughter, and intermediate nuclei involved in the
Pg decay process we used a many-body Hamiltonian with
a one body term describing the independent motion of
the nucleons in a Woods-Saxon potential including
Coulomb corrections and a nucleon-nucleon residual in-
teraction taken as G matrices ((ab)J~G~(cd)J),
(J=0, 1,2) calculated with Bonn OBEP. In our numeri-
cal calculations the single-particle space is restricted to
two full shells. This truncation requires a renormaliza-
tion of the two-body matrix elements which can be
achieved by multiplying the G matrices

((ab)J=O G, ~(cd)J=O),

r=p, n by strength constants as follows: (i) for pairing in-
teraction (J=O) by g'„; (ii) for dipole interaction (J= 1)
by g ' h' if b, d are hole states and by g ' " when b, d are
particle states; (iii) for quadrupole interaction (J=2) by

ph and g pp
both for the proton and neutron system. Ac-

cordingly to the previous experience for such type of cal-
culations these constants are not far from unity and are
fixed in the following way: gpp are chosen so that the ex-
perimental odd-even mass differences are reproduced.

ph is fitted so that the position of the GT resonance for
the intermediate odd-odd nucleus be reproduced and gp
is determined by fitting the experimental energy of the
first 2+ state for the parent and daughter nuclei. gpp is
set equal to unity while gpp is varied from 0.0 to 1.15. In
the frame of the QRPA approach phonon states of a nu-
cleus are described by applying the corresponding opera-
tors:

I,+„(l)= g [xt'(k) A, (k) —Yt'(K) A, „(k)(—1)'+"]

to the QRPA vacuum state. The index s takes on the
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values 1 or 2 for particle-unlike or particle-like QRPA
approaches. X and Y are the upwards and backwards
QRPA amplitudes while 3, (k) are the pair operators
and are defined as two quasiparticle tensors of rank s.
The summation index k stands for the (p, n) pair states or
for (pp) and (nn) pair states for particle-unlike or
particle-like QRPA approaches, respectively. As is well
known, QRPA can be viewed as the first term in a boson
expansion of certain quasiparticle operator combinations.
To introduce HQRPA corrections we have developed the
quasiparticle pair operators A,„(k) in terms of QRPA
boson operators 1,„(k) and retained the next order
beyond QRPA in the series expansion. In this way the
properties of the initial, intermediate and final nuclei in-
volved in the P/3 decay are described by the following
multiphonon states.

(1) Initial (i):

fr] (k)~0)f, (fI,„(k,)fI (k2 )),„~0)f (3b)

(3) final (f):
Io&f fr/„(k)lo&f . (4)

f(0//P [/km)f(km/km'), (km'/fP f/0),

k, m E;„, Ef +—mc +Qpp/2

k =1,2

The two sets of multiphonon states which describe the
intermediate nucleus come from two different QRPA pro-
cedures applied for the initial and final nuclei, respective-
ly. The 2v/3P decay rate for the transition 0,+. ~of+ has
the expression:

~0). . .r',„(k)~0 &, ;

( 2) intermediate (int):

, r', „(k)~0), , (, r', „(k,), r',„(k,)),„~0), ;

(2)

(3a)

where k = 1 and 2 means one- and two-boson states, re-
spectively. In order to calculate the ME of the transition
operators /3 from (5), we have also to expand their
QRPA expressions in terms of I boson operators. Thus,
for the P" operator one obtains:

P„'= y [BI"Ir',„(k)+B„'"'r, „(k)(—1)'-~]+ y [BI"„'(r', (k, )r,'(k, )),„+B„'"„'(r, (k, )r,(k, )),„]
1' 2

+ g [B„" (I,(k, )I (k )),„+B' '„' (I (k )I,(k, )),„] .
17 2

The coeScients B were obtained by requiring that the
ME of the P„operators, in the boson basis, be identical to
those corresponding to the rhs of Eq. (6) [20]. If, in the
expansion (6), one keeps only the linear terms, one find
the QRPA boson image of the fermion /3 operators. We
have neglected in (6) the terms of the type (I &1 2)&„since
they have a vanishing eject on the transition 0,+ —+Of+.
We have also neglected all three boson state contribu-
tions for the following reasons: (i) if one takes into ac-
count only two-boson-state contributions to the HQRPA
corrections, the sum rules which single beta strengths
must fulfill very accurate in the frame of QRPA
gt [(/3+)t —(P )&]=3(X—Z), are violated only about
l%%uo. (ii) One can easily show [21] that the expression (6)
of the P operators still commutes with the expansions of
particle number and isospin operators taken in the same
approximation as (6). If we add three boson state contri-
butions, the communtation relations mentioned above no
longer hold and we could have an additional source of
spurious contributions during the computation. Accord-
ingly with the previous results from boson expansion
theory these three boson state contributions should be at
most of the same order of magnitude as two boson state
ones and hence do not modify qualitatively our con-
clusion about the infiuence that HQRPA corrections
could have on GT ME. Our numerical results refer to six
/3P transitions: Cie~ Se, " Cd —+" Pd, "Cd~" Sn,
128T 128X 130T 130X 1368 136X

Mor(g „) functions are plotted in Figs. 1 —3: the upper

curves (which drop steeply with respect to g„) represent
the pnQRPA result of the computation of these ME while
the lower curves represent HQRPA corrections as func-
tions of gpp One can see that these corrections are func-
tions more stable on this parameter. In spite of the small
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FIG. 1. The GT ME M&T are plotted as functions of gpp for
"Ge (solid lines) and " Cd (dashed lines) cases. The upper
curves (which drop steeply with respect to gp ) represent the
pnQRPA result while the lower curves represent the HQRPA
corrections. One can see that these corrections are functions
more stable on this parameter and become important around

gpp 1 . The inclusion of them shifts the zero point of the M&&
functions, computed in the frame of QRPA, to the region where
the QRPA procedure collapses.



47 BRIEF REPORTS 869

1.0

I I I I I ~ r ~ I s I I / I ' ~ ~ ~
/ / I I & ~ I

128
Te-

130 T

1.0
136

B
116 (d

cu 0.6
X:

0.2 0.2

—0.2
0. 0

I I I I ~ ~ ~ I I I I I ~ ~ I I I I I ~ ~ I I s ~

0. 2 0.4 0.6 0.8 1.0 1.2

gpp

-0.2
0.0

I I I ~ ~ ~ I s I . s I i a ~ I ~ s a I

0.2 0.4 0. 6 0.8 1.0
I

1.2

FIG. 2. The same as Fig. 1 but for ' Te and ' Te cases. FIG. 3. The same as Fig. 1 but for" Ba and" Cd cases.

values of the HQRPA corrections, they become impor-
tant by comparison with QRPA values just around
Q'pp 1 .0, where the desired suppression for M~T is ac-
quired, for all the transitions which are studied. By in-
cluding them one gains stability in the computation of
the GT ME since the zero point of the function MGT(g )

is shifted to the region where QRPA procedure collapses.
This happens because in our formalism are included not
only proton-neutron interactions (as in the standard
pnQRPA) but also proton-proton and neutron-neutron
interactions (through HQRPA corrections). These
particle-like interactions are also present in extended
QRPA-type theories [19]. Concluding, a further investi-
gation of the HQRPA corrections could be illuminating
for reliable predictions of the GT ME. For example as an

extension of our formalism one can take also into account
three boson state contributions by using a projection pro-
cedure in order to avoid the spurious states contributions
which violate the single beta sum rules by about 20%.
Some work is in progress on this line. On the other hand,
additional meaningful correlations could be included if an
extended QRPA approach [19] would be employed
where, beside the higher-order correlations to the QRPA
wave functions, an improved HFB vacuum is also used.
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