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Induced pseudoscalar axial current in polarized nuclear P decay
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In this paper we present a study of all spin-dependent observables (without observing the neu-

trinos), which are even under time reversal, for the 1+ -+ 0+ P+ decay transitions. Terms of the
hadronic response function up to order K/M and z R in the momentum transfer K are included.
The completeness of the parametrization of the decay rates of the present approach is demonstrated.
Albeit the results obtained in this paper contain a complete set of one-body weak current form
factors (except for the scalar form factor Fs), particular attention is paid to the possible extraction
of the induced pseudoscalar form factor g~ from observables in which charged lepton polarizations
are measured. The theoretical uncertainties and the experimental feasibility are studied to some
extent. It is shown that gz can in principle be determined in precision P decay experiments where

the charged lepton polarizations are measured.

PACS number(s): 23.40.—s, 21.65.+f, 24.70.+s, 27.20.+n

I. INTRODUCTION

The induced pseudoscalar part of the matrix elements
of the nuclear axial vector current operator provides a
window through which strong interaction effects manifest
themselves in weak interaction processes. Partial conser-
vation of axial vector current (PCAC) [1,2] requires that
there is a pion pole in the pseudoscalar part of the matrix
elements of the hadronic axial vector current operator
between single nucleon states and that the pseudoscalar
form factor gp is related to the pion and pion-nucleon
interaction parameters through

g~(g') = —2 . (1)

with the pion-nucleon coupling constant g ~ = 13.5 and
the pion decay constant [f~ ~

= 93.3 MeV defined through
the PCAC relation

8~A~(x) =m f vr (x) (2)

a = 1,2, 3 is an isospin index. The induced pseudoscalar
form factor is the only one that changes rapidly with q2 at
low momentum transfers due to the low lying pion pole.
It is sensitive to certain dynamical effects in strong inter-
action systems [3, 4]. The possible dynamical quenching
of g~ in heavy nuclei [5] has not been established conclu-
sively and can be checked by independent experiments.
Whether or not the PCAC relation, Eq. (1), holds for a
single nucleon in free space or inside light nuclei is not
a settled problem [5].

If the assumption that there is an underlying sponta-
neously broken chiral symmetry in the strong interaction

For a single nucleon in free space, the world average of
recent measurements of the value of gz is quite close to the
PCAC one [6]. However, each individual measurement that
contributes to the average has errors larger than 40Fo.

vacuum is made, the PCAC relation immediately follows.
The acceptance of /CD as the theory of strong interac-
tion leads, almost conclusively, to the statement that the
phenomenologically successful PCAC relationship origi-
nates from an approximate chiral symmetry (explicitly
broken by small current quark masses) spontaneously
broken down due to the strong interaction in the @CD
vacuum. Further, a model recently studied [7] suggests a
new possibility of realizing the spontaneous chiral sym-
metry breaking in a massless fermionic system, which,
among other observable effects, results in a modifica-
tion in a baryonic system of the relationship between

g~ and the pion and pion-nucleon interaction parame-
ters expressed by Eq. (1). Since full @CD has not been
solved and there exists possible deviations of the value
of gi from its PCAC one in experimental observations,
a precise determination of gi can provide more definite
information concerning the structure of a nucleon.

It will be demonstrated in the following sections that
g~ is not accessible in semileptonic weak interactions in-
volving electrons when the charged lepton polarizations
are not observed partly due to our uncertainties in nu-
clear structure. To date g~ has been measured only in
muon capture (MC) and radiative muon capture (RMC)
experiments [5, 8—10]. We shall demonstrate that spin-
dependent observables in P decay experiments provide
means to determine g~ in a model independent way.

In Sec. II, the hadronic axial vector current operator is
separated into two parts by isolating the pion dominated
pseudoscalar piece. In Sec. III, the general polarization
observables without observing the neutrinos in the P de-
cay processes corresponding to a 1+ —+ 0+ transition is
obtained up to order r/M and rczR2, with K the mag-
nitude of the three-momentum transfer, M the nucleon
mass, and B a typical size of a nucleus. In Sec. IV, the
theoretical uncertainties are discussed. The possibility of
extracting g~ from alignment observables is investigated.
Section V is a summary.
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II. WEAK CURRENTS AND TRANSITION
MATRIX ELEMENTS

The matrix elements of the nuclear axial vector current
operator can be written as'

(fh, IAp+'(*)
I 'h) = (fh, I~~I'+"(~) + A~+'(~)

I
&h. ) (3)

where the pion-dominated pseudoscalar piece is writ-

ten as O„l'~+ls(x) and the remaining part is denoted by

A~~ l(2:). I' s(x) can be related to the pion field operator
near the pion pole (i.e. , for certain matrix elements) as

(4)

Equation (3) is not manifestly gauge invariant. In the
literature [llj, a gauge invariant version of Eq. (3) is
usually used, namely,

where A~& is the electromagnetic vector field inside the
system. The difFerences in the first term (namely, the
pseudoscalar contribution) of Eqs. (3) and (5) are com-
pensated by the remaining second term of the same pair
of equations if a full gauge invariant calculation is per-
formed. Albeit to achieve such a compensation can be a
difBcult task in a practical computation, the uncertainty
resulting from these two ways of separating out the pseu-
doscalar part from the matrix elements of the axial vector
current operator can be studied by comparing the results
of these two choices. We develop our formulas using Eq.
(3) in the following and will point out the differences be-
tween these two approaches whenever it is necessary.

To erst order in the weak interaction coupling constant
G (= 10 s/M ), the weak transition matrix (T matrix)
ls

Gcos 8~
v2

a4x )
g&-» 2: ~) h V,&+~ x +A~+~ x ~h +H.c.

where Hg is the Cabbibo angle and (f~ I

j~+&"(z) I ii) is a matrix element of the leptonic weak current. The pseudoscalar

contribution is therefore

Gcos 8~ dx ti „j~ »x 2t h2r~+~ x ih, +Hc.

where an integration by part has been performed. The
matrix element of the divergence of the leptonic weak
current (ft IiB&j&+&"(x)I ii) for the charged current reac-
tion can be evaluated most simply by using the Dirac
equation for the leptonic wave function. In the case of P
decay, the divergencies of the leptonic weak currents are
for P decay:

for P+ decay:

In a many-nucleon system, there is another term of the
form n„n BI'i+~ (x) generated by the medium [4j, where
n„ is a timelike vector that determines the medium's motion
and satisfies n = 1. The effective single-nucleon form factor
g~ can be di6'erent from the one in the muon capture exper-
iments, since the charged leptons in P decay are relativistic
whereas the muon in muon capture experiments is nonrela-
tivistic. The value of g~ extracted from P decay experiments
does not directly correspond to the value of gz obtained from
muon capture experiments. The relation between these two
is a dynamical problem which deserves a separate treatment
in a more detailed study.

~, (
+

~ I

j'+'"( ) I o) = &'+'( )0 .(*)7'(~ —7')0.+ ( )

+ &.( )( + ')4.+(*) (

Here m is the electron mass and V~+& is the Coulomb

potential for the charged leptons. It can be seen that in

these cases, the divergencies of the leptonic weak currents
are combinations of the time component of the original
leptonic weak current multiplied by the Coulomb poten-
tial and a scalar part with only right- (left-) handed elec-
tron (positron) contributions. The property of the latter
piece can be utilized to extract gp from P decay experi-
ments.

In the standard model the charged weak currents per-
tain only to the left- (right-) handed electron (positron)
in the limit that the electron mass vanishes. For a Gnite
electron mass, except for the leptonic weak current that
couples to the pseudoscalar piece of the hadronic axial
vector currents, the matrix element for the right- (left-)
handed electron (positron), which we refer to as rare po-
larization in the following, are suppressed by m/e, with
e the energy of the charged lepton. The terms in Eqs.
(8) and (9) that are proportional to the Coulomb po-
tentials can be absorbed into the hadronic axial charge
operators, since they couple to the time component of the
leptonic weak currents. The other terms in Eqs. (8) and

(9) that are proportional to m are not suppressed further
(in the power expansion in terms of m) for rare polariza-
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tion states; they provide g~ a chance to manifest itself in

P decay processes when the polarization of the charged
lepton is detected. The unpolarized P decay rates for nu-
clei are dominated by allowed matrix elements, whereas
the matrix elements of the induced pseudoscalar part of
the hadronic axial vector current operator are of recoil
order; they are suppressed by a factor of e/M. Thus, it

is still practically difficult to extract g~ from the P de-
cay of unpolarized nuclei by measuring rare polarization
decay rates. In the following, we reveal the fact that in
the P decay of a polarized nucleus, in which charged lep-
ton polarization are detected, g~ can appear as the same
order as other leading order terms.

The T matrix, Eq. (6), can be written as

(f 1~~Ii) = , (f~ l~,'+'( —q) I
i )(fi I

j' '"(q)
I ii) +(f~ lii'&+&( —q)14) (fi Ij.' '(q) I

i ) + H c . . (10)

f(q) = dsx e'" ~f(x, t = 0)

and the divergencies of the leptonic weak charged cur-
rents are

Operators and functions with argument q are the Fourier
transform of the corresponding objects in coordinate
space, i.e. ,

ensure, when the Coulomb distortion is not taken into
account, that the momentum transfer at the weak inter-
action vertex is controlled by external lepton momenta.
Albeit the Coulomb distortion effects can be included in
a systematic manner [12] in the present approach (see
Appendix B), we shall not consider them here as a first
step.

Next, we expand the hadronic weak currents in terms
of their multipoles [13]. Using Wigner's D functions,

The tilded hadronic weak currents are

J'+"(—q) = p'"'(-q) + p'+"(-q)
P+~ (—q) = v&'&'(-q) + A~~&'( —q)

where the effective axial charge density operator is

(13)

(i4)

ii'(-q) =4~) i'
J=O

J (—q)=4') i
J=O

J
) Do,

*
(q)Sz, (K)

m= —J
(20)

2J+1 ) Do' (q)CJ (r),
m= —J

d
(—q) = p&+~ (—q)+ V(q' —q)il'~+~ (—q'),

(i5)
Js(—q) = —4~5 i

J=G

(21)

2J+1 ) Do'; (q)L~, (~)
m= —J

l~ ~(k, k') =u, (k)p„(1 —p )v„-(k'), l~ ~(k, k')
= mu, (k)(1 —p )vp(k'),

i~+i(k, k') =u (k')p (1 —p )v,+(k), l~+l(k, k')
= mu (k')(1+ p5)v, +(k).

(18)

The charged lepton (neutrino) three-momentum is de-
noted by k (k'). The 6 functions in Eqs. (16) and (17)

with p&+~s = A~+&o and V(q) = Ze2/lqlz if screening
and nuclear Bnite-size effects are not considered. The
piece in p & (—q) involving V(q) is from the terms that
are proportional to V~+& in Eqs. (8) and (9). Had we
taken Eq. (5) instead of Eq. (3), the term proportional
to V~+& in Eq. (15) would have been absent. This is the
only formal difference resulting from the choices between
Eqs. (3) and (5) so far. If the Coulomb distortion [except
for the term in Eq. (15)] is neglected, the leptonic matrix
elements can be written as

(f, lq„+ (q)li&) =(2~)'b(1 +k'+q)lP (k, k'), (i6)

(fi Ij~+~(q)l ii) = (2vr) b(k+ k'+ q)l~+ (k, k'), (17)

with

P(—q) = —4'�) i
J

m= —J

(22)

SJ = d'~ jg(~~)Y~ (x)iI'(2:)l~=o, (24)

where the phase convention Y&' —— (—1)~Yi ~ is
adopted.

With the Bjorken and Drell convention for Dirac ma-
trices [15],the matrix elements of the hadronic weak cur-
rents between single-nucleon states are of the following
form:

where the isospin indices (+) on the operators are sup-
pressed and T&~ ——T&~ + AT& '~. Here A = kl is the
helicity label and D, (q) is a shorthand notation for
D~, (P, 0, —P) with (8, P) the polar angle of q. Conven-

tional definitions for the multipole operators Cg~, LJ~,
T&~ and T& are adopted (see, e g , Refs. .[1.3, 14]). The
label Cq is used in place of Mq of Ref. [13], and Sz
is defined as
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9 I&'+'"(-q)
I ~) = (2~)'~(p —p —q)~(») I Fi"~"+ F2"'2M~""

I ~(p-)

(n lA'+'"( —q) l
~) = (~~)'~(r, —r .—q)~(v, ) (g~ 'v"~'+ g~ '~M~""~'1~(v. ),

(» lif'""(-q)
I
~) = —(2~)'~(p —p- —q)»"u(p )~'u(p-)

(25)

(27)

where form factors for the charge lowering transition (i.e. ,
the p —+ n transition) are obtained by interchanging pro-
ton and neutron quantum numbers and replacing the
form factors with a "+" superscript by a "—"super-
script. Hermiticity and time reversal invariance restrict
all "+" form factors except gz~+l to be the same as the
corresponding "—"form factors, which is consistent with
charge symmetry and conserved vector current (CVC),
whereas g&

———g&+ . This latter equality corresponds
to a maximum violation of charge symmetry (or isospin
rule) [13, 16]. It should be noted that nuclear charge-
symmetry-breaking eKects can mimic the time reversal
invariant part of the second class currents in P decay ex-
periments. CVC predicts that the weak form factors for
the vector currents are related to those of the electro-
magnetic form factors [17], namely,

F~ (q =0) =F (q =0) = 1, (28)

F2 '(q'=o) =F2 (q'=o) =~& —V —1=3706. (»)

g& (q = 0) = —1.26. The value of the other two form

factors g& and gT, are still poorly known from direct(+) (+)

experimental observations. The existence of gT
l indi-

cates a violation of G parity; the corresponding induced
current is called a second-class current [18]. Time rever-

sal invariance can be violated when g7, g 0 and charge
symmetry is preserved. In this case, the second-class cur-

rent form factor gz~
l acquires a phase that violates time

reversal invariance (see, e.g. , Ref. [12]). The time rever-

sal invariant part of gT has been studied in nuclear P
decay and it was found to be IgT I

& 0.25lg& I
[19,20].

Information on the possible time reversal violating part
of gz~,

l is still scarce. PCAC predicts the value of gz~

to be given by Eq. (1) for a single nucleon. In a light
nucleus, gi is expected to follow the PCAC value. In a
many-nucleon system, gz is expected to be quenched(+) ~

from its "bare" value given by Eq. (1) [5]. The value of
g~ seems to be systematically larger than the PCAC one
in inuon capture experiments involving light nuclei [5,
8—10]. Independent experiments can be carried out to
confirm these deviations.

III. 1+ ~ 0+ TRANSITION: NEUTRINOS NOT
OBSERVED

When a first-order approximation in G is taken, the
differential rate for a P decay transition with detection
of the final state polarization is

dW = 27r6'(Ey —E; + A)tr(p, H~~pgH~)d(,

where p, is the initial state density operator, py is the
Final state polarization density operator, H~ is the weak
transition Hamiltonian, E, and Ey are the initial and
final state energies of the nuclei involved, respectively, 4
is the maximum energy of the charged lepton, and d( is
an infinitesimal phase space element of the final states.
The trace is limited to the initial and final polarization
subs paces.

Following Eq. (10), Eq. (30) has the following form:

dW = 2ir6(EJ —E, + 4) U(l, l;) + Zg (l, l„')g+ Z~(l, l„*)~+.W~ (l„l„*) d(,

where the leptonic tensors are

(l li', ) =trpyl li', (a, b = s or 0,1,2,3),

(l, l„')s = —(l, l„' + l„l;),

(l, l„')~ = —(l, l„' —l„l;),

(33)

Z+ = trp, (iI'~+l~)tP —J"t(if (+)
)

W" = trp, J"tJ .

(37)

(38)

The traces are over leptonic polarization states in
Eq. (32). In Eqs. (35)—(38), they are over the hadronic
polarization states.

and the hadronic response functions are

U = trp, (if'&+&')t(if'~+l'),

Zg =tr~; (ii~+l')tv~+ Pt(ii~+&'),
(35)

(36)

The time reversal invariance test in the P decay process
in the A = 8 system is sensitive [12, 17] to the time reversal
invariance violation part of gT.
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To justify the idea presented in Sec. II, we consider
one of the simplest cases of a 1+ ~ 0+ P+ transition.
The difFerential decay rate for this transition depends
on relatively fewer hadronic matrix elements, since only
4J = 1 operators are allowed. An example of a 1+ —+ 0+
weak transition is the P+ decay processes of the A = 12
system, which has been studied both theoretically and
experimentally [19—22] as a test of CVC and the exis-
tence of second-class currents. Nevertheless, some of the
conclusions of this paper do not depend on the fact that
a specific transition has been chosen.

The angular momentum of the parent nucleus is one.
The hadronic polarization density matrix of Eq. (30) can
be decomposed into irreducible tensors of the spatial ro-
tation group,

Ei =i gAi + gT v2Az—
2M

1 K

15 M2 (45)

K
Mi =i GM

and

Az = Az =Az'=Az" (47)

gT is not necessarily the same as gT. A nonrelativistic
one-body approximation to the weak current operator
(see Appendix A) results in the relations

p'= po+ pi+ p~ (39)
gT ——g&=@~+ = —gT .(+) (-)

(48)

SP(k) = —Sii(0),

Sii(k) = —Sii(0),

Sg(k) = Sg(0),

(41)

where S~~ is the component of S parallel to k and S~ is
the component of S perpendicular to k.

All of the dynamical response functions for a 1+ ~ 0+
weak transition depend on the reduced matrix elements
of five multipole operators, namely, Ci, Li, Ei, Mi, and
Sis, which are functions of the momentum transfer r =
lql. For low momentum transfer reactions, we expand the
momentum dependent multipoles in powers of r keeping
only the leading order ones. Up to order O(K/M) and
O(KzR ), the general results of the expansion are

K 1
Sq ———c g~ A g)

3
K 1 // 2

C, = i [g~+x, (K)gI ~g—T] A 2+g~3As2M 3

(42)

where po = 3 transforms as a scalar under rotation, p~,
which determines the polarization of the parent nucleus,
transforms as a vector under rotation, and /p2, which de-
termines the alignment of the parent nucleus, transforms
as an irreducible second-rank tensor under rotation. The
final state polarization matrix for charged leptons is ex-
pressed in terms of the matrix [15]

P = —(1 —7 /i|),
1 5

2

which projects out pure polarization states. In the rest
frame of the charged lepton S"(0) = (O, S(0)) and the
unit vector S(0) points in the direction of the charged
lepton quantization. In the frame where the electron
(positron) has three-momentum k, 8"(k) is obtained by
a Lorentz transformation:

In addition, the dimensionless static multipole ampli-
tudes in terms of one-body operators are

A2= 0

As —— 0

A4= 0

"'yip

) T&+l~V~ V

) T&+~ry„V

(49)

Ar = M (0 ) r~+~r 0/gp p 1),

Ap = M (0 ) r~+Pr 0P,p tr P.

)

(52)

where the summation is over all single nucleons in the
system, and the vector spherical harmonic is defined as

y, tm =) (t~ s'1s~j~)+lm s&s, — (54)

1
(si + zE'z), sp = Es. ' (55)

dK K

(2 ), ( ') (56)

It will be shown in Sec. IV that the assumptions made
in Eqs. (47) and (48) do not affect the generality of the
resulting difFerential decay rates. The term in Ci propor-
tional to x, (K) is from the Coulomb term in the efFective
axial charge operator [Eq. (15)] with 2:,(K) related to the
Coulomb potential through

Vi(K, K ) = d(cos 8) cos 8V(q' —q), (57)

i g4 2MgT /— 2 6M2 7+
5 M2 s P

) ~3.
(44)

where g is the angle between q and q' and K' = lq'I
The polarized differential decay rate of the p decay

processes can be written as a sums of products of irre-
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ducible hadronic response functions, which are bilinear
sums of the reduced matrix elements of the weak mul-
tipole operators, and certain kinematical functions pos-
sessing definite symmetry properties [12). The results for
the specific case of a 1+ —+ 0+ weak transition considered
in this paper are given briefly in Appendix B. After writ-
ing the kinematical functions in Cartesian form, keeping
terms that are of order O(m/M) and O(rczBz) or lower,
integrating over the direction of the neutrino momentum,
it is straightforward, though tedious, to find the diff'eren-
tial decay rate

dW = dW, ~('& + P, n( )n —+ aP('&n S~(0)
)

+AT, ( ): ~('& —-+ P' —Si(0)
I

z kk (2)k
ee & )J'

(58)

4++4 (59)

t+ and t are introduced to account for the ability of
the charged lepton detector to distinguish between spin
parallel and antiparallel charged lepton states relative to
its quantization axis S. t+y is the probability of an
charged lepton with spin parallel (antiparallel) to S(k)
to be registered by the detector. The response functions
n( ) o, ( & P n, and P 2& have the following forms:

where n is a unit vector in the direction of the parent
nuclear polarization, Tz~(n) = A, n~ —b,z j3, the tensorial
contraction Tz(n): AH = T2 (n)A;B~, e is the energy of
the charged lepton, and dWO is the leading unpolarized
rate (i.e. , the rate determined by the leading Gamow-
Teller matrix element A2 only). The quantity —1 & a & 1
is defined as

(, k
&+ I fc+ f2M+ f2T— nv — —

I fc+2fM+fT —2 nr I I

&—+~— ~(o))3M pc 3M q M )
4v~& ) (&' k l m'

+ fc+2fM +fT+ ns I

——, wa — S(o) I+ fI +a— S(o) I

3M
~

9 M
~

I e~ e ) 3M

2&~ k ) 2~2 f'kz k
q, 1~a— s(o) I+ qsI —,pa — s(o) I3M~ E ) 9 kE t )

1+
I fc+2fM +2fT ——il7 I

(i) E 4 f
k2 3M ( M

—
3M I fc+»M +f7 2 'g7 3M2g7+ 3() M2F)s I 2 +a 'S(0)

( k m'——fMI1+a- S(0) I- (&-~)) 3M kz

(~' & 1o ~z
I

—
z + a—. S(o) I

——
I I I

1 + a — S(o)
I1OM' ke' e 2 9 I, ~ ) 4 & ) (61)

p = —1+
3M I fc+2fM +2f~ —Mn7 I 3M fc +2fM +f7 —

2M'~ I

—3M2i)7+ 30 Mzris

m (3k'
+ Mf~l 2

+' ~l3M q 2~
(62)

(2)
e~ ~26 ) v2 e fk k m e k
k2

— ' '...(i~.-"s(o)), (63)

(,) m ( , v24 '& v2me me+f +
45 M"' + 9o Mz"'+2Mf '2M
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where
gpfI =—
gw

fM= — +
Gtv

gx

gg
T

gx

ri7 =Re
]

&)
(As 1

ns =Re
I

gx (A2) '

fc~ =1 (z )f&+ Re
~

t'As l
3 & z)'

(65)

(66)

(67)

(68)

(7o)

cept for the term proportional to fT ) (
& divided by the

Gamow-Teller matrix element and fM is the magnetic
dipole matrix element M~ divided by the Gamow-Teller
matrix element.

In the following, we discuss several special cases of the
differential decay rate, Eq. (58), with regard to the pos-
sibility of extracting g~ in a 1+ ~ 0+ transition.

A. DifFerential decay rate in the absence of charged
lepton polarization measurements

If the charged lepton detector does not discriminate
between the spin up and down [relative to quantization
axis S(k)j charged leptons, then a = 0. In this case,
the differential decay rate for the emission of relativistic
charged leptons (i.e., k )) m) is

d(cos P)x, (K),

with P the angle between the neutrino and charged lepton
momentum. fcs is the axial charge matrix element (ex-

dW = dWo n( ) + Pn( )n —+ An T (n): ——

(72)

with

n. = 1+
M I fc W 2fM + f~ W 2fT —

M rI7
~

(0) m2, b,
M j

4. mz
+ +fM fP + 97+ 'gs

2Ml 9 )
'g7 +

9 $8 )

l )
(73)

1+ fc + 2fM + 2fT ——ri7
(~) a (,

3M l M

s(fc W 5fM + fT 2 '97+ 'gs3M
2" ( 4~2

3M l"'+ 15"') (74)

(.) ~2K ) 22~2 e

45 Mls 45

Prom the PCAC value of g~ given by Eq. (1), it is

easy to show that the term proportional to fJ in n is
practically undetectable. Since even if the experiments
could be done to an arbitrary accuracy, the magnitude
of nuclear physics uncertainties in fc, fM, r17, and res are

comparable to, or larger than the, fJ term; these un-
certainties would render a reliable extraction of fI from
the data extremely difficult, if not impossible.

B. DifFerential decay rates when the charged lepton
longitudinal polarization is measured

Choose the quantization axis of the electron (positron)
spin to be antiparallel (parallel) to its three-momentum
k. The rare polarized charged leptons emitted in the

k1+6—
kz k—+Q—

S~(0) =0,
k m2

~ S(0) =1 ——
2/2

I (k & m'
~ S(o) = — ——1

I

le ) 2e

k
S(0) = — 1.

(76)

(77)

(78)

(79)

The difFerential rate for the rare polarization decay is

decay are selected by using an idealized detector that
is highly eKcient to the spin down charged leptons and
is totally unresponsive for spin up ones, namely, t
1, t+ ——0, and a = —1. Then, for relativistic charged
leptons, we find
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de = dWO o.s + Po.~ n —+ Ao.~ T2(n): ——(0) (i) . k (2) . k k
E' (so)

with

(,) m'
n~ ——

z 1+ fc g 2fM + 2efy g 2' — r/—

2e s 6 ( 2~2 ) 2s ( 2~2
3M fc fT+ 97+ 9 ns +3M, , 97+ 9 nsMg 9 ) 3M~( 9

1+ ~ fc ~2fM —2~fp p 2' ——r)'7
l

(,)
2ez 3M

S I'

3M fc + fM —2&fr + fr+ M qr+— qs + 3M l

—gv+ gs lM ( 3 2 ) 3M2I 15 (82)

2 2M 45 M
23~2 e'

45 M2 gs (83)

In this case, for an aligned parent nucleus, o.I, , which
contains fJ, can be determined. Using the PCAC value
for g~ at q = 0, we find 2efp fc or fM for e ) 5
MeV. In addition, the fp term has a different e depen-
dence from fc and fM, which permits one to distinguish
between these terms. Compared to the dominant po-
larization (i.e. , spin up) difFerential decay rate, which is
dW~ [Eq. (72), with the omission of the terms containing
fp], the rare transition rate dWt, is suppressed by a fac-
tor of rn /2ez 10 —10 . However, compared to the
leading term for the dominant polarization a~, the con-
tribution corresponding to o.I, is suppressed by a factor
of mz/4M' 10 4 —10 s.

with

~(o) (o)
c a (85)

(~) (~) (86)

f s 5 b,
l fc~2fM — ~f~+fz —2—g7 l3M( 2 M

3M 20
(87)

p,' ' = — 1+
l fc w 2fM —~fP w 2fT ——g7 l

rn 6 (,
s 3M( M

C. DifFerential decay rate when the charged lepton
transverse polarizations are measured

~(2) ~(2)c a (88)

The transverse polarizations of the charged lepton are
of two kinds: (1) $~(0) may lie in the plane formed by
the parent nuclear polarization axis n and charged lepton
three-momentum k, and (2) $~(0) is perpendicular to
the plane formed by n and k. The difFerential decay rate
for the second case is trivial because both n S~(0) and
Tq(n): —", $~(0) vanish so that the differential decay rate
is identical to dW~. Only the first case is of interest;
the differential decay rate for the emission of relativistic
charged leptons is

dW, = dWo ac() + P a( )n —+ap~( n S L(0)
l

fc + fM —~f~ + fr+ —gs ~

(2) m
2M

~

~2 e2

9O M2 gs (s9)

In this case, it is still favorable to determine g~ from
alignment observables, since all terms in n, and P, are
of recoil order. Compared to the leading term n, , P,(0) (2)

is suppressed by a factor of m, /M 10 s. Compared to
the spin independent alignment response function n,
P, is suppressed by a factor around 1—0.03.(2) ~

+AT (n): o., ——+ aP, —Sz(0)
E 6 6 )

(s4)

IV. THEORETICAL UNCERTAINTIES AND
EXPERIMENTAL FEASIBILITY

The results given by Eqs. (60)—(64) provide a com-
plete parametrization for the difFerential decay rates up
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to order r/M and (zR)z and before considering Coulomb
corrections to the charged lepton wave functions. This
statement can be verified by the observation that the only
essential assumptions made in deriving these results are
given by Eqs. (47) and (48), which are valid if, albeit not
necessary, a nonrelativistic one-body approximation to
the weak current operators is made. The explicit expres-
sions given by the right-hand side of Eqs. (49)—(53) have
never been used in the computation of the differential de-
cay rates. The assumptions made in Eqs. (47) and (48)
do not affect the generic nature of the results, provided
certain renormalizations of the single-nucleon weak form
factors are made. Let us define Az, which is proportional
to the Gamow-Teller matrix element, by Eqs. (44) and
(45). That A2, Aq, and As are identical in Eqs. (44) and
(45) is guaranteed by angular momentum theory. The

I

gi Az term in Si can be rewritten as gI Az with gi the
renormalized pseudoscalar form factor of a nucleon inside
the system, namely,

2
gI =gs, (90)

III
This reasoning can also be applied to the A& term in
Mi [see Eq. (46)] by defining a renormalized GM+. The
difference between Az and Az in Ci [see Eq. (43)] can be
absorbed into As (it in fact defines As, which could be
difFerent for P+ and P decays if gT g 0). Finally, the
difference between gT and gT can also be absorbed into
As [see Eq. (43)]. This completes our proof that the re-
sults given in this paper provide a complete parametriza-
tion of the difFerential decay rates for the 1+ ~ 0+ weak
transition. If the effects of the Coulomb distortion of
the charged leptonic wave function are considered, more
terms involving single-nucleon form factors and I)'s are
expected to enter the differential decay rates. These
terms are suppressed by Zn = Z/137. They will not
be investigated here.

Equation (90) shows that we should interpret the value
of gI extracted from the experimental data carefully,
since it contains nuclear structure efFects not related to
the change of the single-nucleon properties inside the sys-
tem. Let us write Az as Az + AAz, then

1.0 I I I

I

I I I I

I
I I I I

o.e

15 MeV

X=6

0.6

A

V
0.4

pendent of the choices. It is discussed above that f&~

can be determined by fitting experimental data. On the
other hand, if the value of f&~ is to be computed from
a microscopic theoretical model, which is not expected
to be fully complete, the term resulting from (2:,) can
be utilized to estimate the uncertainties related to the
treatment of gauge invariance as far as the g~ measure-
ment is concerned. The differential decay rates obtained
from "gauge invariant" way of introducing the I' (x) term
are obtained by dropping all the terms proportional to
(x,) or putting x, = 0. Therefore the theoretical un-

certainties associated with the approximate treatment of
Eq. (3) or Eq. (5) can be measured by the contribution
of (x,) to the differential decay rates. Figure 1 shows

the numerical value of (x,) as a function of e. (x,)fI is

of order 10 2, which indicates that it is an unimportant
source of uncertainty. It is hard to separate (x,)fI term
from meson exchange corrections to f&~ (basically an ax-
ial charge matrix element), electromagnetic corrections
to the hadronic wave functions, etc. , which are contained
in the I)s = As/A~ term of f&

One of the terms in n&(
) or pp) involving I7s has the

same e dependence as the term involving fp Aro. ugh
order of magnitude estimate of qs [see Eqs. (51) and (52)]
indicates that this term is of the same order as the fJ
term. In order to separate the contribution of fI to the

dependent terms in n& or p, from that of rjs, res
(z) (2)

should be determined in some other ways. To make a

gi =gI'(1+'JJ) (91)

with y = AAq/Az. In order to know gI, one has to
know y, which is a parameter that cannot be determined
from the P decay data. Model calculations have to be
performed to obtain the value of y. This brings in nuclear
model dependences. The magnitude of the uncertainties
in y can only be assessed in more detailed studies.

Two different ways of introducing the pionic part of
the hadronic axial vector current operators represented
by Eqs. (3) and (5) have been discussed in Sec. II. These
two approaches differ in a term proportional to (z,) in fcs

[see Eq. (67)]. The difference resulting from Eq. (3) and
Eq. (5) is a technical one due to the approximate com-
putational procedure adopted. The "physical" quantity
f& does not depend on the choices, so there are corre-
sponding terms in A3 that render the decay rates inde-

02 ~ I I I. . . , I. . . , I. . . ,

0 2.5 5 7.5 10 12.5
s (MeV)

15

FIG. 1. Coulomb effects on the contribution of g~ to the
difFerential decay rates in the Z = 6 system. (x,) is defined

through Eqs. (56) and (71). A typical value of b, = 15 MeV
is used. For an unscreened point charge Coulomb potential,
Eq. (56) diverges at tc' = oo as well as at r' = II. The nuclear
size effects and screening effects have to be taken into account.
We use a modified Coulomb potential in momentum space of
the form V(q) = Ze exp( —[q( /b )/()q[ + p ) with b = 100
MeV and p, = 0.001 MeV. The result depends very little on

p.
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model independent determination of res, one can study
the alignment observables in cases where the charged lep-
ton polarization is not detected. Equation (75) shows

that the e term of a~ depends only on res. So, a careful(2)

study of the alignment observables in these cases should
in principle determine the value of res.

In certain systems, the contribution from res can be
small. The A = 12 system, which has been studied care-
fully as a system to test CVC [19],can serve as an exam-
ple. Figure 9 of Ref. [18] shows that the nonlinearity of
o;II is very small for this particular transition. Thus we
can conclude that compared to the fp contribution to the
e2 dependent terms, the res contribution is less important
in such a system.

The current discrepancies between the PCAC value
and the values of gp extracted from muon capture ex-
periments in light nuclei are of order 20—100% (see, e.g. ,
Refs. [5—10]). If these discrepancies are true, a not very
precise determination of qs (say, within 10—20%) can con-
firm these discrepancies.

22In Fig. 2, ', nb is plotted against e, with arbitrary
chosen "typical" values f& ——2.0, fM = 3.5, fT = 0, and
4 = 15 MeV. The solid line is obtained with I7s = 25
(RM) 2 and the magnitude of the PCAC value of fp = 0.1
MeV i. The dashed line is obtained with res = 0 and the
PCAC value of fp The do.tted line is obtained with res =
25 and fp ——0. It can be seen that the effects of a 100%
modification of gp results in a change in o;&~ around
100% at the highest energy of the charged leptons. The
effects of res is about 20%. At higher e, the relative (to
the allowed) counting rates are very small due to the

0 04 I I I I

I

I I I I

I

I I I I
I

I I I I

I

I I

P+ decay, .

0.02

0.00

-0.02

-0.04
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 2.5 5 7.5 10 12.5 15

e (MeV)

FIG. 2. The dependence of ~a& on e, with arbitrary
chosen "typical" values fc ——2.0, fM = 3.5, fT = 0, and 4 =
15 MeV. The solid line is obtained with Ila ~ {RM) 25
and the magnitude of the PCAC value of fp —0.1 MeV
The dashed line is obtained with gs ——0 and the magnitude
of the PCAC value of fp. The dotted line is obtained with
Il8 = 25 and fp = 0.

0.00

—0.01

—0.02

—0.03

I I I I I I I I I I I I I

0 2.5 5 75 10 125
e (MeV)

15

FIG. 3. The dependence of —'P, on e, with the same
values of f&, fM, fz, and b, as those in Fig. 2. The solid line
is obtained with gs ——25 and the magnitude of the PCAC
value of fp The d.ashed line is obtained with q8

——0 and
the magnitude of the PCAC value of fp. The dotted line is
obtained with qs ——25 and fp = 0.

V. SUMMARY

We have studied the differential P decay rate for 1+ —+
0+ weak transitions. The results show that for observ
ables from aligned parent nuclei, the contribution of the
induced pseudoscalar term (gp) can be as large as the
leading one-body terms. The different energy depen-
dence of the g~ term allows it to be separated from other
nuclear matrix elements. The structure for the difI'eren-
tial decay rates given by Eq. (58) remains unchanged

suppression factor. In addition, the total counting
rates are small at both ends of e due to the phase space
suppression. Thus not only the magnitude of the total
counting rates but also the relative counting rates due to
gp are very small at higher energies.

In Fig. 3, —'P, is plotted against e, with the same
values of f&, fM, fT, and 4 as those in Fig. 2. The
solid line is obtained with res = 25 and the magnitude of
the PCAC value of fp. The dashed line is obtained with
I7s = 0 and the PCAC value of fp. The dotted line is
obtained with res ——25 and fp = 0. Again, a 100% change
in gp results in about a 100% change in PP, especially
at higher charged lepton energies. The effects of res is
extremely small for P, due to the small coefficients in
front of it. In addition, the relative counting rates are not
suppressed at large e for P, compared to the absolute(4
decay rates.

Finally, the effects of the Coulomb distortion of the
charged lepton wave function, which are suppressed by
Z/137, are not expected to change the value and the e

dependence of n& and P, significantly for light nuclei.
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even if exchange current and/or other correction contri-
butions are included, provided a proper change (renor-
malization) of single-nucleon form factors and matrix el-
ements is made. In conclusion we believe that the exper-
imental determination of some of these matrix elements
and of g~ can be carried out.

Whether to determine g~ from P decay experiments
in which longitudinal polarizations of the charged lep-
tons are measured or from P decay experiments in which
the transverse polarizations of the charged leptons are
measured depends on the experimental techniques avail-
able. Case C is favored due to its larger relative counting
rate, smaller res contamination, and relatively easier ex-
perimental determination of the transverse polarization
of the charged leptons. The small counting rates in de-
termining g~ requires precision experiments.
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APPENDIX A: NONRELATIVISTIC
REDUCTION OF THE HADRONIC WEAK

ONE-BODY CURRENTS

where b, is the maximum energy of the electron or
positron and GM ——FM + 1 = 4.706.

The nonrelativistic reduction of Eqs. (25)—(27) for
many-nucleon systems to leading 1/M is found to be

A

p+ (x) = F, ) r(+l(i)6(x —r, ),

APPENDIX B: SOME DETAILS ON THE
DIFFERENTIAL DECAY RATES

The unpolarized differential decay rates are found to
be [12]

dW( = 2~6(Ey —E, + 6) ~
47r ) RI K, + (higher order) d(,0 lG2cosz8c / o o

i=1
(Bl)

where "higher order" stands for terms that are beyond
O(r/M) or 0(+2R ). K, (i = 1, . . . , 5) are kinematical
functions:

(B3)

K,"' = &4~[Y,(q) g (i,i'), ]p,
3

(B2)

Kz —— v'47r[Yj(g) Im (lpl )s]p,3

K,"i = &4~[Yp(q) g [1 g 1*].]„3
(B4)

K4( l —— V'4vr [Yj (q) S [1(g 1*]g]o,
3

(B5)

K,' ' = v'4~[Y&(q) g [1 g I*]&]„
3

(B6)

where [P~, Q~, ]~~ denotes the Clebsch-Gordan coupling
between two angular momentum states with angular mo-

RI = — Re(S&L~'),
3

R2 ——— Re(Cq Lq'),
3 (B8)

Rs ' = —3(ILx I'+ I&& I'+ IMx I'), (B9)

&(0) Re(MgZ,'), (B10)

mentum lq and l2 to form a new state with angular mo-
mentum j, the (lpl")si~ that appear below are defined in
the same way as (l, l')sy~ [see Eqs. (33) and (34)]. The
dynamical response functions R, (i = 1, . . . , 5) are
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Rs" = ILx I'—
3~2 ' 3~2

where S1, C1, L» E1, and M1 are the reduced matrix

respectively, e.g. , Sis = (Jf ISi II J;) and

(Jfmf IS~ I
J,m, )

= (—1)' ' ' '. ~(Jf IIS~II J*) (»2)
(mf m —mj)

The differential decay rate with polarization is given
by

dW( l = 2x6(Ef —E; + 6) 4' ) R,. K, + (higher order) d(,
i=1

(B13)

where the kinematical functions K,. (i = 1, . . . , 6) are

K,' = v'2' P[—n S [Yj (cl) S (l, l*)~]g]o,

K2 = —~2~ [" [+i(@ (lol*)&]i]0

Ks —— v'2vrP—[n S [Yo(g) S [1S1']g]i)p,

K4 ) —— v'27rP—[n [Yj (q) [1 1 ]o]g]o,

K, = y'2~P[n —S [Y,(g) S [1 S 1"]&],]p,

Ks ———zi2aP[n [Y2(ci) S [1 S 1*]g]~]p.

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

Here n is a unit vector pointing in the direction of the
parent nuclear polarization, P=ai —a with a~ (m =
0, +1) the statistical population of the magnetic states of
the parent nucleus, and the dynamical response functions
RI" (i=1,...,6) are

RI i = —~2Re(Si Ei~*),

R2( l = —~2Re(Ci Ei~'),

(IEil'+ Ill')—
2 3

(B20)

(B21)

Re(L&E&*), (B22)

Re(Mi Ei'), (B23)

R(') =- Re(Mg Ls, ') — —Re(Mi E,*),
15

(B24)

Rs = (IEil'+ IM, I')—
6

Re(L', E,'). (B25)

The difFerential decay rate corresponding to alignment
is given by

5

= 27r6(Ey —E, + &) 4m. ) R, K, +(high. er o.rder) d(,
i=1

(B26)

~(2) 4
1 3 Re(S,Lz') —

5
Re(Si Ei'), (B32)

where the kinematical functions K,. (i = 1, . . . , 5) are

KI ——~vrA[T2(n) S [Yg(g) S (/, 1')s]g]o, (B27)

K~ = ~~A[T2(n) S [Y&(p) (lol*)s]~]o (B28)

Ks =~~A[T&(n) S [Y&(p) [1l*]j]z]o~ (B29)

K4 ——~vrA[T2(n) S [Y2(q) [11']o]2]o, (B30)

Kq ——~7rA[T2(n) S [Y2(q) S [1 S 1']g]2]p. (B31)
The second rank irreducible tensor T2(n), z

——n, n~—
6,~/3, A = 1 —3ap, and the dynamical response func-
tions are

(2) 4
B2 3

Re(C~ Li') — —Re(Ci Ei*),

Ill'+ 3
ILil'—

3 2 3 3 2

IEil'+
33 14

+ Re(LiEi") + IM& I
.

7

Re(M, L', ) + —'Re(M, E,'),15

(B33)

(B34)

(B36)
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