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An analytic method of generating resonant state expansions from the standard completeness
relation of nonrelativistic quantum mechanics is described and shown to reproduce the generalized
completeness relations, earlier derived, involving resonant states. The method is then applied to
the expansion of the resolvent (the complete Green's function), the symmetry properties of which
seem to be destroyed if a conventional application of the completeness relations is made. These
forms of expansions have a continuum term which contains symmetry-restoring contributions and
can therefore never vanish identically, nor can it be neglected. The symmetry-conserving form of the
expansion has a set of discrete terms which are identical in form to those of the Mittag-LefHer series
for the resolvent. In addition, it contains a continuum contribution which in some cases vanishes
identically, but in general does not. We illustrate these findings with numerical applications in which
the potential (a square well) is chosen so as to permit analytic evaluation of practically all functions
and quantities involved.

PACS numbers: 24.30.—v, 03.65.Nk, 11.20.Dj

I. INTRODUCTION

Until about two decades ago the concept of a resonant
(or Gamoio) state, founded in Gamow's original idea [1]
concerning the quantal description of a radioactive state,
was too vague and exotic to be incorporated as a truly
physical element in the theory of nuclear or atomic sys-
tems. Gamow's idea was taken up by Siegert [2] in 1939
and then, in the early 1960s, used by Rosenfeld and Hum-
blet [3] in a comprehensive theory of nuclear reactions.
It was soon found, however, that the analogy between
bound and radioactive states was much closer than one
had until then believed, and theories of Gamow wave
functions were formulated with prescriptions for how to
normalize such functions [4, 5] and how to form inner
products [6, 7] from them. This enabled the use of such
states not only in reaction calculations but also as struc
ture elements, albeit structures of a more or less tempo-
rary character. The new feature was the establishment of
completeness relations [6] involving Gamow states. Com-
pleteness directly provides the possibility to expand wave
functions as well as scattering and reaction amplitudes in
terms of resonant states. The Rosenfeld-Humblet theory
[3], on the other hand, is based on the Mittag-LefHer
expansion of the scattering amplitude, involving a theo-
rem on meromorphic functions which somewhat obscures
the role of the resonant wave functions and the analogy
with ordinary perturbation theory. A certain amount of
rivalry has existed between those who prefer the Mittag-
Leffler formulation and those who feel more at home with
eigenfunction expansions. One of the aims of this paper
is to show that the two forms of approach can be recon-
ciled.

It must be admitted that in the early days of resonant
state expansions we had a tendency to underestimate the
importance of a characteristic property of the complete-
ness relations: they all contain an integral over a set of

continuum states. Tacitly and without proof one oRen
assumed that if one chooses this set suitably and includes
the physically important resonances in the expansion,
then the continuum contribution to physical quantities
would be negligibly small. In other words, there would
be no residual effects from the continuum if all resonances
could be taken into account. To a large extent this ex-
pectation could feed on the results of the Mittag-LeRer
formalism, which leads to a sum over discrete resonant
state terms to which is added a term in the form of an
entire function, the value of which could be manipulated
by modifying the form of the discrete terms. It must also
be remembered that actually calculating the continuum
contribution in a nontrivial case involves a great deal
of numerical effort. Therefore few attempts to test the
assumption of a negligible continuum contribution have
been made up to now. The so-called continuum shell
model [8] tackles the problem difFerently and gives little
guidance for the problem of continuum contributions to
resonant state expansions. The present paper reports on
the first phase of a study which is aimed at clarifying the
role of the resonant states in the continuum problem.

Of particular interest is the resonant state expansion of
the resolvent or complete Green's function, which plays
a central role in perturbation theory, especially the ran-
dom phase approximation (RPA). In this field recent
work [9—13) aiming at introducing Gamow state expan-
sions into the continuum RPA has proved very successful.
However, although the resonant state expansions derived
in accordance with Ref. [6] proved to be conceptually very
fruitful, their numerical accuracy, although acceptable in
the vicinity of the resonances, was elsewhere less satisfac-
tory than that of the Mittag-LeRer expansions. Expe-
rience gained in Ref. [14) pointed in the same direction,
viz. that in order to get a good approximation for the re-
solvent its usual form must be modified so as to eliminate
the spurious poles of this form. This was pointed out in a
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II. REVIEW OF THE THEORETICAL
BACKGROUND

In Ref. [6] use was made of the fact that the continuum
radial amplitudes, for given orbital angular momentum
M, as defined by Newton [16]

k~+'&pg(k, r)
fg( k)— (1)

have poles k = k~ and k = k„—:—k„* at the zeros of the
Jost function [17] fg( k). For—a large class of potentials
including the finite-range ones the functions yg(k, r) are
entire functions of the wave number k and satisfy the
boundary condition

@g(k, r) =

(2E + 1)!!(pg(k, r)
r —+0 re+

perturbation-theoretical analysis by Rorno [15]. We have
found, in addition, that if one uses the completeness re-
lations to expand the resolvent one may destroy the sym-
rnetry properties of this operator. This can be avoided by
using a method outlined in Ref. [14] and described briefly
in Sec. II, where a summary of the most often used com-
pleteness relations is presented and commented. In Sec.
III this method is applied to the resolvent yielding a res-
onant state expansion which has discrete terms similar
to those of the Mittag-LefHer theory but also contains a
continuum integral. The validity of the approximation of
keeping only the discrete terms in various forms of the
resolvent expansion is illustrated in Sec. III B.

de�(k) = 4'k2~+~N2

we find that the residue at k = k„of the integrand of (3)
1s

Resp b„[gg(k, r)@q (k", r')] = +—iu„(r)u„'(r'). (Ga)

The symmetry relations [16] f&(k*) = fg (—k) from which
follows fg(k*) = —fg( —k) give

Resp —b. [@g(k,r)g~ (k', r')] = ——iu„(r)u„'(r'). (6b)

We further get

u„(r) = yg(k„', r)/N' = u„'(r).

For real momenta, the complex conjugation of k in the
second factor of the integrand of (3) is of course imma-
terial. However, Eq. (3) is written here in such a form
that the integrand can be a meromorphic function of k
in some region containing the real k axis, with poles at
the zeros of fg(+k). The poles at k = k„' and k = k„—
have no counterpart in the resolvent gg(k; r, r') (cf. New-
ton [16] and below, Sec. III). In the integrand of (3) the
bound and antibound states also give rise to tujo poles,
one in the upper and one in the lower half-plane.

Using definition (1), a relation [16,6] (see also the Ap-
pendix) between the Jost functions at resonance, i.e. ,
for fg( k„)—= 0, and the normalization integral for the
bound and resonant states, viz.

A direct consequence of this condition is that

Pg(k, r)
r~o ra+1

where, as in the following, the dot over the symbol indi-
cates derivation with respect to k. Equivalently,

Resb b„[Qg(k, r)@&(k', r')] = ——iu„(r)u„*(r')

Resp b. [gg(k, r)@~(k', r')] = +—iG„(r)u„"(r').

(6c)

(6d)

jg(k, r)
r o pg(k, r)

The completeness relation for the bound states ub and the
(real momentum) scattering states (1) may be written

b(r —r ) = ) .ub(r)ub(r )
b

It is convenient to introduce an index convention for
the discrete states, using the letter b to index the bound
states (Imkb ) 0), the letter a for the antibound (virtual)
states (Imk ( 0), the letter d for the outgoing (decaying)
resonances (Rekg ) 0), and the letter c for the incoming
(capturing) resonances (Rek, ( 0). In this notation Eqs.
(Ga)—(Gd) can be written using u, (r) = ug(r) and k, =

dk gg(k, r) Q~ (k*, r'). (3) Resb yb = +—u~(r—)G~(r'),

Here we have used u„(r) = &pg(k„, r)/N with the normal-
ization constant from

dr yg(k„, r), (4)

where the integral is to be defined by means of a suit-
able regularization procedure whenever u„(r) is a reso-
nant or antibound wave function. This normalization is
equivalent to that obtained by demanding u„(r)u„(r')
to be given by the residue of the resolvent (see below) at
k = k„.

The properties of pg(k, r) imply

where n might be either of a, b, c, or d since for the bound
states we have ub(r) = ub(r) and correspondingly for the
antibound states.

We fi.rst make a note on the method which Newton
[16] and Berggren [6] used to prove the completeness re-
lation in terms of discrete and scattering states. They
considered the integral

where the closed contour (O' = t +S) consists of a semi-
circle (S) in the upper half-plane and some path (C) from
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—oo to oo through the origin, chosen so that C' includes
the poles that one is interested in. If the continuum part
of the resulting completeness relation is to be of familiar
form, it is essential that the contour C is inversion sym-
metric, i.e. , if k is on ( then so is —k. (See Fig. 1 for
contours relevant for this proof. ) If we wish to separate
the physical resonances from the wide ones whose en-
ergy has a negative real part (these resonances were not
considered physical in [3] and will here be called virtual
resonances to emphasize their similarity with the anti-
bound states), we will draw all contours that go through
k = 0 so that they form an angle & vr/4 with the real k
axis. (This angle was chosen in [6] because of the reg-
ularization procedure used there. If we use a difFerent
procedure, e.g. , the complex rotation regularization [11],
cf. also [18], the angle can be chosen ( m/2. )

If we only consider functions h(r') that are sufficiently
well behaved asymptotically then we can use Cauchy's
theorem to evaluate the integral I'(r) and express the re-
sulting completeness relations as "resolutions of the iden-
tity" (more generally projection operators)

11 =) .Iu )(u I+-1
n=b

(8)

and

ll = ). Iu )(u I
+-1

n=b, d

l&(k))dk(@(k')I (9)

). Iu )(u I+-1
n=b, c,d

l@(k))dk(@(k')I (10)

The purpose with introducing this contour is to separate
from the L integral a resonance contribution which is
complex conjugate to the discrete part in (9) so that the
approximate expansion of a real function obtained by ne-
glecting the integral will be real. This is not the case in

Since the integrand in (8) [and in (3)] is meromorphic, we
can also consider (9) to have been obtained from (8) by
contour deformation using the residues (6a)—(6d). (The
contours and pole structure for this method are seen in
Fig. 2.) By deforming the contour into the Z contour we
obtain the completeness relation suggested in [14]:
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FIG. 2. Contours in the A: plane that define the continuum
in the resonant state expansions (8)—(11) and (19)—(21). The
dots mark the positions of the poles of @g(k, r) and the circles
mark the positions of the poles of @q (k', r)

the approximationi obtained by neglecting the integral
in (9) which complicates the physical interpretation [6].

Using this method to the extreme by deforming the
contour into the U' contour (equivalent to an infinite semi-
circle in the lower half-plane in the case of a finite-range
potential) we get [15]

): lu )(u I
+-

n=a, b, c,d
l@(k))dk(@(k')

I (»)

where the sum corresponds term by term to the Mittag-
LefRer expression for 6(r r') as given by—[19]. The work
by Rorno, in particular Ref. [20], shows that for functions
which are strictly zero outside a radius smaller than the
Finite range of the potential (see further [20] for more
specific conditions) the integral will vanish if the sum is
taken over all discrete states. The completeness relations
obtainable by invoking analyticity from that of Newton,
Eq. (8), are thereby related with and sometimes equiv-
alent to the Mittag-Lef8er expansion. The U contour
integral seems to be the only one that can be shown to
vanish not only in special cases but for some class of func-
tions. One can, on the other hand, give examples [21] of
functions for which this integral has a finite value that
cannot be expressed as a component with respect to any
of the discrete states, nor can it be incorporated in the
Mittag-LeRer expansion.

FIG. 1. Contours in the k plane for the integral (7) used in
proofs of completeness relations. The dots mark the positions
of the poles of gg(k; r, r')

Unfortunately it was not realized in Ref. [14] that the con-
tinuum contribution from the Z contour usually has a mag-
nitude which is of the same order as the discrete part, so
that neglecting it is in general a very poor approximation.
Neglecting the continuum contribution from the L contour
means, on the other hand, that a real quantity is approxi-
mated by a complex quantity whose real part we expect to
be fairly accurate. The imaginary part (approximately the
error) may be dominated by contributions from non-narrow
resonances and thus difficult to estimate a priori.
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Since the operator z~u„)(G„~ is not idempotent and
thus not a projection operator, we hesitate to call the
discrete part of (ll) a completeness relation. The factor

2 is the result of extracting resolvent-pole contributions
from the original continuum integral in Eq. (8) and com-
bining them with the original discrete terms. The term
"overcompteteness relation" suggested in Ref. [19] is nei-
ther fully adequate, as the linear dependence alluded to
by this expression is only present in the region inside the
finite range of the potential. We will provisionally call
relations of this kind which are not built from idempotent
terms reduced completeness relations, referring to the re-
duction of the original projection operators by discrete
contributions from the continuum integral.

It should be clear that neglecting the contribution from
the continuum integral may result in approximate res-
onant state expansions with greatly differing accuracy,
depending on which of the "completeness relations" pre-
sented above is taken as the point of departure. The
validity, usefulness, and consequences of these "complete-
ness relations" will be further studied in Ref. [21]. How-
ever, it has been found that if one tries to use these rela-
tions to derive resonant state expansions of the resolvent
operator then one may run into difficulties with repro-
ducing some of its basic properties such as pole positions
and symmetries. How to obtain expansions of the resol-
vent which preserve its essential properties is the main
subject of the present paper.

III. RESOLVENT

—1)8+1
A(k, r&)fs( kr&), - (12)

where

T~ =—max T, T T( —min T) T

The resolvent is a solution, regular at T = 0, of

The proof of the completeness relation (3) given in Ref.
[16] and modified in Ref. [6] for the inclusion of a finite
number of resonant states is based on the properties of
the resolvent (or comp/etc Green's function):

(—l)s+'ks(ps(k, r() fs(—k, r))
fs( k)—

It has a well-defined asymptotic behavior in coordinate
space [for Re(k) positive purely outgoing, or for Re(k)
negative purely incoming, spherical waves]. Since both
fg( k—, r) and fs( k—) are regular in the upper half of the
k plane [16], the same is true for the resolvent except
for poles due to the zeros k„and —k„' of fs(—k). De-
pending on the behavior of the potential V(r) for large
values of r the functions fs( k, —r), fs( k)—may be shown
to be regular also, e.g. , in a strip in the lower k plane
along the real k axis and therefore gs(k;r, r') at least
meromorphic in the same domain. The poles outside the
imaginary A: axis occur only in the lower half of the k
plane and represent resonances while those on the nega-
tive imaginary axis represent an6bound states. All poles
in the upper half-plane thus lie on the imaginary axis;
they correspond to bound states. From the symmetry
fg ( k*, r—) = (—1) fs(k, r) (Ref. [16], Sec. III) we get

gs (—k*; r, r') = gs (k; r, r'),

i.e. , the resolvent is symmetric with respect to reHection
in the imaginary k axis followed by complex conjuga-
tion. We should note that the substitution k —+ —k not
only changes the asymptotic properties from outgoing
waves to incoming waves and vice versa but also inter-
changes the analytic properties in the upper and lower
half-planes. Thus gs( —k; r, r') is a solution of Eq. (13)
corresponding to a difj'erent boundary condition at the
same energy. It is (for k g 0) linearly independent of
gs(k;r, r') and should therefore in principle be consid-
ered a different function. Its poles are the zeros of fs(k)
and are found in the opposite half-plane compared to
those of gs(k; r, r').

The asymptotic behavior of the integrand of (3), how-
ever, is mixed in coordinate space. The analytic prop-
erties of the integrand as a function of k depend on the
properties of the potential. We already know that the
integrand has poles outside the real k axis and may have
other singularities at some distance from the real k axis
(see further [16]). For realistic potentials we may assume
that apart from the poles it is analytic in a fairly broad
strip containing the real axis. Therefore, once complete-
ness is established and Eq. (3) is derived, that equation
can be used as the starting point for deriving the various
forms of completeness relations.

After proving the completeness relation (3) Newton
[16] derives the expressions

gP(k;r, r') =—dz E(l + 1)+ V(r)+
dT2 T2

—k gs(k; r, r') = b(r r'). — — A(q r)@s(q' r')
—q

dq A(q, r)@s(q', r ) Z
q k —q

where we use the abbreviation

Obviously completeness is a property of a set of functions
which implies that the set is (a) linearly independent and (b)
saturated in the sense that if any function is adjoined to the
set then the resulting set will be linearly dependent. This
is why complete sets can be used as basis sets. Orthogonal-
ity helps to establish linear independence and to write down
"completeness relations" but is not a necessary requirement.

& &b T lSb T

b
k,2 + +2

b

(16)

Here the sum includes all the bound states with kb ——i'.
The integral is taken along the real axis (as specified by
the superscript R) in the wave number (k or q) plane.
We note that for k real the integral diverges due to the
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pole at q = k on the integration path, but for k com-
plex the integral converges since the integrand is then
bounded everywheres and O(q 2)as q ~ +oo. There-
fore the integral defines an analytic function of k out-
side the real axis. This axis is then a branch cut from
—oo to +oo. It is obvious that since the sum (16) has
poles only on the imaginary k axis, and these poles are
situated symmetrically with respect to the real k axis,
Eq. (15) can only represent Qs(k; r, r') in the upper half-
plane, and gs( —k; r, r') in the lower half-plane. In other
words, QP (k; r, r') as defined by the eigenfunction expan-
sion (15) cannot be considered as a one-valued function.
The branch in the upper half-plane we may temporarily
denote by g&

+ (k; r, r'), the branch in the lower half-plane

by Q& (k; r, r') Th. e value of the integral appearing in
(15) for the wave number k on the real axis must be de-
fined as a limit in k. The limit from above is used by
Newton [16] to define the outgoing tvave re-solvent g&+

if Re(k) is positive, the inconung vive re-solvent g& if
Re(k) is negative. This limit is conveniently obtained by
deforming the integration path downwards so that the
pole at q = r, where it is real, is circumvented by a semi-
circle with infinitesimal radius. Since the pole is simple,

we get in a well-known way

/ 1
CIs

+ (it; r, r') = 'P— dq A(q, r)4s(q', r')
q z —q

'@—S—(it, r)g;(it, r') + Zb,

&V A(q, r) 4s (q', r')
q K —q

+ gS (it,—r) QS*(r, r') + Zb,

from which one gets the discontinuity over the branch
cut

g& (r; r, r') —
g& +(it;r, r') = @s(r,r—)Qs (K, r'). (l7)

The basic definition of Qs(k; r, r'), Eq. (12) yields, on the
other hand,

i.e. , a principal value integral and a 6 function contribu-
tion. If one instead takes the limit from below the real
axis, one obtains

fg(K) fg( r)—
2iK + (ps(pc, r()(ps(i~, r))

fs( K)fs(v)—

where we have used the general relation between the reg-
ular solution ps(k, r) and the irregular solutions fs(+k, r)
quoted in the Appendix, Eq. (Al). This relation is sym-
metric in r and r' which may now replace r& and r&, and
we may further introduce the scattering states Qs(K, r)
using Eq. (1). The discontinuity over the branch cut ob-
tained in Eq. (17) thus turns out to be identical to the
difFerence gs( —it;r, r') —gs(K;r, r') which confirms the
conclusion that, with equal signs for Re(k) ) 0,

in the upper and lower half k planes, respectively. This
shows the range of validity of Eq. (15) as an eigenfunction
expansion.

A. Resonant state expansion of the resolvent

We will now attempt to extend the range of the ex-
pansion (15) for g&l+l(k) so as to include also resonant
states using a procedure similar to the one described in

Sec. II, viz. , by deforming the integration contour from
R to W (see Fig. 2). This amounts to constructing an
analytic continuation of the function defined in the upper
k half-plane by the integrals in (15) down into the upper
part of the lower half-plane by deforming the branch cut.
The contour W passes helot the resonance poles selected
and retains the symmetry with respect to reflection in
the imaginary axis (if q is on W then so is —q ). This
symmetry is different from the inversion symmetry (in-
variance under q ~ —q) characterizing the continuum
of a properly derived completeness relation. Therefore,
since the resolvent operator is not inversion symmetric
but satisfies (14) it is necessary to derive its resonant
state expansion directly without using the completeness
relations. I et W be the domain consisting of the upper
half k plane extended down to and including W. We then
get, provided the integrand, apart from the poles at A:„
and —k*, is analytic in a strip containing W and R,

dq A(q, r)es(q*, r') 1 dq A(q r)es(q*, r')
q k —q 7T' ~ q Ai —q

If the Jost function fg( k) happens to ha—ve a zero for k = 0,
special treatment may be necessary; see further Newton [161.

= 2i ) Resp g„,
k EWER

since the two integrals in the left member obviously are
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together taken over a closed path that encloses the do-
main denoted by W$R. [A more cautious procedure
would be to multiply Eq. (15) by sufficiently regular
"test" functions hi(r) and hq(r'), then integrate over r

and r', and finally replace the test functions by 6 func-
tions. The result is the same. ] Using Eqs. (6a) and
(6d) for the residues of @gg& and remembering the factor
1/[q(k —q)] we easily get

dqM (q, )0'(q", ') 1 dqV (q )0'(q' ')
q k —q m. q k —q

" "
q 2k„(k —k„))A:„FWSR

ever, with respect to expansions of the resolvent, the U
contour has the reflection symmetry with respect to the
imaginary axis that is required by the symmetries of this
operator. Equation (19) with a domain U consisting of
the upper half k plane extended down to and including
U then gives

dq Me(q, r)@c (q', r')
U q k —q

u~ T Q~ r
2k„(k —k„)

g (k;r, r') =—

(20)

This is equivalent to Rorno's result in Ref. [15], i.e. , of
the form known from Mittag-LeRer theory but without
the restriction to finite-range interactions.

If we had not restricted ourselves to contours that are
symmetric with respect to reflection in the imaginary k
axis, we could also have derived in the same way (i.e. , by
direct analytic continuation) the expansion

«A(q ~)4~(q* ~')
7r r, q k —q

u~ r u~ T
(21)k2 —kz

k~GL

where L is the domain consisting of the k plane above
and including the I contour. This expansion could also
have been derived as in [6] by using the completeness
relation (9). The point to observe is that the integral
and the discrete part of this latter expansion do not sep-
arately have the symmetry (14) whereas this symmetry
is valid for both types of terms in the expansions Q~(k)

U
e

and g& (k). Taking the difference between Eqs. (21) and
(20) we get an expression that by Cauchy's theorem is
identically 0 (this follows, of course, from the construc-
tion of the expansions). Both types of expansions are
therefore valid if the continuum term is kept.

The resonant state expansions have the advantage that
they give simple expressions for the behavior of the resol-
vent in the vicinity of its poles. It is therefore convenient
to introduce the notation G&+(k) with C = L, W, or U
to denote the approximations obtained by neglecting the
integrals in (21), (19), and (20) respectively. Then these
expansions can be summarized in

1 dq Qg(q, r)@&(q', r')
c q k —q

+Gg (k; r, r'), C = L, W, U.

We can already note that the approximation Gz+(k) does

It is then natural to define, for all k c W,

w( )
1 «&~(q &)Ml(q' &')

7l iv q k —q

u„r u„* r'
(»)

( — )

In the domain W above and including W and the real
axis, this function has the same analytic properties as
Qg(k;r, r') defined by Eq. (12) and the same symme-
try with respect to the substitution k —+ —k*. Applied
to test functions, (19) is equivalent to g& +(k;r, r') by
Cauchy's theorem and we thus consider it as the proper
resonant state expansion of the function g&

+ (k; r, r') and
thereby (within W) of the resolvent Qg(k;r, r'). In a
similar manner we may obviously continue the function

(k; r, r') defined in the lower half-plane by Eq. (15)
upwards to a curve W* which is the mirror image of
W with respect to the real k axis, thereby obtaining
a resonant state expansion g& (k;r, r') of gg( k;r, r')—
valid in the domain W' below and including W" and
the real k axis. (Notice that the asterix in the super-
script of the symbol Q is a superscript on W with no
direct significance for g.) Just as in the case of wave
function expansions, we should interpret the functions
defined by the expansion as representatives with respect
to difFerent sets of basis functions specified by W (or W')
and B, respectively, and with different ranges of validity.
We observe that the set of discrete terms in the reso-
nant state expansion (19) obtained in this way contains
a finite subset of the terms in the Mittag-LefBer version
of the resolvent used, e.g. , in Refs. [9, 10]. We also see
that if k c W then —k E W' and we may readily show
that g& (k;r, r') = g& ( k;r, r'). Note, —however, that
if W g R, then there exist k c W' such that also —k 6
W.

There seems to be no compelling reason why we should
draw the contour W so that it goes through the origin
k = 0 except that this point is the branch point of the
physical operator. (The latter fact does not seem to have
any palpable numerical consequences, though. ) By draw-
ing the contour in a U-shaped fashion so that it passes
below the poles corresponding to the antibound states
(k = ip with p~ ) 0), the sum —Zb would also include
the antibound states and have the same denominators as
the sum over the resonance terms. Such a contour has
been suggested by Rorno [15] for use also in completeness
relations. For that purpose the U-shaped contour may
be questionable since it is not inversion symmetric. How-
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not have the symmetry property (14) and that the ap-
proximations Ge~(k) and Ge~(k) have false poles at k =
—ki, and Ge (k) also at k = —kg. This means that they
cannot fully represent the resolvent (the integral part is
still of importance since it contains the corrective contri-
butions) and in some calculations, e.g. , [22], the relative
error can have a magnitude of order unity. There might
nevertheless be cases for which these objections are less
important. Thus the only integral which might be negli-
gibly small or even vanish exactly is the one over the U
contour. This is supported by Mittag-LefHer theory for
the case of a finite-range potential.

In Ref. [12] the approximations Ge (k) and Ge+(k) were
denoted "Berggren" and "Mittag-LefHer" expansions, re-
spectively, since they were considered to have been de-
rived using difFerent theories. The notation chosen in the
present paper is meant to emphasize that the different
expansions can indeed be obtained by the same method
starting from the results of Newton [16]. In view of this
it is not surprising that the so-called "Mittag-LefHer ex-
pansion" might be valid also when the Coulomb potential
is included, which was another major conclusion of Ref.
[12].

B. Numerical illustrations

To study the properties of difFerent (approximate) ex-
pansions of the resolvent we consider some average over
the radial coordinates rather than the value at some spe-
cific points. One such quantity is the partial wave S-
matrix element Se(k) = 1 —2Te(k)/ik, which we express
in terms of the partial elastic scattering amplitude (tran-
sition matrix element)

Te(k) = (@e(k)IVI@e(k))
= (@e(k) I &l@e(k)) + (@e(k) II «(k) + l@e (k)) (22)

Here geo(k, r) is the free wave function and ge(k, r) the
scattering wave function. We have introduced the re-
solvent ge(k) by expressing Qe in terms of geo through
the formal solution of the Lippmann-Schwinger equa-
tion. Bang et at. [23] studied the pole expansion of
Se(k) using Mittag-LefHer theory finding that, for cutoff
potentials, the expansion obtained is the same as using
ge(k) —G&+(k). Their conclusion was that the expansion
is convergent also without using the possibility of adding
an entire function to the sum.

Another resolvent-dependent quantity, the single-
particle response function

&e(k) =

(fel�ine(k)

lfe)

Using the approximation ge(k) - Ge (k) we obtain an
expansion of the response function of the form

„("
)

=( If)'

where the numerator has no k dependence. This makes
it obvious that if the expansion is valid then we might
need only the states immediately below and above the
energy considered to reproduce the exact response func-
tion between resonances. This should hold at least if the
other states are so far away that their contribution to
the background is small, which might not be the case
in the low-energy region. The expansion of the elastic
amplitude instead looks like

T (k)=(6'(k)IVI%'(k))+ ). 2k„eri

(k) —= ( I&IA'(k))'

where now also the numerator is k dependent. This
means that each term might give a contribution over a
larger interval than suggested by the denominator and
interfere stronger with the background due to the other
terms. We therefore expect that several states might be
needed to reproduce the nonresonant behavior.

2. Elastic scattering amplitude

In order to check also the validity of the approximation
ge(k) Ge~(k) we calculate the partial elastic ampli-
tude Te(k) for the same potential (a square well of radius
Rp = 7 fm and depth —Vp = —45 MeV), angular momen-
tum (I. = 4), and energy range (E ( 50 MeV) including
the same states as in Figs. 2 and 3 of [12]. Due to the an-
alytical properties of the square well model we also have
the possibility to check the convergence when including
a large number of resonances and to see the influence of
antibound states and virtual resonances. The potential
in these studies gives rise to one sharp and one virtual
resonance. (We note in passing that it also has more anti-
bound states than bound states, i.e. , a deviation from the
simple picture of pole trajectories presented in [24].) We
give in Table I the eigenvalues of the states with lowest

TABLE I. Eigenvalues with ReE ( 100 MeV and angular
momentum I. = 4, for the square well potential with Rp = 7
fm and Vp ——45 MeV. The form of the energy denominator
used in the approximations with subscripts L, W, and U is
indicated by + for k —k„, x for 2k (k —k„). An s is added
if also the term corresponding to k„ is included.

fe(r)ge(k; r, r') fe(r')dr dr', (23) k (fm ')
Re Im

Energy (MeV)
Re Im

where fe is the form factor associated with a multipole
operator, was used in [12] to compare the approximations
ge(k) = Ge (k) and ge(k) —Ge (k). The conclusions
were that the two expansions have similar behavior (as
functions of energy) except at threshold, i.e. , as k —+ 0,
and that only one term is needed to reproduce the exact
response function in the resonant regions while two terms
might suffice for energies between resonances.

0.000
0.000
0.000
0.307
0.217
1.212
1.865

+1.016
—0.652
—0.441
—0.334
—0.0002
-0.156
-0.191

-21.587
—8.896
—4.073
—0.354
0.988

30.20
71.97

—4.293
—0.002
—7.931

—14.93
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energy.
In Fig. 3 we show separately the real and imagi-

nary parts of Tz(k) and the approximations TP (k)
(Q&o(k)~V[1+ G&+(k)V]~tP&o(k)), with C = L, W, and U.
[In order to make the sharp resonance visible we have ac-
tually plotted the real and imaginary parts of Tg (k)/k. ]
The curves denoted N„, = 4 include only the states of
Table I. We see that it is only the imaginary part that
can be reasonably well approximated by as few as four
resonances and only by TP(k). This still might be re-
assuring since only —1m'(k) is needed to calculate the
partial cross section, but the difficulty with reproducing
the real part is important for understanding the conver-
gence of resonant state expansions. We have therefore
included approximations with a large number of reso-
nances (N„, = 175). We may conclude that ultimately
also the real part will be well reproduced by TP (k). How-
ever, the approximations based on G&~(k) and G&~(k) do
not improve when more resonances are included. (Note
also that they would give a negative cross section at some
energies. )

We may also remark that all the terms in the N„, = 4
expansions give contributions of the same order of mag-
nitude, which means that none of these terms is negli-

gible. The very striking difFerence between the T&~(k)
and TP (k) approximations is due entirely to the pres-
ence of antibound states and the absence of false bound
state poles in the latter form of expansion. Not even
the virtual resonance can be neglected in TP (k) without
destroying the quality of the fit.

In contradiction to what was stated in connection with
the expansions of the response function in [12] we must
conclude that the expansions of the partial elastic am-
plitude based on Gz (k) and Gz (k) do not have similar
behavior (except at threshold) and that several states
might be needed to reproduce nonresonant behavior.

2. Convergence aspects

To see how the approximation improves when one in-
cludes more terms in TP (k), we show in Fig. 4 the loga-
rithm of the relative error logic ~(t+ —t)/t~ as a function
of N„,. Here t and t are either the real or the imaginary
parts of Tg(k) and TP (k), respectively. The dips in these
curves occur when the approximation crosses the exact
amplitude in Fig. 3. These crossings move when we in-
clude more terms (as will be seen also in Fig. 5). Some of
these dips will be filled in as the approximate curve ap-
proaches the exact one. The peaks in the curves for the
error of the real part in Fig. 4 are due to the zeros of the
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FIG. 3. Real and imaginary parts of T~'(k)/k The real.
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the response function is a quantity that shows resonant
behavior even for the broad resonances.

IV. CONCLUSIONS
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FIG. 5. Logarithm of the relative error of the real and
imaginary parts of Ti (k) as functions of the number N„,
of resonances included in the expansion. The amplitudes are
evaluated at k = 0.926 43. (The energy of the 175th resonance
is 131 GeV.)

exact amplitude which will enhance any small but finite
deviation. (There are no zeros in the imaginary part of
the elastic amplitude since there is only one bound state
with E = 4 in this potential. )

To see the convergence as more terms are included we
show in Fig. 5 the relative error at a fixed k value as func-
tion of the number of resonances included. (Only the de-
caying resonances are counted although the correspond-
ing capturing states are included in the U expansion. )
We see that, as indicated also in Fig. 4, the imaginary
part converges faster than the real part. To produce Fig.
5 we selected a k value near the peak of Fig. 4, i.e. , a
point where the real part of the exact amplitude is zero
and thus the relative error is inconvenient as a measure
of accuracy. Although the relative error at N„, = 175 is
82%, the rate of convergence is the same as for other k
values.

8. Threshold behaei or

The threshold behavior (k ~ 0) of TI(k) is determined
by the k dependence of the scattering functions. This is
the same in the approximations TP (k) so that the k2~~+il

behavior is reproduced. Since the single-particle response
function is an average of the resolvent weighted by real k-
independent functions it should have the symmetry (14),
i.e. , Rg( k*) = R&(k). —Consequently ImRg(k) ~ 0,
k —+ 0, and ImRg(ip) = 0, p real. The imaginary part of
the response function is the single-particle strength func-
tion which should vanish for negative energies. Since
the approximation G&+(k) does not have the symmetry
(14) it is obvious that it will lead to a strength function,
—ImRP(k), that does not vanish below threshold. This
is exactly what was observed in [12]. Despite the lack
of correct symmetry and the inclusion of the false poles,
the approximation RP(k) seems to work rather well also
far away from threshold, but then, on the other hand,

For the purpose of developing perturbation theories
utilizing resonant states a relevant problem is how to ex-
pand the resolvent. We have here pointed to the fact
that the symmetry properties of the resolvent are more
restrictive than those of the projection operators involved
in ordinary resonant state expansions. This leads to an
expression for the contribution of a resonant state to the
resolvent that is identical to that of the Mittag-LefHer
theory [15] and different from the forms obtained by di-
rectly applying the completeness relations [6] to the resol-
vent operator 1/(E H). A—s shown by Rorno [15,22], the
spurious poles introduced in the latter case impair seri-
ously the convergence of perturbation expansions. There-
fore, if continuum contributions could be completely ig-
nored, the pure Mittag-LefHer expansion would seem to
be preferable. The Mittag-LefHer theory is, however,
based on still stronger conditions than those we imposed
on the test functions, namely, the strict vanishing of the
potential outside a finite range. Although such a restric-
tion might appear acceptable from the practical point of
view, it excludes in principle most of the interactions gen-
erally employed in nuclear physics. The resonant state
expansions are not restricted in this respect and therefore
provide a more useful tool for investigations in the theory
of nuclear structure and nuclear reactions. It is therefore
gratifying that the method which we here describe, when
applied to the resolvent with due regard to the symme-
tries of this operator, indeed does yield the Mittag-LefBer
expressions for the discrete terms of the expansion and
that in the finite-range case the continuum contribution
can be calculated and shown to vanish.

In this work we have thus found (in contradiction to
Ref. [12]) that the so-called "Berggren expansion" of the
resolvent (21) is unreliable and that the proper expansion
is of the Mittag-LefHer form (20). Although the com-
pleteness relation and the expansion of the resolvent are
intimately related, the criteria for the choice of contour
in the completeness relation are not the same as for the
resolvent. The set of discrete states in the form (9) of the
completeness relation seems to be the natural extension
of the bound single-particle basis while the Mittag-LefHer
form (11) has a problem with overcompleteness and the
interpretation of the virtual states. The usefulness of the
form (10) is a very problematic question, since it is su-
perseded by the Mittag-LefHer expansion (11) inside the
range of the potential. There is no reason to doubt the
validity of (10) as a completeness relation. The contin-
uum contribution may for r & B be calculated resulting
in a sum of discrete terms which merge with the reso-
nant terms so as to give (11). These matters are under
investigation [21].
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APPENDIX: DERIVATIVE
OF THE JOST FUNCTION

The following considerations are based on (and to some
extent are quotations from) Newton's paper [16], Sec.
IV, generalizing Newton's result to hold also for reso-
nant states. The regular solution ye(k, r) of the radial
Schrodinger equation corresponding to the orbital angu-
lar momentum hE can be expressed in terms of the irreg-
ular Jost solutions fe(k, r) defined such that

=(k —k')f (k )f (k' )r
which is easily deduced from the wave equations for
fe(k, r) and fe(k', r). Analogous equations hold for
pe(k, r) and Ipe(k', r) D. ifFerentiate with respect to k and
then put A.

" = k so as to obtain

dW[Bkfe(k, r), fe(k, r)]
( )z

dr
=2k e k, r

dW [Bkpe(k, r), pe(k, r)] = 2kpe(k, r)r
With the usual conditions on k the first equation may be
integrated, if necessary using regularization, from r to
infinity, whereas the second equation can be integrated
without problems from 0 to r:

exp(ikr) fe(k, r) i,
According to Newton [16]

r ~oo. W [Bi,fe(k, r'), fe(k, r')] ~„,
—W [Bkfe(k, r), fe(k, r)]

dr' fe(k, r'),
—E—1pe(kr) = -ik e '

2
x (fe( k) fe—(k, r) —( 1) fe(—k) fe( k, r) j-.

(A1)

As the radial Schrodinger equation contains no first-order
derivative, the Wronski determinant of any two arbitrary
solutions is constant and may be determined from the
asymptotic behavior:

W[fe(k, r), fe( k, r)] = —(—1) 2ik,

where

W[f g] —= fg' —f'g

Equation (Al) gives

fe(k) = k W[fe(k, r), pe(k, r)].

W [Bype(k, r), pe(k, r)] —W [Byte(k, r'), tpe(k, r')] ~„,

dr'(pe(k, r')

The value of W [Bi,fe(k, r'), fe(k, r')]„~ should be inter-
preted as a regularized limit and may then be put equal
to 0. Furthermore, W[Bkpe(k, r'), &pe(k, r')]„p = 0 ac-
cording to the boundary condition

pe(k, r) r +'/(28+ 1)!!

and then

W [Bkfe(k, r), fe(k, r)] = 2k dr' fe—(k, r'),

Using the notation B& = B/Bk we get by differentiation W [BI,(pe(k, r), pe(k, r)] = 2k dr'(pe(k, r') .

= Ek 'W[fe(k, r), pe(k, r)] For k = kp these results are substituted into Eq. (A4)
giving

+k W [Bkfe(k, r), pe(k, r)]
+k W [fe (k, r), BkPe(k, r)]. (A2)

dfe (k) e+ i dr'fe(kp, r')

If k = kp is such that fe(kp) = 0, then ye(kp, r)
(fe(kp, r) and obviously W[fe, ye] = 0. Then (note that
the definition of ( yields the inverse of Newton's coeffi-
cient c)

2ke+i r
dr'(pe(kp, r')

2A, 8+1 oo

dr'(pe(kp, r')2.
ife(—kp)'= .ke+

0

Equation (A2) gives, for this value of k,

dfe(k) = kpgW [By fe(kp, r), fe(kp, r)]
Ic=A:o

(AS) Inserting, finally, the proper value of ( found above, Eq.
(AS), we obtain Eq. (5) of Sec. II.

+(kep/()W [pe(kp, r), Bi„pe(kp, r)]. (A4)

The Wronski determinants in the right member may be
calculated from

With a Gaussian convergence factor exp( —er ) the regular-
ized limit [6] of a function y(r) is defined by lim„y(r) =
lim, p J 2exdz exp( —ex )y(x)dz. This yields 0 for y(r) =
r exp( —2ikr) if Im(k) ( Re(k).
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