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a-%0 and a-'5N optical potentials in the range between 0 and 150 MeV
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A unified description of scattering cross sections as well as bound and quasibound states for the
systems a + %0 and @ + 5N is presented. Optical potentials have been extracted from the
analysis of elastic a-scattering data on %0 and !°N in a wide range of energies. Special emphasis
was given to the @ + !°0 scattering at energies near the Coulomb barrier. The real part of the
potential was calculated using the double-folding procedure. Effective nucleon-nucleon interactions
with different density dependence as well as zero-range and finite-range knock-on-exchange poten-
tials are investigated. The dispersive part of the real potential was calculated using the dispersion
relation of the optical potential. Together with the dominating channel potential it reproduces the
observed energy dependence of the volume integral of the real part of the potential. We calculate
the energies and other properties of bound and resonance a-cluster states in 2°Ne and !°F and find
good agreement with the experimental data. As an application of the derived energy dependence of
the optical potential we calculate a + ®0O excitation functions in the energy range from 10 to 30
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MeV. In this region strong resonances in the compound system are observed.

PACS number(s): 24.10.Ht, 25.55.Ci

I. INTRODUCTION

During the past several decades the nuclear systems
a + 180 and a + 15N have been studied intensively, both
experimentally and theoretically. Up to an alpha energy
of about 20 MeV a large amount of elastic-scattering data
have been collected [1-9]. The main purpose of these ex-
periments was to extract resonance energies, widths, and
spins of states of the compound nuclei 2°Ne and !°F. In
the range between about 20 and 30 MeV, data have been
taken by several authors [10-13]. In this range an anoma-
lously large angle scattering (ALAS) is observed for many
target nuclei including O and !°N. The interpretation
of the ALAS effect and the rainbow scattering at higher
energies has played a decisive role in establishing a unique
a-nucleus optical potential [14]. For the a + !®0 system
such an optical potential was constructed by Michel et al.
[15]. This potential, which has only two smoothly vary-
ing energy-dependent parameters, describes successfully
the o + 160 elastic scattering data in the energy range
between about 30 and 150 MeV.

Differential cross sections for the elastic scattering of
o particles on N and 60 have been measured by Abele
et al. [16] at E, = 48.7 and 54.1 MeV. The experimental
results were analyzed in terms of the optical model using
the double-folding approach [17] for the real part of the
potential. This potential in connection with an imagi-
nary part expressed in terms of Fourier-Bessel functions
gives a precise description of the data. The folding po-
tential is close to the real part of the empirical potential
of Michel et al. [15] for both its shape and energy depen-
dence.

First, Siinkel and Wildermuth [18] calculated differ-
ential cross sections of @ + 0 elastic scattering at
about 20 MeV taking into account the overall antisym-
metrization within the resonating-group method (RGM).
Ohkubo et al. [19] studied the o + 60 scattering at E, ~
20-25 MeV from the viewpoint of the alpha-cluster struc-
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ture adopting the orthogonality-condition model (OCM).
Leeb and Schmid [20] tested the fishbone optical model
which is related to RGM on @ + %0 scattering. Ex-
tensive RGM calculations were carried out by Wada and
Horiuchi [21]. They aimed to describe the o + 60 elas-
tic scattering and the @ ® 60 cluster states in 2°Ne in
a unified way. The results of the calculations are in good
agreement with the experimental cross section data over
a wide range of energies. The equivalent local potential
derived from RGM is found to be very similar to the op-
tical potential of Michel et al. [15] which, as mentioned
above, agrees with the double-folding potential used by
Abele et al. [16]. Recently, the complex internucleus po-
tential for the o + 180 system was investigated by Yam-
aguchi in the framework of the totally antisymmetrized
many-body theory [22]. Both real and imaginary parts
of the theoretical potential coincide well with the phe-
nomenological optical potential which is determined by
the experimental results.

At low incident o energies a strong energy dependence
of the real part of the a-nucleus interaction is expected
[23]. RGM [24] as well as fishbone optical model [25] cal-
culations predict that antisymmetrization effects induce
an increase of a repulsive potential near the barrier radius
as the energy decreases. Furthermore, this effect is pre-
dicted to become stronger at negative energies [24]. On
the other hand, due to dispersion effects, the interaction
is expected to be more attractive in the energy region
where the imaginary part of the potential is increasing
than at higher energies, and its strength is predicted to
decrease again at low energies [26]. A recent analysis
[27] of elastic @ + 80 scattering data at energies near
the Coulomb barrier [9] agrees qualitatively with these
theoretical predictions.

Extensive microscopic RGM studies concerning a-
cluster states in 2°Ne have first been made by Horiuchi
and Ikeda [28] who proposed a moleculelike structure for
the ground-state rotational band with K™ = 07 and the
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K™ = 0~ excited rotational band with the bandhead
at 5.78 MeV. In further investigations [29] it could be
shown that the states of the 0~ band have strong o-
clustering character. These states belong to a rotational
sequence with odd spins ranging from 1 to 9 correspond-
ing to a quantum number Q = 2N + L = 9. All the
states are resonance states with broad a widths as ex-
tracted from o + 6O elastic scattering [4,8,11]. On the
other hand, the ground-state band with Q = 8 is found
to have weaker clustering than the K™ = 0~ band and
to have a transient character between a shell-model-like
and a cluster structure. A second positive-parity band in
20Ne with a marked moleculelike structure is the “higher-
nodal” K™ = 0F band with Q@ = 10. It is composed of
very broad states, the first three of which are observed at
E, ~ 83 MeV (0%),E, ~ 88 MeV (2%), and E, ~ 10.8
MeV (47). The location of the last members of this band
is a matter of controversy [30].

The existence of a-cluster states in the °F nucleus
is suggested by experimental results of a-transfer reac-
tions [31-33]. There is a close correspondence between
the negative-parity band upon the 0.110 MeV state in
9F (K™ = 1/27) and the ground-state band in %°Ne
(Q = 8) as well as the positive-parity band upon the 5.34
MeV state in 1°F (K™ = 1/23) and the 0~ band in 2°Ne
(Q = 9). Both the negative- and positive-parity bands
are well reproduced by microscopic cluster-model calcu-
lations [34, 35] and are found to have a well-developed
a-cluster structure.

Buck et al. [36, 37] presented a potential model for a-
cluster states in 2°Ne and 19F. These states are consid-
ered as bound states and “single-particle” or potential
resonances of a cluster-core potential. The treatment of
the potential model is similar to the RGM except that
first a different effective potential is used and second the
Pauli-exclusion principle is taken into account approxi-
mately by the choice of quantum numbers for cluster-
core states. The @ + 160 potential was obtained [36] by
folding the a-cluster and O-core nucleon densities us-
ing a zero-range nucleon-nucleon (NN) interaction. For
the description of a-cluster states in °F an o 4+ 5N
potential with a cosh parametrization is employed [37].
The shape of this potential is very similar to the fold-
ing potentials used in Ref. [36]. Applying these a-core
potentials, good agreement with energy spectra of the
rotational bands, rms radii, B(E2) values, and a-decay
widths is obtained. However, in both cases the potentials
had not been tested against elastic scattering data. Buck
et al. emphazise that, in contrast to these results, usual
Woods-Saxon potentials with a fixed value of the poten-
tial depth V; give essentially degenerate or even inverted
spectra.

An optical potential description of both a + 60 elastic
scattering and a-cluster spectroscopy of the 2°Ne nucleus
was first given by Michel et al. [15]. The global a + 6O
optical potential they extracted from elastic scattering
data turns out to provide a satisfactory description of
the a-cluster structure in 2°Ne. The potential locates
the Q = 8,9,10 bands within a few MeV of their exper-
imental counterparts denoted as K™ = Of',O‘, and 02’
rotational bands. Moreover, it predicts electromagnetic

intraband transition rates and o widths in good agree-
ment with experimental data.

In the present paper, we give the results of a potential-
model calculation which describes in a unified way the
o elastic scattering on %0 and !®°N in a wide range
of energies and the a-cluster states in ?°Ne and 1°F.
The real part of the alpha-nucleus potential is calculated
by a double-folding procedure using a realistic effective
nucleon-nucleon interaction.

A brief description of the double-folding potential and
the dispersion relation approach is given in Sec. II. In
Sec. III the results of optical model analyses of elastic
scattering data in the range of about 30 to 150 MeV
are given. Effective NN interactions with different den-
sity dependencies as well as zero-range and finite-range
knock-on-exchange potentials are investigated with re-
gard to the quality of the fits. In Sec. IV differential
cross sections for & + 160 elastic scattering at energies
near the Coulomb barrier are investigated. In Sec. V the
results of bound and quasibound state calculations are
given. Finally, in Sec. VI the dispersion relation of the
optical potential is used to calculate the volume integrals
of the real part of the potential. The derived energy de-
pendence of the optical potential is applied to calculate
the & + 160 excitation function in an energy range in
which strong compound resonances are observed.

II. THEORETICAL CONSIDERATIONS
A. Optical potentials

The microscopic optical potential can be written in a
compact form as

U(r,r ; E) = Vo(r,r ) + AV(r,r ; E) +iW(xr,r '; E) .
(1)

This potential is non-Hermitian, strongly energy depen-
dent and nonlocal in coordinate space.

The first term Vp, which we may refer to as the chan-
nel potential, is real and represents the average inter-
action of the colliding nuclei in the absence of nonelas-
tic excitations. It includes exchange terms that arise
from antisymmetrization between the two nuclei. Due
to these terms Vy becomes nonlocal, even if the underly-
ing nucleon-nucleon (NN) interaction is assumed to be
local.

The remaining term, AV + {W, arises from coupling
to all other states outside the model space of the elastic
channel. This part of the potential is complex, nonlocal,
and strongly fluctuating with energy. AV is denoted as
dynamic polarization potential.

In order to obtain a potential which can be applied in
usual numerical calculations, some approximations are
necessary. The first one deals with the strong resonances
of AV which are observed when the incident energy is
varied. Some averaging over the energy leads to an av-
eraged potential U(r,r’; E) which is identified with the
nonlocal optical potential [38].

Since most optical potentials used in numerical cal-
culations are taken to be local, U(r,r’; E) has to be
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transformed into an equivalent local potential in a fur-
ther approximation. This transformation gives rise to an
additional energy dependence. Assuming a spherically
symmetric shape, the potential can be written as

Uopt(R; E) = Vo(R; E) + AV(R; E) + iW(R; E) . (2)

B. The channel potential

The channel potential has the form
Vo(R; E) = (Ypir|v|AYpir) . ®3)

The wave functions p and 7 for the projectile P and
the target nucleus T in their ground states are antisym-
metrized. Therefore the antisymmetrization operator A
only takes into account the exchange of two nucleons be-
tween the two nuclei. This operation splits the channel
potential (3) into two parts:

Vo(R; E) = ) _(ijlvalig) + D _ (ijlvex|i) - (4)
i€P i€eP
JET JET

|¢) and |j) refer to the single-particle wave functions of the
nucleons in the two nuclei, respectively, vy is the direct
and veyx the exchange part of the NN interaction. These
quantities may be described by the four singlet/triplet,
even/odd components of the central NN force. Each
component has been parametrized by a sum of three
Yukawa potentials with parameters adjusted to G-matrix
elements of the Reid [39] or the Paris [40] NN interaction.
The resulting parameters of the so-called M3Y interac-
tion are given in Ref. [41].

A first and commonly used procedure in calculating the
exchange part in (4) is the choice of a § function for the
interaction vex which is scaled by an energy-dependent
strength function Joo(FE) [42]:

Joo(E) = —276(1 — 0.005E /Ap) MeV fm?. (5)

E/Ap is the energy per nucleon of the projectile. Apply-
ing this approximation, the expression for the channel
potential is reduced to one term:

Vo(R; E) = / / P (€)p5 (€,)9(E, 8)dEdE;  (6)
0 0

with

exp(—2.5s)

+Joo(E)S(s) - (7

The geometrical quantities R, §;, §&; and s are shown in
Fig. 1. Kobos et al. [17] have modified the M3Y inter-
action by introducing a density- and energy-dependent
term which has the form

t(E,p,s) = 9(E,|s)f(E,p) - (8)
The density-dependent term f(E, p) was chosen as

f(E,p)

exp(—4s)
4s

= C(E)[L + a(E)e™?®7] (9)

T P

FIG. 1.
tential.

Geometric parameters for the double-folding po-

with p = p.(€;) + pp(€;). The parameters C(E), a(E),
and B(F) were determined by fitting the volume inte-
gral of t(E,p,s) to the strength of the real part of a
G-matrix effective interaction obtained from Brueckner-
Hartree-Fock calculations [43] for nuclear matter of var-
ious densities p and at various energies. The form (8)
implies that the exchange term is also density depen-
dent. The effective interaction (8) folded with the nu-
clear densities gives realistic double-folded alpha-nucleus
potentials [16, 17):

Ve(R; E) = / / po (€0 (EH(E, p, s)dEdE; . (10)
0 0

Another ansatz for the density dependence is expressed
by the form [44]

flp)=(@1-pp")/(1-B/2"). (11)

B denotes the strength parameter and p = p/po is the
density normalized to the nuclear matter value po = 0.17
fm~3. The factor (1 — 3/2%)~! ensures that f(p) = 1
for p = po/2, where the M3Y interaction is valid. Er-
mer et al. [44] find good agreement between elastic pro-
ton, deuteron, and a-particle scattering data on 4°Ca and
208ph at 26-30 MeV/Ap and the results of calculations
using density parameters ¥ = 1/3 and g = 0.47.

A further possibility to calculate the exchange term is
based on the density matrix formalism [41, 45-47]. Khoa
et al. [46,47] obtained a closed expression for Vey (R; E)
in Eq. (4). This model reproduces some o and heavy-
ion scattering data with good accuracy. In our calcu-
lations, presented in Sec. III, we have modified the ex-
pression of this finite-range exchange term by introduc-
ing the density-dependent term f(E,p) [Eq. (9)] into
the exchange term [48]. As a result we get similar but
density-dependent expressions as those given by Khoa et
al. [47].

C. Dispersion relations

According to the causality principle, which states that
a scattered wave cannot be emitted before the interac-
tion has occurred, a dispersion relation between AV and
W of Eq. (1) exists. As shown by Mahaux, Ngo, and
Satchler [26] and recently by Pacheco et al. [49] this dis-
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persion relation also holds in good approximation for the
corresponding terms of the equivalent local potential Eq.
(2) and can be written

P TW(R; E’)
s

AV(R;E) = S5 dE (12)

with P denoting the Cauchy principal value.

The strength of an interacting potential U(E) between
a projectile P and a target nucleus T can be measured
by its volume integral per interacting pair of nucleons

Ju(E) = z-‘*-% / U(r, E)r2dr (13)
0

where Ap and Ar denote the projectile and target mass
numbers, respectively. From Eq. (12) it follows that a
similar dispersion relation holds for the volume integrals
Jav(E) and Jw (E), namely,

Tav(E) = P/JW“”¢W (14)

Since the real part of the optical potential [Eq. (2)] is
composed of two terms, V(R; E) = Vp(R; E)+ AV (R; E),
one has to distinguish between the energy dependence of
Jv,(E), which is calculated by one of the folding pro-
cedures, and the energy dependence of Jay(FE), which
is related to that of the imaginary part Jw (E) by the
dispersion relation (14).

Due to the difficulties in the calculation of the absolute
dispersion relation [Eq. (14)] in the nucleus-nucleus case,
we use in our calculations the “subtracted dispersion re-
lation” [26]:

Jav(E) = Jav(Es)

=w—&§7w_
Ep

E, is a reference energy which lies in the energy domain
of interest. Little is known about the energy behavior of
the imaginary part of a-nucleus optical potentials for o
energies higher than about 200 MeV. Therefore an ap-
propriate choice of E; lies in between about 30 and 100
MeV. The lower limit of the integral (15) is taken close
to the smallest of the bound state energies Ey of the col-
liding system P + T

Jw(E")

A __E)dE’. (15)

ITII. DIFFERENTIAL CROSS SECTIONS
IN THE RANGE 30-150 MEV

First we consider the description of the elastic a scat-
tering on 160 and °N in the optical model (OM). The
experimental data are taken from Refs. [10, 12, 15, 16,
50-57], they are shown together with the results of the
OM calculations in Figs. 2 and 3.

The optical potential used has the form

Uopt (1, E) = Vo(r, E) + ARVR(r,E) +i W(r,E). (16)

For the Coulomb term Vg (r, E) the potential of a uni-
formly charged sphere was assumed using a radius pa-
rameter 7. = 1.25 fm. The real term Vg(r, E) is given by
Eq. (10). The normalization factor Ag is a free param-
eter in the fitting procedure. The choice of an optical
potential according to Eq. (16) implies that the same
radial shape is assumed for both the channel potential
Vo(R; E) and the dispersive contributions to the real po-
tential, AV (R; E), as given by Eq. (2), and that the latter
term is taken into account by the multiplication of the
folding potential Vr with the scaling factor Ag.

The exchange part of the folding potential has been cal-
culated in its zero-range version as outlined in Sec. II B.
For the density dependence of the effective NN interac-
tion, the expression of Kobos et al. [17] [Eq. (9)] was used.
The parameters C(E), a(FE), and B(E) were determined
by the method described in Sec. II B. The resulting val-
ues are very close to those given in Ref. [17]. For the
point-nucleon densities of the o particle and of °N and
160, experimentally known charge distributions [58] with
different parametrizations are used. As all combinations
of differently parametrized distributions give similar re-

r 160(a’a)160 l
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48.8 MeV *10
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FIG. 2. Elastic a scattering on ®0: Experimental data

and optical model fits, calculated by using double-folding po-
tentials, at incident energies 32.2 MeV [10], 40.4 MeV [50],
48.8 and 54.1 MeV [16], 65.0 MeV [55], 69.5 MeV [15], 80.1
MeV [52], 104 MeV [53], and 146 MeV [54]. (The 104 MeV
data have been multiplied by 0.729 [15].)
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FIG. 3. Elastic o scattering on °N: Experimental data
and optical model fits calculated by using double-folding po-
tentials, at incident energies 28.0 MeV [12], 40.5 MeV [55],
48.8 and 54.1 MeV [16], 55.7 MeV [50], 104 MeV [56], and
155 MeV [57].

TABLE L

sults in the folding calculations, only those based on the
parametrization by a sum of Gaussians (SOG) for both,
a particle and target nuclei, are shown in the figures.
For the imaginary part we likewise chose the shape of
a double-folded potential multiplied with a scaling factor
A1 which allows one to adjust the depth of the potential:

W(rE) = —10A; / / pr(£:)pp(€:)5( — £ +€;)
xdg,dE; . (17)

In order to alter the width of the potential a spreading
factor k; as a second free parameter of the imaginary
potential is used which transforms the radial coordinate
T to k7.

All fits were performed using the computer code
GOMPF [59]. As shown in Figs. 2 and 3, for the whole en-
ergy range a good agreement between experimental and
calculated data has been found. The normalization fac-
tors Ar and Ay, the spreading factor kr, and the integral
potential parameters obtained in this analysis are listed
in Table I. The real and imaginary parts of the opti-
cal potentials derived are shown in Fig. 4. The required
normalization factors Agr are close to the values obtained
in previous analyses [16, 17]. As already mentioned by
Kobos et al. [17], the departures of Ar from unity indi-
cate a deficiency in the normalization of the model in-
teraction as defined by Egs. (5) — (9) and by the fit of
the parameters C(E), a(E), and S(F) in Eq. (9) to the
results of Jeukenne et al. [43]. Furthermore, the disper-
sive contributions to the real potential are likewise taken
into account by the normalization factor Ag. In a fur-
ther analysis of the @ + 60 data, the exchange part of
the folding potential has been calculated in finite-range
approximation as outlined in Sec. II B. We solve the ex-
change integral by iteration of each radial point to ensure

Normalization factors Agr for the real part, normalization factors A;, and scaling

factors k1 for the imaginary part of the double-folding potential as well as volume integrals and
rms radii for the optical-model analysis of elastic o scattering on **0O and '°N.

E]:b AR Jr (T%)l/z Ar KI Jr (7’%)1/2
(MeV) (MeV fm?) (fm) (MeV fm?) (fm)
180 4o 32.2 1.375 399.6 3.601 1.708 1.328 40.00 3.951
40.45 1.357 389.9 3.602 2.157 1.368 55.12 4.069
48.7 1.367 388.8 3.604 2.660 1.383 70.29 4.114
54.1 1.351 381.1 3.605 2.795 1.391 75.13 4.137
65.0 1.343 370.7 3.607 3.104 1.409 86.88 4.192
69.5 1.309 361.4 3.607 3.186 1.407 88.66 4.185
80.7 1.300 353.2 3.610 3.427 1.415 96.99 4.208
104.0 1.252 328.2 3.615 3.609 1.426 104.54 4.238
146.0 1.236 302.2 3.628 3.667 1.435 108.28 4.264
BN +a 28.0 1.420 404.2 3.584 1.511 1.312 34.10 3.864
40.6 1.410 400.8 3.586 2.311 1.369 59.30 4.003
48.7 1.416 394.6 3.591 2.664 1.389 71.30 4.090
54.1 1.380 385.3 3.587 3.027 1.394 81.87 4.106
55.7 1.379 384.0 3.587 3.030 1.394 82.02 4.107
104.0 1.266 328.7 3.597 3.560 1.426 103.12 4.198
155.0 1.266 302.2 3.613 3.640 1.436 107.67 4.226
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16 16 15 15 self-consistency. The numerical details of this procedure
. 'Ol(a:a)l 9 . *H — 'Nl(a,la)l N — are given in Ref. [48]. In order to test the influence of

real potential real potential . the density dependence (DD) of the NN interaction to
the quality of the fits, we calculate the channel potential
not only with the Kobos type [Eq. (9)] but also with the

160
140

PR BT Bt

9120 ] Ermer type [Eq. (11)] DD function.

& 100 . g In this way, four kinds of calculations have been carried
§ 80 ] ] out using either zero-range (ZRE) or finite-range (FRE)
§ J exchange terms and using the Kobos type (KDD) as well

(=)
o

. as the Ermer type (TDD) of density dependence. To be
] more flexible in the calculations we have used imaginary
potentials of surface Woods-Saxon shape in this analy-
sis. Again we adjust the volume integral of the channel
— e e potential and the three parameters of the surface Woods-
imaginary potential ilmagix;ary otential ] Saxon imaginary potential by fitting the calculated to the
r ] experimental scattering data. For energies of E, = 48.7
1 and 54.1 MeV the results are shown in Fig. 5, the poten-
tials are given in Fig. 6, and the rms radii, the volume
integrals, and the parameters of the potentials used are
listed in Table II.

The rms radii and the depths of the real potentials
are somewhat larger in the FRE than in the ZRE cal-
culations (about 1% and 6%, respectively) whereas for
each energy the quality of the fits is comparable for both
kinds of calculation. Concluding these results, one can
state that both approximations in localizing the exchange
10 part of the channel potential, namely the localization of
the interaction (ZRE) or the localization of the nuclear
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N
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)
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FIG. 4. Real and imaginary parts of the a + !0 and  densities (FRE), in combination with the chosen effective
o + 5N optical potential used in the calculations shown in NN interaction yield a good description for the system
Figs. 2 and 3. The imaginary part is given in a logarithmic a + 160,

scale.
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FIG. 5. Elastic a scattering on '®O: Experimental data [16] and optical-model fits using zero-range (ZRE) and finite-
range (FRE) exchange terms and the Kobos type (KDD) as well as the Ermer type (TDD) of density dependence in the NN
interactions.
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FIG. 6. Real and imaginary parts of the & + 180 optical
potentials used in the calculations shown in Fig. 5.

As a tendency we find that the potentials calculated
with the TDD are somewhat smaller in depth and width
than those calculated with a KDD. But the variation of
the real part of the potential is compensated by a varia-
tion of its imaginary part, thus resulting in very similar
S-matrix elements for each energy. Summarizing these
results, we find that the description of the experimental
data is satisfactory for all combinations of exchange and
DD terms.

As a practical result of these studies we conclude that it
is sufficient to use the numerically most convenient form
of the double-folding integral which is given by a ZRE-
type exchange and a Kobos-type DD term. Therefore all

TABLE II

analyses described in the next sections are carried out
using this form of the folding potential.

IV. DIFFERENTIAL CROSS SECTIONS
FOR a + %0 ELASTIC SCATTERING
AT ENERGIES NEAR THE COULOMB BARRIER

At low energies differential cross sections for oo + 160
elastic scattering were measured by Buser [9] at eleven
energies between E, = 3.485 and 4.878 MeV. The ener-
gies are close to the Coulomb barrier (Ecg ~ 3 MeV)
and they are lower than the energy of the first inelastic
threshold. In the energy range covered by these data Mc-
Dermott et al. [2] have measured excitation functions. A
phase-shift analysis resulted in the discovery of two broad
overlapping J™ = 0% and 2% resonances in this region.
Using RGM calculations [29] these states are identified
as the first two members of the second positive-parity
band in °Ne (K™ = 0F) which is marked by a signifi-
cant moleculelike @ ® 160 cluster structure.

The experimental data of Buser are shown in Fig. 7
together with data at 5.2, 5.5, 5.8, and 6.2 MeV measured
by John et al. [5]. We have reanalyzed these data in an
OM calculation using a real potential of the form

Uopt = Ve(r) + ARVE (1, E) . (18)

Both, the Coulomb and the nuclear part of the poten-
tial were calculated by a double-folding procedure. In
the calculation of the nuclear potential the zero-range
exchange term [Eq. (5)] and the expression of Kobos et
al. [Eq. (9)] for the density dependence of the effective
NN interaction were applied. For the nucleon densities
of the 60 nucleus and the « particle, values given in the
SOG parametrization were used [58].

In a first attempt we tried to fit the data with a unique
but energy-depenident normalization factor Ag(E). The
results of this one-parameter fit are shown in Fig. 7 as
dashed lines, the factors Ag(E) and the volume integrals
of the nuclear potentials are listed in Table III. The cal-
culations reproduce the trends of the experimental cross
section values fairly well, but in some details the agree-
ment between the two sets of data is poor, especially at
backward angles and in the regions of the cross section
minima. This means that at energies near the Coulomb

Normalization factors Ag of the double-folding potential for the real interaction as

well as volume integrals and rms radii for the optical-model analysis of the elastic a-'®O scatter-
ing at B, = 48.7 and 54.1 MeV using different combinations of exchange and DD terms in the

double-folding potential.

Elb Density Exchange A Jr (rg)1/2 Jr (r3)t/?
(MeV)  dependence term (MeV fm?) (fm) (MeV fm?) (fm)

48.7 KDD ZRE 1.357 386.1 3.604 71.72 4.141
FRE 1.364 404.7 3.648 75.96 4.003

TDD ZRE 0.934 352.4 3.476 64.96 4.033

FRE 0.999 379.5 3.550 70.89 3.838

54.1 KDD ZRE 1.345 379.5 3.605 78.87 4.168
FRE 1.354 395.8 3.650 83.73 4.056

TDD ZRE 0.933 350.9 3.478 74.22 4.239

FRE 0.986 371.8 3.552 77.45 4.100
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FIG. 7. Elastic «a scattering on 6O: Experimental values
[5,9] and optical-model fits calculated by using L-independent
(dashed lines) and L-dependent (full lines) double-folding po-
tentials.

barrier the assumption of a local potential is too simple
to describe the data. A similar resume has already been
given by Michel et al. [27].

Due to these difficulties, in a second attempt L-
dependent potentials are applied. In a first step we use
two sets of folding potentials at each energy characterized

TABLE III.

by their normalization factors A= and A5 whereas in
a second step three parameters, \k=%, A\k=2, and A\5=123
are allowed. The normalization factors resulting from
the fit procedure are listed in Table III. Since the fold-
ing potential Vr is assumed to be energy independent in
the energy range considered, the volume integrals of the
nuclear potentials are given as the product of Ag with
Jr(Vr) = 298.7 MeV fm3. The normalization factors
obtained in the two-parameter fits are very similar to
the corresponding Agr values of the three-parameter fits.
Consequently for each energy the two cross section curves
are nearly indistinguishable from each other and there-
fore the full lines in Fig. 7 represent the results of both
the two- and three-parameter fits. Now the description of
the experimental data is obviously of much better qual-
ity than that of the first attempt using an L-independent
folding potential.

This improvement can be attributed to the poten-
tial for the L = 0 partial waves, which turns out to
be somewhat shallower than the potential for the other
partial waves (see Table III). The relative difference
in the depths decreases with increasing energy, namely
from about 6% (at E, = 3.485 MeV) to about 1.5% (at
E, = 4.878 MeV). For the four higher energies 5.2, 5.5,
5.8, and 6.2 MeV the results are nonuniform. This may
be caused by some resonances in this region; the effects of
those are not taken into account in the present analysis.

The phase shifts for the L = 0 and L = 2 partial waves
obtained from the three optical model fits to the angular
distributions are shown in Fig. 8 together with the results
of McDermott et al. [2] mentioned above. There is a good
agreement between the results of both types of analyses.
The energies at which 6y and 62 cross 90° are near 4.8
and 5.1 MeV, corresponding to F; ~ 8.6 and 8.8 MeV,
respectively.

Michel et al. [27] have analyzed the same data set
within a local-potential model approach, too. They find
that these data can be described very accurately using a

Normalization factor Ar and volume integrals of the double-folding potential used

in the optical-model analysis of elastic « scattering on °O.

One-parameter fit

Two-parameter fit

Three-parameter fit

ngb AR Jr )\ﬁ:O )\221 Aﬁ:o Aﬁ=2 Afi=1’23
(MeV) (MeV fm?)
3.485 1.280 382.5 1.204 1.279 1.204 1.279 1.279
3.975 1.263 377.2 1.221 1.286 1.221 1.286 1.285
4.074 1.265 377.8 1.243 1.308 1.242 1.308 1.300
4.176 1.267 378.6 1.253 1.315 1.252 1.313 1.301
4.275 1.278 381.8 1.259 1.320 1.258 1.318 1.291
4.376 1.290 385.3 1.269 1.321 1.268 1.320 1.201
4.477 1.301 388.7 1.276 1.328 1.274 1.327 1.293
4.578 1.313 392.1 1.299 1.332 1.297 1.332 1.322
4.678 1.322 394.9 1.305 1.335 1.299 1.337 1.326
4.778 1.333 398.2 1.316 1.337 1.303 1.341 1.327
4.878 1.334 398.5 1.318 1.334 1.306 1.341 1.327
5.2 1.342 400.9 1.348 1.343 1.354 1.334 1.322
5.5 1.329 396.8 1.442 1.348 1.349 1.323 1.297
5.8 1.387 414.4 1.531 1.343 1.336 1.367 1.293
6.2 1.365 407.7 1.511 1.331 1.517 1.329 1.317
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potential providing (i) this interaction is made slightly L
dependent and (ii) its diffuseness is significantly reduced
with respect to that needed at higher energies. This sec-
ond feature results in an increase of a repulsive potential
near the nuclear surface with decreasing energy in agree-
ment with recent theoretical predictions as mentioned in
the introduction [23-26].

Concluding our results we find that these data can also
be described very accurately using a double-folded poten-
tial whose depth is somewhat smaller than that needed
at higher energies. This potential has likewise to be made
slightly L dependent, but unlike Michel et al. [27] it is
of the same shape and therefore has the same rms ra-
dius with respect to that used at higher energies. That
means that due to the double-folding procedure in calcu-
lating the potential a possibly existing potential barrier
near the nuclear surface cannot be found. From our point
of view the results of the present analysis can be inter-
preted in the way that the low energy scattering data can
be described thoroughly without any additional potential
barrier.
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FIG. 8. Phase shifts §1=0 and §.=2 obtained from optical-
model fits shown in Fig. 7 (open symbols) together with the
results of a phase-shift analysis [2] (dashed lines) as well as a
quasibound state calculation (dotted lines) (see text in Sec.
V).

V. BOUND STATES
AND POTENTIAL RESONANCES

As a next step we use the double-folding a-nucleus
potential as a suitable cluster-core potential and calcu-
late bound states and single-particle (single-cluster) res-
onances. The wave function uny(r) which describes the
relative motion of the a-nucleus system is characterized
by the node number N and the orbital angular momen-
tum number L. These N and L values are related to the
corresponding quantum numbers n; and !; of the four
nucleons forming the « cluster:

4 4
Q=2N+L=>) 2mi+Li=) a. (19)
i=1 i=1

Thus for 2°Ne = o ® 10 one expects five cluster states
for the ground state (K™ = 07) band and five states for
the first negative-parity (K™ = 07) band with Q = 8
and 9, respectively. For the “higher-nodal” (K™ = 0})
band six states are expected with @ = 10. Since the 1°N
ground state largely can be represented by a p;/; hole in

the closed 1p shell, the states of the K™ = 0] band in
20Ne correspond to the states of the K™ = 1/2] band in
19F, and the states of the K™ = 0~ band in °Ne with
those of the K™ = 1/27 band in °F. The a ® 5N cluster
states split in close doublets because of the small spin-
orbit potential resulting from the motion of the massive
15N nucleus in the field of the o particle.

In the calculations of the cluster states in the frame-
work of our folding-potential model (FPM) we first fixed
the depth of the potentials that the computed excita-
tion energies of the states considered coincide with their
experimental values. For the 2°Ne nucleus we analyzed
the states of the ground-state band, the K™ = 0~ band,
and the first two members of the higher-nodal band. For
19F we calculated the L centroids of the states of the
K™ =1/27 band and K™ = 1/2F band. The results of
this calculation are listed in Table IV. The potentials ob-
tained are very close to each other and to those deduced
from the optical-model analysis of the @ + !0 cross
section data at low energies (see Table III). In a second
step the excitation energies of the bound and resonance
states of four rotational bands were calculated applying
for each band the potential deduced for its bandhead.
The resulting level schemes are shown in Fig. 9, together
with the experimental values [60] and the results of mi-
croscopic calculations [21,35]. The energy splittings both
in 2°Ne and '9F are well reproduced by our calculations,
except for the L = 8 states in both nuclei and the L =7
and L = 9 states in 2°Ne. The calculated states lie very
close to an ideal L(L + 1) rotational spectrum, while the
experimental L = 7,8, and 9 states deviate strongly from
this rule. For the L = 8 states this behavior is well known
[15, 36, 37]. In the case of the L = 7 and L = 9 states
in 2°Ne, the levels at E, = 15.34 and 22.87 MeV are as-
signed as members of the 0~ band [61], marked in Fig.
9 as dotted lines and given in Table IV in parentheses.
But in Ref. [60] the states at E, = 13.69 and 17.43 MeV
are characterized as the highest members of the 0~ band.
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With this assignment the agreement between experimen-
tal and calculated results is poor. Therefore we suggest
that the older assignment is the correct one.

McArthur et al. [8] have measured the yield curves for
« particles scattered on 0 at O, = 160° for the first
two members of the K™ = 0~ band in 2°Ne. Using the
potentials which localize the exact resonance energies of
the two states (Table IV) we have calculated excitation
functions at ©¢.m. = 160° in the vicinity of the resonance
energies. The results are shown together with the ex-
perimental data in Fig. 10. Both resonances are well
described by the double-folding potential meaning that
the term “potential resonance” is justified.

Furthermore, we have calculated the phase shifts in
the range of the two broad 0% and 2+ resonances of the
higher-nodal band in 2°Ne using the appropriate poten-
tials which yield the resonance energies at E, = 8.7 and
8.8 MeV [60], respectively. The results are shown in Fig.
8 as dotted lines. The poor agreement between the re-
sults of this calculation and the results of both the phase-
shift analysis of McDermott et al. [2] and our optical-
model analysis of the elastic scattering data of Buser [9]
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may be caused by the strong energy dependence of the
strength of the optical potential in this energy range: In
contrast to our analysis of the elastic scattering data, we
have used in the phase-shift calculation over the range
of each broad resonance the same normalization factor
Ar which has been fixed by the value of the excitation
energy E, ~ 8.7 and 8.8 MeV, respectively.

Further information about the quality of the a-cluster
potentials can be obtained by the calculation of electro-
magnetic transition rates between the levels of a rota-
tional band. In a cluster-core model the B(E2) values
for a transition L' = L + 2 — L are given by

16
B(E2) = 5[uI\r,L+2(T)I~‘3eﬂfT2luN,L(7‘)]2(L'020|LO)2 -

(20)
We calculated B(E2) values for the transitions between
the states of the ground-state band and between the 3~
and the 1~ state of the K™ = 0~ band in 2°Ne, which
can be compared with experimental [60, 62] and shell-
model [36] values. The results are listed in Table V. In
our calculation we do not use an effective charge and put

TABLE IV. Normalization factors A and volume integrals Jg of the double-folding potentials
obtained in the analysis of the bound and quasibound a-cluster states in 2°Ne and '°F.

E,® Es™ K™ Jr L, Q Ar Jr
(MeV) (MeV) (MeV fm?®)
20Ne g.s. -4.73 of ot 0 8 1.237 370.9
1.63 -3.10 2+ 2 1.220 365.7
4.25 -0.48 4t 4 1.212 363.4
8.78 4.05 6t 6 1.200 357.4
11.95 7.22 8+t 8 1.265 375.1
5.79 1.05 0~ 1- 1 9 1.267 378.4
7.16 2.43 3- 3 1.277 381.4
10.26 5.53 5~ 5 1.279 380.2
13.69 8.96 7 7 1.321 394.2
(15.3¢®  10.61 - 7 1.274 375.7)
17.43 12.70 9~ 9 1.405 419.7
(2287  18.14 9- 9 1.296 366.6)
~ 8.7 3.97 of ot 0 10 1.302 388.7
~ 8.8 4.07 2t 2 1.351 402.4
g 0.11 -3.90 1/27 1/2” 0 8 1.283 379.7
1.35 -2.67 5/2”
146 256 3/2- 2 1.275 377.5
4.00 -0.02 7/2”
403 0.02 9/2 4 1.271 376.1
8.29 4.27 13/2~
805 494 11/2- 6 1.253 371.0
12.26 © 8.25 17/2~
. 87.
12.65 °© 8.64 15/2~ 8 1.309 3875
5.34 1.33 1/2F 1/2% 9
5 50 149 3/2+ 1 1.301 387.4
6.28 2.27 5/2%
7.11 3.10 7/2% 3 1.323 391.7
9.93 5.91 9/2%
10.37 6.35 11/2% 5 1.314 389.1

>Reference [60].
bReference [61].
“Reference [33].
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near the 1~ and 3~ resonances in 2°Ne. Comparison of the
experimental values (8] with the results of our optical-model
analysis.

TABLE V. B(E2) values in e? fm* for the transitions be-
tween the states of the g.s. band and the first two members
of the K™ = 0~ band in %Ne.

Expt. values Shell This work
a b model €
2f -0f 655+ 32 58165 526 50.8
4 -2 709+ 65 67765  64.5 68.3
65 —47 644+ 97 645+97 534 54.5
8 =67 201+ 4.2 32.8 31.2
37 —-1" 161.3 + 25.8 157.0

*Reference [60].
PReference [62].
°Reference [36].

eef = €. Comparing the data a good agreement is found.

As a further test of our simple cluster model we cal-
culate the charge distribution of the 2°Ne nucleus (in its
ground state) by folding the experimental charge distri-
butions of 10 and “He, which we already have used in
our double-folding procedure, with the radial wave func-
tion up(r) and assuming a spherical shape for the folded
distribution. The result of this calculation is shown in
Fig. 11 together with the experimental charge distribu-
tions, as measured by electron scattering on 2°Ne, and
with the difference between the two curves. It can be
seen that the calculation overestimates the experimental
density in the nuclear interior, whereas in the surface re-
gion, near r = 3 fm, the experimental values are slightly
underestimated. But the rms radii of both distributions
come out to be identical: (r2)}/2 = 2.992 fm.

VI. VOLUME INTEGRALS AND
EXCITATION FUNCTIONS

The values for the volume integrals J; of the imagi-
nary part of the @ + 60 optical potential (see Table

0.1 — T T T T T T T T T
0.08 N --~- calculation s
experiment i
0.06 + .
<
E
3,004 .
> ]
N’
QU
0.02 4
difference
S L
0.0 i
-0.02 P U WS R SN SR |
0 1 2 3 4 5 6 7
r (fm)
FIG. 11. Comparison of the experimental charge distri-

bution of ?°Ne [58] with the distribution calculated in the
potential model.
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I) are shown in the upper part of Fig. 12. The energy
dependence of these data can be parametrized [63] by

E—Ep)?
Jy = {Jozﬁrgg;!‘%zm E > Ey,

21
0, E < Ey, ( )

with Ey being the threshold energy for inelastic o scat-
tering: Ep = 6.05 MeV. A linear regression procedure
to the data points results in Jy = 114.4 MeV fm® and
A = 25.8 MeV. The curve calculated with these param-
eters is given in the upper part of Fig. 12 as a solid
line.

For the calculation of the dispersion relation [Eq. (14)],
assumptions about the energy behavior of J; at higher
energies are necessary. As already shown by Mahaux et
al. [26] and more recently by Abele [48], the high en-
ergy behavior of J; mainly affects the overall normaliza-
tion of Jg. This uncertainty in the overall normaliza-
tion is avoided by the use of the subtracted dispersion
relation [Eq. (15)]. The influence of the high energy be-
havior of J;(E) to the real part AJg(E) for energies
lower than 150 MeV has been studied for three different
dependencies of Jr(E) [48]: (i) a linear decrease is as-
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FIG. 12. Volume integrals of the real and imaginary part
of the optical potential for the & + O system: Results
of the fit procedure (Tables I and IV: open circles). The
solid curve for the imaginary part is given by Eq. (21) with
Jo = 114.4 MeVfm3, Ey = 6.05 MeV, and A = 25.8 MeV. For
the real part the volume integral of the bare channel potential
is given as a dotted line, whereas the total values (channel plus
dispersive part) are marked as a solid line. The normalization
is done at E!2® = 80.7 MeV.

sumed in the range 250 MeV < E < Er, with J;(EL) =0
and Er = 10?° MeV; (ii) an energy-independent behav-
ior is assumed in the range 250 MeV < E < 103 MeV
whereas for higher energies up to 102° MeV again a lin-
ear decrease is supposed; and (iii) a linear increase in
the range 250 MeV < E < 10° MeV is assumed with
Jr(10% MeV) = 2J;(250 MeV) together with a linear de-
crease at higher energies up to 102° MeV. The appli-
cation of the subtracted dispersion relation results in a
very similar energy dependence of AJgr(E) in the energy
range —10 MeV < E < 150 MeV for all three cases stud-
ied. Only differences of the order of 3% are observed. In
a further study the upper energy limit E1, has been varied
in the range 101° < Ep < 10%°° MeV. The influence of
this variation to the real part AJg(FE) for energies lower
than 150 MeV is negligible [48].

In the calculations presented here we used the
parametrization (21) up to an energy of E = 220 MeV
whereas for higher energies up to Er, = 1020 MeV a lin-
ear decrease of J;(E) was assumed with J;(FL) = 0. For
the numerical calculation of the integral, the function Jr
[Eq. (21)] was approximated by straight lines in energy
intervals whose lengths AE = E; — E; are defined by
|J(E;) — J(Bs;)] = 1 MeV fm3. The calculations were
related to a reference energy E, = 80.7 MeV (lab).

In the lower part of Fig. 12 the energy dependence
of the volume integral of the channel potential, derived
from the double-folding procedure and normalized to the
value at E,, is shown as a dashed line. The sum of this
channel potential and the calculated dispersive part is
given as a solid line. This sum is independent of the
reference energy E; as long as the value of E; is assumed
to belong to the interval 50 MeV < E; < 100 MeV. The
figure shows distinctly the influence of the coupling of the
inelastic channels, correlated with the imaginary part of
the potential, to the elastic one.

These results are very close to those obtained by Ma-
haux et al. [26]. Furthermore, in the figure the volume
integrals Jg, listed in Table I, are shown together with
those of the potentials which describe the °Ne = a® 160
ground state and the 1~ and 3~ resonance-state energies
of the K™ = 0~ band. The energy dependence of the
values obtained from the fits to the experimental data is
reproduced excellently by the results of the calculations.

It should be mentioned that these results cannot sim-
ply be compared with those of Wada and Horiuchi [21].
These authors concluded that about 30% of the observed
energy dependence is due to the nonlocality of the inter-
nucleus potential or equivalently due to the internucleus
antisymmetrisation effect, whereas the remaining 70%
are due to other origins including dynamical polariza-
tion processes. For the results presented here it appears
doubtful whether it is feasible at all to disentangle the
effects due to antisymmetrization and due to dynamical
polarization in our approach. On the one hand, the ob-
served energy dependence originates from the exchange
contribution in the folding potential [Eq. (5)]; on the
other hand it is due to the dynamical polarization pro-
cesses which are taken into account in our calculations by
the use of the subtracted dispersion relation [Eq. (15)].
For a more precise statement to this topic further theo-
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retical work on the relation between local and nonlocal
optical potentials has to be done.

Encouraged by the good agreement of the calculated
volume integrals with the fits to the experimental data
(Fig. 12), we extended the calculations to the resonance
region, that is to the energy range 10 < E, < 30 MeV.
The shape of the real as well as the imaginary part is
fixed by the folding procedure. The radius parameter
k1 (see Sec. IIT) was extrapolated to lower energies; the
normalization factors Ag and A; are fixed by the energy
dependence of the volume integrals Jg and Jy, respec-
tively, as shown in Fig. 12.

Using these interpolated potentials we calculate the ex-
citation functions of the @ + 60 elastic scattering [4,
11] at six angles. The results are given in Fig. 13. We
find good agreement between the experimental data and
the results of the calculaticns. Only for O, = 137.9°
and 163.8° the calculation overestimates the experimen-
tal data at lower energies by about a factor of 2. It
should be mentioned that these calculations are not ad-
justed to any experimental data in this energy region.
The calculations were performed straightforwardly using
the energy-dependent potentials obtained by the appli-
cation of the subtracted dispersion relation for the real
part and the parametrization (21) for the imaginary part
of the potential.

Some structures of the excitation functions are pre-
dicted by the potential. They can be associated with
high spin states of the rotational bands discussed in Sec.
V. In Fig. 14 the phase shifts of the partial waves with
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FIG. 13. Elastic « scattering on 0: Experimental ex-
citation curves [4, 11] together with the results of our OM
calculation.
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FIG. 14. Phase shifts §; with L = 0 to 10 calculated with
the interpolated optical potential.

L = 0 to 10 in the resonance region are shown as cal-
culated by means of the interpolated potential. A sharp
L = 7 resonance is found at Ej,p, ~ 11.8 MeV; for L =6
and L = 8 broader resonances are observed at energies
near 14.5 MeV and 20.8 MeV, respectively. For L = 9
and L = 10 only weak local maxima at Ej,p, ~ 18.2 MeV
and Ejap ~ 29.1 MeV are found. Due to the number of
nodes of the corresponding wave functions, the L = 7 and
L = 9 resonance can be associated with the 7~ and 9~
states of the K™ = 0~ band. The resonance energies pre-
dicted by the potential model, however, are found to lie in
between the experimental values given in Refs. [60] and
[61], repectively (see Table IV). The L = 6 and L = 8
resonances as well as the local L = 10 maximum can be
associated with the last three members of the K™ = 0F
band in °Ne. This interpretation is in agreement with
the results of Refs. [11, 15, 30].

VII. CONCLUSIONS

Differential cross sections for the elastic scattering of
o particles on 10 and !°N have been analyzed in a
wide range of energies in the framework of the optical
model. The real part of the potential was deduced by
a double-folding procedure using a density-dependent ef-
fective nucleon-nucleon interaction. For the imaginary
part a shape of the potential similar to that of the real
part was chosen. Three energy-dependent free parame-
ters are needed to fix both parts of the potential. The
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cross sections are described very satisfactorily for inci-
dent energies between about 30 and 150 MeV.

Calculations have been carried out using either zero-
range or finite-range exchange terms and two different
types of density dependence in the NN interaction. As a
result we conclude that it is sufficient to use the numeri-
cally most convenient form of the double-folding integral
which is characterized by a zero-range exchange term [42]
and a density-dependence term given by Kobos et al. [17].

For incident energies near the Coulomb barrier we have
reanalyzed the elastic @ + 60 cross section data mea-
sured by Buser [9] and McDermott et al. [2]. In order to
fit the experimental data in this energy range using a lo-
cal potential, weakly L-dependent potentials are needed.
Especially the potential for the L = 0 partial waves re-
sults to be somewhat shallower than the potential for the
other partial waves. From the optical model fits to the
experimental differential cross sections phase shifts 67—¢
and 67—, are obtained which agree well with the results
of McDermott’s phase-shift analysis.

Using the double-folded a-nucleus potential as a
cluster-core potential we calculate bound and quasibound
states in '°F and °Ne which are characterized by a
moleculelike @ ® core cluster structure. The excitation

energies of the Q = 8 and 9 rotational bands in °F and
20Ne as well as excitation curves in the range of the 1~
and 3~ potential resonances, electromagnetic transition
rates between some states in 2°Ne, and the charge dis-
tribution of the 2°Ne nucleus are well reproduced in this
potential model. Thus it may be concluded that the use
of double-folded a-nucleus potentials allows a unique de-
scription of scattering cross sections as well as of bound
and o-like resonance states for the systems o + 10 and
o + BN.

The energy dependence of the volume integral of the
real potential can be understood by the combination of
the slightly energy-dependent channel potential, derived
from double-folding, and the strongly energy-dependent
dispersive part. Using the subtracted dispersion relation
[26], the observed energy dependence of the real potential
can be reproduced satisfactorily.
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