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We have carried out a computational comparison of all existing quantum-mechanical models for
multistep direct (MSD) reactions. The various MSD models, including the so-called Feshbach-
Kerman-Koonin, Tamura-Udagawa-Lenske and Nishioka- Yoshida-Weidenmiiller models, have been
implemented in a single computer system. All model calculations thus use the same set of parameters
and the same numerical techniques; only one adjustable parameter is employed. The computational
results have been compared with experimental energy spectra and angular distributions for several
nuclear reactions, namely, Zr(p, p') at 80 MeV, Bi(p, p') at 62 MeV, and Nb(n, n') at 25.7 MeV.
In addition, the results have been compared with the Kalbach systematics and with semiclassical
exciton model calculations. All quantum MSD models provide a good fit to the experimental data.
In addition, they reproduce the systematics very well and are clearly better than semiclassical model
calculations. We furthermore show that the calculated predictions do not difFer very strongly between
the various quantum MSD models, leading to the conclusion that the simplest MSD model (the
Feshbach-Kerman-Koonin model) is adequate for the analysis of experimental data.

PACS number(s): 24.60.Gv, 25.40.Ep, 25.40.Fq

I. INTRODUCTION

In nucleon-induced nuclear reactions, one convention-
ally distinguishes between fast, direct processes and slow,
compound processes. However, for reactions with inci-
dent energies between 10 and 200 MeV per nucleon, it is
found that emission can take place after the direct stage
but long before the attainment of statistical equilibrium
in the compound stage. Such processes are called pre-
equilibrium reactions and account for a significant frac-
tion of the total reaction cross section. Quantum-
mechanical preequilibrium theory distinguishes between
multistep compound (MSC) processes (i.e. , all particles
remain bound throughout the successive stages of the
reaction) and multistep direct (MSD) reactions (i.e. , at
least one particle remains in the continuum). In Ref. [1]
we have analyzed the relationships between the various
existing multistep direct reaction models, including the
models of Feshbach, Kerman, and Koonin (FKK) [2],
Tamura, Udagawa, and Lenske (TUL) [3], and Nishioka,
Yoshida, and Weidenmiiller (NWY) [4]. The step that we
take in the present paper is to perform a practical compu-
tational comparison between these MSD models, so that
conclusions can be drawn about their validity and appli-
cability. This work is the first to give a comprehensive
computational intercomparison of the various quantum
MSD models. Up to now, only a few, isolated calcula-
tions have been carried out [3,6—8]. Accordingly, we have
implemented the mentioned MSD models in a single com-
puter program called KAPSIES in order to compare them
with each other and with experimental data. This inte-
gration into one system has the obvious advantage that
the same set of parameters and the same set of numerical
techniques can be used for the calculation of the cross sec-

tions. Consequently, observed differences can be said to
be of a purely theoretical nature and not the result of an
inconsistent comparison between two different computer
programs. Another attractive feature of such a MSD re-
action code is that if the corresponding models can be
implemented in an economical way, they ean eventually
serve as physically better justified quantum-mechanical
alternatives to the classical preequilibrium models that
dominate the nuclear data applications nowadays [9, 10].

The most reliable evidence that the MSD reaction
mechanism may be important is the presence of smooth
forward peaked angular distributions over a wide range
of outgoing energies. Furthermore, since the MSC mech-
anism is restricted to the low energy end of the pre-
equilibrium region, the total relative contribution of MSD
processes to the preequilibrium cross section increases
with increasing incident energy. At high incident ener-
gies (above, say, 50 MeV) the MSD process accounts for
virtually all of the preequilibrium cross section and the
MSC mechanism only participates as a part of the MSD-
MSC crossover effect. In analogy with the theoretical
derivations of the various MSD models, we have pursued
a consistent extrapolation to the continuum of the direct
reaction methods that are generally used to predict cross
sections for discrete states.

In See. II, the theoretical results of Ref. [1] are recapit-
ulated and written in a form suitable for computer appli-
cations. In Sec. III, we discuss the method of perform-
ing distorted wave Born approximation (DWBA) calcu-
lations in the continuum. Next, in Sec. IV a brief descrip-
tion of the calculation of MSD cross sections is given. In
See. V, the various MSD models are compared with the
experimental data and with the Kalbach systematics [11].
Finally, some conclusions of this paper are given.
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II. MULTISTEP DIRECT CROSS SECTIONS

Since the mathematical derivation of the different MSD
models has been extensively discussed in Ref. [1],we will
only list the various cross section formulas. However, in
contrast with Ref. [1], we retain all kinematical factors
in the expressions for the cross section, so that these are
immediately suitable for computational implementation.

As seen in Ref. [1], the various MSD models use dif-
ferent quantum-statistical assumptions, called leading-
particle statistics and residual-system statistics. The
TUL and NWY models only employ the latter, whereas

the FKK model basically uses the first. Both types of
statistics enable the continuum cross section to be ex-
pressed as an incoherent sum of one-step and multistep
cross sections. The double-differential energy-averaged
one-step cross section turns out to be the same for all
MSD models. It can be written as the product of the
state density and a squared matrix element averaged over
particle-hole states. Decomposition into different trans-
ferred angular momenta l then yields a weighted sum
of first-order DWBA cross sections (averaged for each l
value):

dzcr&'&(E, A ~ Ep, Ao)—= ) (2l + 1)R(l)cuii, ii, (Ep —E)
l

d~~il(E A E Ao)

2t+1
R(l) = exp

2 2' o'

(l + 1)2
20' (2)

and satisfies the relation Q&(2l + l)R(l) = 1. The
Williams particle-hole state density for Ii particles and
h holes is [12]

„(E —Ap, g —P)"
p !hi (n —1)I

where g is the single-particle state density, E the ex-
citation energy, n = p+ h the exciton number, A„ I, =
[p(p —1)+ h(h —I)]/4 the Pauli correction factor, and P
the pairing correction.

where Ep, Ap and E, A are the incident and outgoing en-
ergy and angle, respectively. The function R(l) (with
spin cutoff factor o) represents the spin distribution of
the residual states in the continuum. It is given by

In general, the one-step cross section provides the ma-
jor part of the total (outgoing energy-integrated) cross
section. Especially at the highest outgoing energies the
first step is predominant and by itself practically suffi-
cient to explain the data. Nevertheless, interesting as-
pects of the MSD model comparison are found in the
higher step processes. As outlined in Ref. [1], differ-
ent types of statistical postulates generate a variety of
two-step direct cross sections. Among these, the FKK
model is the most appealing from the computational
point of view. The original FKK expression as given
by Eqs. (4.21) and (4.22) of Ref. [2] involves double-
difFerential transition probabilities and state densities of
the continuum particle. Upon choosing a representation
in terms of the intermediate energy Ei and intermedi-
ate solid angle Ai, we can rewrite this expression in a
compact recursive form which enables a very fast com-
putation of the second- and higher-step cross sections. In
particular, the FKK two-step cross section reads

d o(E,A~Eo 'Ao) m
dA

d cr (E A~Ei, Ai)d o (Ei Ai ~Eo Ao)
dA dE 47r2&2 dA dE dAidEi (4)

where m is the reduced nucleon mass and the continuum one-step cross sections are given by Eq. (1). This can easily
be generalized to the n-step cross section:

d2cr&"&(E A ~ Eo, Ap) m
dA dE

d r~i~c(E, A ~ E„ i, A„ i)

d2cr~" ~(E„ i, A„ i ~ Ep, Ap)
X

dB„gdE„

A conspicuous feature of the convolution structure of the
FKK model is that the n-step cross section can be ex-
pressed in terms of the result of the previous stage and
is therefore easy to calculate. Basically, only first order-
DWBA cross sections are required as input for the cal-
culation of the multistep cross section.

Whereas the application of leading-particle statistics
achieves the separation of a two-step cross section into

two independent one-step cross sections, residual-system
statistics yields two-step expressions that remain depen-
dent on full second order DWBA. As -explained in Ref. [1],
this is a natural result of the failure of residual-system
statistics to remove the interference effects associated
with the leading particle. The two examples of residual-
system statistics are the TUL model [3] and the NWY'
model [4]. The TUL model applies residual-system statis-
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ties after both the first and second steps (adiabatic ap-
proximation). This is equivalent to saying that at each
stage of the reaction there occurs random configuration
mixing of the particle-hole states over the real nuclear
states before the creation of a new particle-hole pair.
The true state densities that accompany residual-system
statistics provide an effective description of this process.

I

In the limit of vanishing residual interaction, the true
state density becomes equal to the particle-hole model
level density. With this approximation, the TUL energy-
averaged two-step cross section takes a global form and
can be written as a weighted sum over second ord-er

DWBA cross sections:

d'~~'l E n~E = ) f dZ, (212+1)R(lg)~,p, g(R, —R)(2), +1)R(l,)
t y, l g

do &2& (E,0 ~ Ei, Ai d—Ep, Ao)
X (d 1p 1h (EO El (6)

where ti and t2 are the angular momenta transferred in
the first and second steps, respectively. Upon comparison
of Eq. (6) with the FKK expression (4) we observe that
leading-particle statistics is a more drastic approximation
than residual-system statistics. In the latter case, the
dependency on the full second-order DWBA cross section
remains.

In the NWY model, it is assumed that the interme-
diate process occurs so fast that configuration mixing
at the first stage does not occur and, instead, the sys-
tem immediately proceeds with the creation of an addi-
tional particle-hole pair. Consequently, residual-system
statistics only applies to the final states (sudden approx-
imation). As a result, the corresponding two-step cross
section formula is quite complicated since it involves the
coherent summation of four alternative paths leading to

the final 2p2h state. Hence, we do not obtain a simple ex-
pression in terms of individual second-order DWBA cross
sections. An exact calculation of the NWY two-step cross
section would require microscopic information about the
model states and an operation in an existing direct reac-
tion code that properly isolates the two-step amplitudes
and subsequently sums them as prescribed in Ref. [4], a
task which is very difficult to perform. Nevertheless, we
can obtain an estimate of the NWY model by assuming
that the individual amplitudes do not difFer significantly
and thus add constructivety to the cross section. This is
however an upper limit and therefore may overestimate
a proper microscopic calculation of the NWY cross sec-
tions. Then, our approximation of the NWY two-step
cross section becomes

= 16) (212+ l)R(lz)~zp2h(EO —E)(2ti+ 1)R(li)

where the bar on the right-hand side denotes an aver-
age over the intermediate energy. Having performed the
aforementioned approximation, the most prominent dif-
ference with the TUL model is (apart from the factor of
16 resulting from our additional assumption) that in the
NWY model there is no statistical weighting (state den-
sity) after the first step, but instead a 2p2h state density
at the final stage only.

The computational comparison that follows is based
on a direct implementation of the formulas given in this
section. An important additional approximation on the
original models that we like to point out here is the appli-
cation of the Williams state density formula in all mod-
els. Although the MSD models associated with residual-
system statistics are based on random configuration mix-
ing and therefore necessarily involve true level densities
[5], we have simplified this by taking the limit of van-
ishing residual interaction. The advantage of using the

Williams state density formula in all MSD models is that
it enables a consistent comparison of nuclear dynamics
involving residual-system statistics against nuclear dy-
namics involving leading-particle statistics.

III. DWBA IN THE CONTINUUM

The formulas given in the previous section clearly re-
veal that a sizable part of the calculation consists of com-
puting double-differential DWBA cross sections in the
continuum for several energies and transferred angular
momenta. When these are calculated they can be pro-
cessed (i.e. , multiplication by level densities and integra-
tion over intermediate energy) according to the several
aforementioned MSD prescriptions. In this way the con-
tinuum cross sections are obtained.

The general method is exemplified by expression (1)
for the one-step cross section in combination with Fig. l.
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Eq. (1) .~8
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FIG. 1. Smooth forward peaked angular distribution as
a result of the statistical averaging. DWBA cross sections
for the fictitious states 0+,1,2+,3 are calculated for the
reaction (p, p') on Zr at 80 MeV of incident energy and 60
MeV of outgoing energy and subsequently averaged according
to Eq. (1).

DWBA cross sections are computed at a specified exci-
tation energy for each residual spin. After multiplication
with the corresponding angular momentum dependent
state density and summation over all angular momenta
the (average) MSD cross section per MeV is obtained.
The result is that the typical forward-backward asymme-
try remains, whereas the individual oscillatory behavior
of the angular distribution of each residual state disap-
pears, as depicted in Fig. 1. Hence, we Gnd a smooth
forward peaked angular distribution. This implies that
the individual DWBA cross sections, not being related
to a specifi state, merely serve as a global representa-
tive of the dynamical process. The statistical properties
of the nucleus (i.e. , the state density) assure that their
individual characteristics average out.

The first rnicroscopie MSD application has been per-
formed by Bonetti et al. [6, 7] for an implementation of
the FKK model. In this approach, a simple spherical
Nilsson model (which is of sufficient sophistication be-
cause of the lack of knowledge of the detailed level prop-
erties in the continuum) has been used to generate the
1plh states. These are grouped into several classes, each
class corresponding to the same total angular momentum
and region of excitation energy. For a randomly chosen
sample from the particle-hole states, the DWBA angu-
lar distributions are calculated using microscopic two-
particle form factors (the hole is treated as a particle).
The effective nucleon-nucleon interaction is represented
by a Yukawa potential with strength Vo and range 1 fm
and the bound-state wave functions are generated with
a real Woods-Saxon potential. Subsequently, the result-
ing angular distributions are averaged over the number
of states in each class so that an average DWBA cross
section per l value and excitation energy is obtained and
the FKK cross sections can be computed Finally, .the
strength Vo can be adjusted to reproduce the data and
be compared with independent estimates [13]. A disad-
vantage of this method is that in the neighborhood of
a certain excitation energy few or no particle-hole states
may be available. Generally, the samples taken are rather
small. Then, in order to obtain a reliable average, distant
particle-hole states have to be included in the sample.
Consequently, the correspondence between the true exci-
tation energy and the energies of the shell model states
is lost. Furthermore, as observed by Marcinkowski et

al. [8], if some of the DWBA angular distributions de-
viate very much from the behavior of the others in the
same class, the validity of the average upon taking too
small a sample becomes dubious. Hence, this method re-
quires many microscopic DWBA calculations of the same
type to obtain only one averaged DWBA cross section.
For this reason, it is impracticable to perform a proper
microscopic calculation of the TUL and NWY two-step
cross sections, since that would require about 10000 mi-
croscopic second-order DWBA calculations.

An alternative, rnaeroscopic approach has been em-
ployed by Tamura et al. [3]. These authors found that
an average (over many shell model states) of microscopic
form factors of the same total angular momentum yields
an average form factor that is surface peaked. Thus,
they concluded that each average DWBA cross section
appearing in the MSD formulas can equally well be de-
termined by one macroscopic calculation. In this case,
the macroscopic form factor is related to the derivative
of the optical potential U(r):

(8)

where Ro is the nuclear radius. The dynamical defor-
mation parameter for multipole excitations Pt, which
is a direct measure for the interaction strength, serves
as the adjustable factor. For direct reactions to the
continuum, the value of Pt is, of course, much smaller
than the values commonly encountered in reactions to
strongly coupled states. As an additional verification, we
have checked that comparison of averaged microscopic
DWBA cross sections (sampled over randomly chosen
particle-hole states with the same total angular momen-
tum) and the corresponding macroscopic DWBA cross
sections does not exhibit significant differences. An ex-
ample of this verification can be found in Sec. V A. There-
fore, we have also used the macroscopic DWBA approach
of Ref. [3] for our MSD calculations. With this method,
consistency is maintained with the analysis of discrete di-
rect reactions, where the rnaeroscopic form factor (8) is
frequently applied to explain the bulk of the experimen-
tally observed levels. The practical advantage is that the
number of calculations is significantly smaller than in the
microscopic case, without a reduction in quality.

IV. COMPUTATIONAL COMPARISON

Having established the theoretical differences between
the various MSD models and the method to calculate
the necessary DWBA cross sections, we can proceed with
the implementation of the MSD expressions and compare
them with each other and with the experimental data. To
this end, we have constructed the code system KAPSIES
(see Fig. 2) which calculates MSD cross sections as given
by Eqs. (1)—(7).

Later on, we will also compare our results with two
other implementations of MSD models, namely, the code
by Bonetti and Chiesa [14] for the FKK model and the
code by Tamura et al. [15] for the TUL model. The NWY
model has not been implemented before. The present
work is the first attempt to perform a MSD model com-
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KAPSIES

DWBAIN Pre—processor

TUL

NWY

DWBA calculator: ECIS88

culation of the form factor, which is done according to
Eq. (8). The Pi are taken independent of l; therefore the
index t will be dropped in the remainder of this paper.
With this information, for each point on the energy grid
an input file is created for the calculation of the DWBA
cross section for each transferred angular momentum.

After the DWBA calculation by ECIS88 the DWBA
cross sections are processed by the post-processing
program MSD to yield the continuum MSD (double-
differential and integrated) cross sections. These are ob-
tained by multiplying the DWBA cross sections by the
state density, summation over angular momenta and en-
ergy integration according to Eqs. (1)—(7). For the state
density parameters we used standard parametrizations.
The single-particle state density g is

MSD Post —processor

FKK

TUL

NWY

g = —.
The default pairing correction is [18]

1P=25.6A 2, N even, Z even,

= 12.8A ~, A odd,
=29.4A, N odd, Z odd,

and for the spin cutoff factor we use [19]

(9)

(10)

FIG. 2. General overview of code system KAPSIES.

parison on a consistent basis, i.e. , all difFerent models are
implemented in one computer code, with a single set of
physical parameters.

As mentioned before, by far the largest part of the
computation is taken by the DWBA calculations. In
KAPSIES, this task is performed by the coupled channels
code ECIS88 of Raynal [16). This choice was motivated
by the general success of ECIS88 in predicting direct re-
action cross sections for discrete states and its capability
of handling a large variety of reaction types over a wide
energy range Of co.urse, a full coupled channels calcu-
lation is too detailed and unnecessary for our purposes.
Fortunately, the coupled channels equations in ECIS88 are
calculated by sequential iteration, as described in detail
in Refs. [16,17]. Accordingly, setting the number of itera-
tions equal to one enables a relatively fast computation of
first- and higher-order DWBA cross sections which pro-
vide the input for the MSD expressions. Besides this
DWBA calculator, our code system consists of two fur-
ther programs. Firstly, we have constructed a prepro-
cessing program DWBAIN that generates the input files
for ECIS88. For each intermediate and Anal energy and
transferred angular momentum, the DWBA cross section
must be calculated. As far as the TUL and NWY mod-
els are concerned, we have restricted ourselves to second-
order DWBA only because inclusion of higher orders is
too time consuming.

The initial, intermediate, and final distorted waves
are calculated using global optical potential systemat-
ics. The same optical potential is also used for the cal-

with

+fMSD sinh(a cos 0)]

I / 3

+6.7 10- M. ,
~

f'Ese~'i

& e'. )
Ei = min(e', 130 + 10 MeV),
E3 = min(e', 41 + 5 MeV),

eb —~b+ Sb,
I
a &a+ Sa

(12)

0 = 024nA~,

where n is the exciton number.
In order to compare the calculations with the exper-

imental data, we assume that at the highest outgoing
energy of the grid the cross section is entirely dominated
by the multistep direct mechanism. Accordingly, we have
adjusted P so that at this outgoing energy the magnitude
of the MSD cross section reproduces the experimental
data. This single adjustment then completely determines
the results for the lower outgoing energies.

As an additional test for the validity of the quantum-
mechanical models, we compare our results with the
systematics of Kalbach, a purely phenomenological ap-
proach based on fitting a large number of experimental
continuum angular distributions [ll]. This parametriza-
tion generally provides an adequate fit to the shape of
the preequilibrium angular distributions and is therefore
frequently employed in nuclear data applications (see, for
example, Ref. [20]). Kalbach obtained the following for-
mula for the continuum double-difFerential cross section:

d CT 1 dO 6
[ cosh(a cos 0)
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Here, e and sb are the incident and the outgoing energies,
respectively. The number M (representing the incident
particle) is 1 for neutrons, protons, and deuterons and
0 for alpha particles, while mb (representing the outgo-
ing particle) is 1 for protons, deuterons, tritons, and He
particles, z for neutrons and 2 for alpha particles. The
Myers and Swiatecki mass formula for the separation en-
ergy S can be found in Ref. [11].

The continuum angle-integrated cross section &, of
Eq. (12) can be written as the sum of a MSC part and a
MSD part:

d&MsD d&Msc+

drab

'dEb drab
(14)

For consistency reasons, we have used the angle-
integrated cross sections as obtained from the MSD rnod-
els as input for Eq. (15).

V. RESULTS

Our choice of reactions to be analyzed has been mo-
tivated by two considerations. Firstly, we want to in-
vestigate the validity of our MSD calculations over a
wide mass and energy range. Of course, the experi-
mental evidence that MSD processes provide a signifi-
cant fraction of the cross section is an essential ingredi-
ent for such a study. An indication for this is that the
measured reactions are characterized by forward peaked,
smooth angular distributions and by high energy tails
in the outgoing energy spectrum. This requirement is
fulfilled for incident energies between 10 and 200 MeV.
Secondly, we want to compare our results with other pub-
lished analyses and discuss the differences, both from a
physical and a computational point of view. With this
in mind, we have chosen the 80 MeV (p, p') reaction on
soZr, the 62 MeV (p, p') reaction on OsBi, and the 25.7
MeV (n, n') reaction on ssNb for our comparison. These
reactions have been analyzed before by both quantum-
mechanical [21] and classical [22, 23] approaches and in
totality they cover an interesting region of mass and en-
ergy. In the following, the calculated double-differential
and angle-integrated cross sections for these reactions are
tested against experiment and against the systematics of
Kalbach.

An additional remark concerns the TUI and NWY
models. As explained before, it is practically impossible
to calculate the continuum three-step direct cross sec-
tions for these models. Our calculations suggest that
this deficiency can be neglected for the total (outgoing-
energy integrated) cross section and the cross sections
at high outgoing energies, where the first step is pre-

The fraction fMsD of Eq. (12) represents the contribu-
tion of the MSD process. If fMsD = 0, Eq. (12) yields
a symmetric angular distribution, which is in agreement
with the usual assumption about MSC reactions. In this
work, we consider MSD cross sections (fMsD = 1) only.
Hence, for our purposes Eq. (12) reduces to

0 MSD 1 dCTM SD

dominant. The contribution of the second step becomes
sizable for cross sections at low outgoing energies (at all
angles) or at backward angles (at all outgoing energies).
In general, the three-step contribution still does not con-
tribute significantly to the cross section for these cases.
However, for the special combination of low outgoing en-
ergies and backward angles, the three-step cross section
may no longer be negligible (although it is seldom dom-
inant). Only in this case the experimental angular dis-
tributions may be underestimated if only the first and
second step are included in the calculation. To have an
estimate for this, we have supplemented the NWY and
TUI cross sections with the third and fourth steps of the
FKK model. It will soon become clear from our results
that this addition only has some effect in the mentioned
special case. The general insignificance of the third and
higher steps leaves all other typical aspects of the various
models unaffected.

For the aforementioned three reactions, we will present
an analysis of the angular distribution at three different
outgoing energies. Furthermore, the three difFerent two-
step cross sections are compared at these energies and
we give the relative contribution of each step of the MSD
reaction. If a sufficient number of experimental angle-
integrated cross sections is available, these will also be
compared with our calculations.

A. 80 MeV (p, p') on ~OZr

The 80 MeV inelastic proton scattering experiment on
soZr has been performed by Cowley et aL and analyzed
by the FKK model computer code MUDIR of Bonetti.
Both the experimental and computational results were
reported in Ref. [21]. Here, we perform a reanalysis of
this reaction with our own code system. We present
the energy-averaged MSD cross sections according to the
FKK, TUL, and NWY models at outgoing energies of 60,
40, and 20 MeV.

We used the global optical potential of Becchetti and
Greenlees for the incident, intermediate, and the outgo-
ing channels as well as for the calculation of the form fac-
tor. For comparison, the state density parameters were
taken the same as that of Ref. [21], i.e. , cr = 2.3, P = 0,
and a = 10.5 MeV (g = ~ = 6.38 MeV i). Fig-
ures 3—5 show that all models provide a good fit to the
MSD angular distributions. In particular, the FKK and
NWY curves at high outgoing energies are in excellent
agreement with the data. Apparently, the systematics of
Kalbach can even be slightly improved by the quantum-
mechanical preequilibrium models. For all models, the
same value for the deformation parameter, P = 0.00490,
was used. At the lowest outgoing energy, the calculated
MSD cross sections underestimate the experimental data,
although the shape of the angular distribution is still in
reasonable agreement with the measurement. This un-
derprediction is to be expected, since the role of other
competing processes will become non-negligible at low
outgoing energies. Firstly, when the difference between
incident and outgoing energies is large, multiple emission
may occur because further protons can be emitted from
the highly excited residual nucleus. Secondly, the contri-
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bution of the MSD-MSC crossover effect may be consid-
erable. Several independent estimates indicate that the
multistep compound mechanism is important for the in-
cident energy region between 10 and 20 MeV. Hence, the
pure MSC process (in which the propagation of the sys-
tem through the bound configurations of the compound
nucleons already starts at the first stage) does not com-
pete with MSD for this particular reaction. However, we
would expect that the leading particle loses a large frac-
tion of its initial kinetic energy after one or more suc-
cessive collisions in a multistep process. Then, instead

of the process of fast emission, some of the particle flux
may fiow into the bound chain and give rise to multistep
compound or compound emission. For the outgoing en-
ergy of 20 MeV this MSD-MSC crossover effect certainly
has to be taken into account. Very recently, a theory
has been constructed for the MSD-MSC crossover mech-
anism [24] but practical calculations have not (yet) been
carried out.

The importance of the individual higher-step contribu-
tions may differ from model to model. In Fig. 6, we have
isolated the various two-step cross sections and compared
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FIG. 3. MSD cross sections according to the FKK model

for 80 MeV (p, p') on Zr at outgoing energies of (a) 60 MeV,
(b) 40 MeV, and (c) 20 MeV. The thick solid line represents
the total MSD cross section (summed over steps), the cir-
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FIG. 4. MSD cross sections according to the TUL model
for 80 MeV (p, p') on Zr at outgoing energies of (a) 60 MeV,
(b) 40 MeV, and (c) 20 MeV. The thick solid line represents
the total MSD cross section (summed over steps), the cir-
cles the experimental data, and the pluses the systematics of
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them at the three outgoing energies. These figures re-
veal the relationship between convolution-type cross sec-
tions (leading-particle statistics) and cross sections based
on the full second-order DWBA (residual-system statis-
tics). The latter exhibit a more pronounced structure at
the very forward and backward angles. This coincides
with our expectations from the theory: individual char-
acteristics will be removed more drastically by leading-
particle statistics (which concerns the residual nucleus +
fast particle) than residual-system statistics (which only
applies to the residual nucleus). Accordingly, a convo-

10'-

lution cross section of the FKK type will be more flat
than the other two which comprise a summation over
individual second-order DWBA cross sections. An addi-
tional observation that can be made is that the relative
differences between the two-step cross sections remain
approximately the same over the whole outgoing-energy
range. In particular, the NWY and FKK models are
very similar in magnitude, irrespective of the outgoing
energy. Of course, all these (dis)similarities are insignifi-
cant at high outgoing energies where the model indepen-
dent first step alone is almost completely responsible for
the total cross section. Nevertheless, the importance of
the differences between the various multistep contribu-
tions increases with decreasing outgoing energies.
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In Figs. 7 and 8, the angle-integrated and energy-
integrated relative contributions of each step are given for
each model. They display an alternative confirmation of
our statements about the relative importance of the var-
ious steps. For this reaction, the MSD part of the spec-
trum is almost completely dominated by the first step.
Higher-step contributions may be crucial in the backward
hemisphere, but at these angles the contribution to the
angle-integrated cross section is negligible. Integrating
the angle-integrated relative contributions over outgoing
energy yields the partition of the total MSD cross sec-
tion into steps. These fractions are displayed in Table I.
Recall that the third and fourth steps of the TUI and
NWY models are estimated by their FKK equivalent.

The results presented in Figs. 3—8 clearly deviate from

TABLE I. Partition of the total MSD cross section for 80
MeV (p, p') on Zr.

Model One step

FKK
NWY
TUL

66%
60'%%uo

81%%uo

Turbo step

28%
34%%uo

12%%uo

Three step

5%
5%%uo

6%%uo

Four step

1%
l%%uo

1'%%uo

the FKK model analysis as given in Ref. [21]. Although
the total angular distributions (i.e. , summed over steps)
of the latter are in good agreement with the experimental
data, the specific contribution to the cross section from
the various steps is in disagreement with our conclusions.
Fig. 6 (and also 7) of Ref. [21] suggests that the one-step
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cross section is only predominant at the highest outgo-
ing energies at the very forward angles. For example, at
the outgoing energy of 60 MeV the one-step cross sec-
tion falls below the third step already at 80' and even
below the fifth step at 130'. This does not correspond
with the behavior of the cross section of Figs. 3—5 of this
work. Clearly, the series of cross section contributions
converges much more rapidly in our case. Our findings
are, however, in line with other, independent, sources
such as Refs. [3, 22, 25] and the "one, two, infinity" idea
of Ref. [26], where a strong overall predominance of the
first and second steps is predicted as well as the corre-
lated fast convergence of the cross section.

The deviations of the results reported in Ref. [21] from
ours are partly caused by the use of microscopic DWBA
cross sections calculated by DWUCK-4 instead of macro-
scopic cross sections by ECIS88. However, the main source
of the difFerences are an alternative implementation of
the FKK formula and alternative numerical (integration)
techniques. To illustrate this, we present in Fig. 9 three
different analyses of the angular distribution at the out-
going energy of 60 MeV. In Fig. 9(a), we have reproduced
Fig. 6(a) of Ref. [21] which basically uses a microscopic
approach plus rectangular integration over the interme-
diate energy. In Fig. 9(b), we present a MSD calculation
performed with KAPSIES using a microscopic approach
plus numerical integration according to the Simpson rule.
Here, we have (in line with [21]) randomly generated
particle-hole states with a Nilsson model, grouped them
into angular momentum and energy bins, calculated mi-
croscopical DWBA cross sections for each particle-hole
state with DWUCK-4, and averaged them over the number
of states in each bin. Subsequently, these average DWBA
cross sections were (instead of our ECIS88 cross sections)
overed to the MSD part of KAPSIES where they were pro-
cessed according to Eqs. (1)—(5). Hence, the difference
between Figs. 9(a) and 9(b) is entirely brought about by
difFerent numerical implementations of the FKK model
and not by alternative DWBA prescriptions; it is seen
that our much more accurate integration scheme leads to
a completely difFerent mix of MSD steps. The overall fit
is roughly the same, although this changes at lower out-
going energies. Obviously, the cross section of Fig. 9(b)
converges faster than that of Fig. 9(a) and the differences
in magnitude with respect to the third and higher steps
are sizable.

The difference between the microscopic approach with
DWUCK-4 and the macroscopic approach with ECIS88 is
exemplified by Figs. 9(b) and 9(c), where the latter shows
the result of a macroscopic approach with Simpson inte-
gration. We emphasize that the cross sections in these
figures have been calculated by the same MSD program.
This time, only the DWBA prescriptions are difFerent.
Although the microscopic one-step cross section falls ofF
faster than the one based on ECIS88 DWBA cross sec-
tions, the multistep contributions are very similar. This
demonstrates that the difference between Figs. 9(a) and
9(b) due to different numerical algorithms is larger than
the difFerence between the DWBA methods.

To summarize, using a macroscopic approach (as in
KAPSIES) is a good approximation to and computation-

ally much faster than the microscopic sampling approach
of Bonetti et al. It is important to use an accurate nu-
merical scheme for the integration over the intermediate
energies. Simpson rule integration (as in KAPSIES) does
make a large difFerence with the rectangular integration
by Bonetti et al. , the latter method leading to unreal-
istic high contributions of the higher-order MSD steps.
In contrast to previous statements in the literature, the
TUL and FKK models converge equally rapidly in terms
of the number of MSD steps.
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that at the very high outgoing energies (the first few MeV
of excitation energy) collective discrete states are present
and the statistical MSD reaction mechanism as presented
here is no longer adequate. Below an outgoing energy
of 20 MeV, the probability for MSD processes to occur
is reduced by the competing reaction mechanisms which
were already discussed for the Zr reaction. Related to
this is the observation that where the angle-integrated
contribution of the third step becomes comparable with
the first and second steps, below 15 MeV, the total MSD
contribution itself has become totally irrelevant. For the

NWY model we encounter some difficulties in obtaining
a reasonable fit of the high energy tail. We used another
value for the deformation parameter, P = 0.00190, but
the quality of the FKK and TUL results could not be
reproduced for this reaction. Compared with the other
two models the two-step contribution is quite large. A
possible explanation for this is that the upper limit of the
NWY two-step cross section (which we employ through-
out this work) is an overestimation of the real value for
this reaction.

In Figs. 11—13, the angular distributions for all models
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FIG. 12. MSD cross sections according to the TUL model

for 62 MeV (p, p') on Bi at outgoing energies of (a) 47 MeV,
(b) 37 MeV, and (c) 27 MeV. The thick solid line represents
the total MSD cross section (summed over steps), the cir-
cles the experimental data, and the pluses the systematics of
Kalbach.

FIG. 13. MSD cross sections according to the NWY model
for 62 MeV (p, p') on Bi at outgoing energies of (a) 47 MeV,
(b) 37 MeV, and (c) 27 MeV. The thick solid line represents
the total MSD cross section (summed over steps), the cir-
cles the experimental data, and the pluses the systematics of
Kalbach.
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are depicted. The experimental data are averaged over
an energy bin of 5 MeV. Again, the shape of the angular
distributions is quite nicely predicted by all models, with
the already mentioned small magnitude problem for the
NWY model. Our computational results are comparable
in quality with the Kalbach systematics. The two-step
cross sections are compared in Fig. 14. For consistency,
we took the same value P = 0.002 37 for the three models.
In this case, the FKK two-step cross section is similar to
that of the TUL model (which was already suggested by
the energy spectra).

The angle- and energy-integrated relative contribu-
tions are displayed in Figs. 15 and 16. Those of the FKK
and TUL models are very similar to the corresponding

relative contributions of the Zr case. The relative con-
tributions to the total MSD cross section are given in
Table II.

In Fig. 1 of Ref. [3], Tamura et al p.resent an analy-
sis of the same angular distributions. Upon comparison
with our Figs. 11—13, we find an almost exactly equiv-
alent partition into one- and two-step contributions and
a comparable fit to the double-differential cross section.
This suggests (although it certainly needs to be verified
for more test cases) that the results are not too sensitive
for the particular description of the continuum states. In
Ref. [3] (see also Ref. [15]), the reactions to the contin-
uum are described using a spectroscopic density that is
expressed in terms of a response function. Accordingly,
an estimate for the distribution of the particle-hole states
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over the exact states is obtained. The continuum cross
sections are obtained by multiplication of the DWBA
cross sections by the spectroscopic density and summa-
tion over the total angular momentum. Apparently, our
usage of a very simple model for the angular momentum
dependent particle-hole state density does not seem to
give rise to significant deviations.

The same double-differential cross sections (with
slightly different outgoing energies) have been predicted
by a generalized exciton model, see Fig. 6 of Ref. [22].
The leading particle approach that is employed by these
authors comprises an explicit consideration of the direc-
tion and energy of the leading particle at each stage of
the multistep process. Therefore, it may be regarded as
a semiclassical counterpart of our quantum-mechanical
leading-particle statistics approach (FKK model). The

TABLE II. Partition of the total MSD cross section for
62 MeV (p, p') on Bi.

Model

FKK
NWY
TUL

One step

70%%uo

41%
61%%uo

Two step

26%
58%%uo

35%

Three step

4%%uo

1%
4%%uo

Four step

0%
0'%%uo

0%

results of Ref. [22] confirm a well-known problem of clas-
sical preequilibrium models, namely, the incorrect pre-
diction of the angular distribution at backward angles
(although generally there is a good agreement with the
experimental energy spectrum). This deficiency is seen
to be removed by adopting a quantum-mechanical ap-
proach.
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step for 62 MeV (p, p') on Bi for the (a) FKK, (b) TUL,
and (c) NWY models.

C. 25.7 MeV (n, n') on 9sNb

The nucleus 3Nb is known for its pronounced pre-
equilibrium component in the energy spectra of nucleon
induced reactions. Therefore, the 25.7 MeV (n, n') reac-
tion on ssNb has been subject to an extensive comparison
of semiclassical preequilibrium models [10, 23]. In this
compilation, several Hauser-Feshbach models with pre-
equilibrium options, exciton models, and hybrid models
have been tested against each other and against experi-
ment with a common set of parameters. Here, we like to
compare our quantum-mechanical MSD approaches with
the general behavior of the classical models.

The optical model parameters we used are given in Ap-
pendix A of Ref. [23]. With ECIS88, we obtained the cross
section values otot~i = 2918.4 mb, cr,i» ——1305.1 mb, and
o.«~, ——1613.3 mb, which is in good agreement with the
reported values of Ref. [23]. The level density parameters
were chosen according to the parametrizations as given
in Sec. IV, i.e., o = 3.139, P = 1.33, and a = 11.77
MeV i

(g = 7.15 MeV i). In Fig. 17, the calculated
energy spectra are shown together with the experimental
data (which are taken from Ref. [28]). The cross sec-
tions were only measured for outgoing energies above 12
MeV. Again, we can conclude that the high energy part
of the preequilibrium region is adequately described by
the MSD reaction mechanism. In general, the value of
the measured cross section increases at lower outgoing
energies whereas the MSD contribution remains approx-
imately constant. Here, the MSD process is strongly in-
hibited by multistep compound, compound, and multi-
ple emission processes. In the figures we have included
(dashed curve) the cross section as calculated by the code
system GNASH [20] (see Figs. 3D of Ref. [23] or Fig. 3.3
of Ref. [10])which gives a reliable estimate for the whole
outgoing-energy range. The GNASH curve is the result
of a combined Hauser-Feshbach + exciton model evalua-
tion.

The values we use for P are 0.00693 for the FKK and
TUL models and 0.00632 for the NWY model. Obvi-
ously, the one-step cross section is almost fully respon-
sible for the explanation of the data. The situation is
analogous to that of the Bi reaction. Once the dis-
crepancy between the one-step cross section and the total
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cross section becomes sizable (below 10 MeV), the MSD
contribution to the total cross section can be neglected.
Hence, our recommendation for a complete quantum-
mechanical analysis of the preequilibrium region of this
reaction would consist of continuum one-step direct, mul-
tistep compound reactions, and a combination of these
two processes.

The calculated angular distributions at outgoing en-
ergies of 20, 16, and 12 MeV (see Figs. 18—20) display
some oscillatory behavior at the backward angles. Closer
investigation of the individual DWBA components that
construct the energy-average cross section reveals that
there is some constructive interference of the angular dis-
tributions. Then, these effects are not washed out by the
averaging process, in contrast with the other two dis-
cussed reactions (cf. Fig. 1). Again, the fit obtained at
the highest outgoing energy is the most satisfactory and

up to 150' in perfect agreement with the Kalbach sys-
tematics. Regrettably, there do not seem to exist data
for angles larger than 150', so that the sudden rise of the
cross section beyond this angle cannot be tested. Any-
way, it is clear that at these relatively low incident ener-
gies the typical quantum-mechanical behavior of the an-
gular distributions becomes more pronounced. In Fig. 3.6
of Ref. [10] (Figs. 15 and 16 of Ref. [23]), some predic-
tions by exciton and hybrid models are presented. In
most of these models, refraction and finite-size effects are
included as corrections for the semiclassical treatment
of the preequilibrium process. Nevertheless, the angu-
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FIG. 18. MSD cross sections according to the FKK model
for 25.7 MeV (n, n') on Nb at outgoing energies of (a) 20
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resents the total MSD cross section (summed over steps), the
circles the experimental data, and the pluses the systematics
of Kalbach.
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lar distributions as predicted by the semiclassical models
still exhibit a systematic underestimation of the exper-
imental data at backward angles, implying that further
empirical adjustments are needed. Consequently, at the
highest outgoing energies the quantum-mechanical ap-
proaches as presented here are better than, and at lower
outgoing energies comparable to, the semiclassical anal-
yses of this reaction.

In Fig. 21, we have compared the two-step cross sec-
tions for the common value P = 0.00693. Clearly, the
convolution structure of the FKK cross section accounts

for the absence of the oscillatory behavior of the two-step
angular distribution. For the TUL and NWY models,
these effects are still present (although less prominent
than in the one-step cross section). In Table III, the par-
tition of the MSD cross section into the various steps is
given.

VI. CONCLUSIONS

The various existing quantum models for multistep
direct reactions (FKK, TUL, NWY) have been imple-
mented in one computer code system called KAPSIES.
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FIG. 19. MSD cross sections according to the TUL model
for 25.7 MeV (n, n') on Nb at outgoing energies of (a) 20
MeV, (b) 16 MeV, and (c) 12 MeV. The thick solid line rep-
resents the total MSD cross section (summed over steps), the
circles the experimental data, and the pluses the systematics
of Kalbach.

FIG. 20. MSD cross sections according to the NWY model
for 25.7 MeV (n, n') on Nb at outgoing energies of (a) 20
MeV, (b) 16 MeV, and (c) 12 MeV. The thick solid line rep-
resents the total MSD cross section (summed over steps), the
circles the experimental data, and the pluses the systematics
of Kalbach.
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This work is the Erst to perform a consistent practical
comparison of these models, on the basis of the same set
of parameters and the same set of numerical techniques
for the MSD calculations. The method of implementa-
tion of the MSD models has been discussed in Sec. IV.
It appears that the FKK and TUL models are rather
simple to implement on a computer, whereas the imple-
mentation of the NWY model is complicated and certain
approximations are unavoidable due to the lack of micro-
scopic information.

All our calculations are based on the adjustment of
only one parameter, the deformation parameter P, which
is taken in the computations to be independent of t. We
have fitted the P at the angle-integrated cross section
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FIG. 21. Two-step cross sections for 25.7 MeV (n, n') on
Nb at outgoing energies of (a) 20 MeV, (b) 16 MeV, and

(c) 12 MeV.

TABLE III. Partition of the total MSD cross section for
25.7 MeV (n, , n') on Nb.

Model

FKK
NWY
TUL

One step

88'%%uo

57'%%uo

81'%%uo

Two step

12'%%uo

43%
19/0

Three step

O%%uo

O'Fo

O%%uo

Four step

O%%uo

O%%uo

O'Fo

at the highest outgoing energy where it can reasonably
be assumed that the whole cross section stems from the
MSD process. Various experimental cross sections in the
preequilibrium region of the nuclear reaction spectrum
have been analyzed with all MSD models, viz. , 80 MeV
(p, p') on Zr, 62 MeV (p, p') on 2osBi, and 25.7 MeV
(n, n')»Nb.

The comparison that we have carried out leads to the
following conclusions.

A good description of the whole high energy tail of
the preequilibrium energy spectrum is achieved by all
MSD models. At low outgoing energies, the measured
cross section is underestimated by the MSD calculation
due to expected competing reaction mechanisms such as
multiple emission and MSD-MSC crossover reactions (in
which the multistep compound chain is fed after one or
two direct steps).

Another (and arguably the most important) test case
for the MSD models is the angular distribution. The cal-
culated MSD angular distributions are, again for all MSD
models, in very good agreement with the experimental
data. It has been shown that quantum-mechanical mod-
els perform as good as the systematics of Kalbach, and in
some cases even better, and provide a clear improvement
of the angular distributions as estimated by the classical
preequilibrium models. The latter generally underpredict
the experimental data at backward angles.

Our analysis also shows that the computational results
of the various MSD models, although physically very dif-
ferent, are roughly of the same quality with respect to
experiment. Leading-particle statistics (randomness of
DWBA matri~ elements, as used in the FKK model)
is clearly a stronger assumption —and therefore leads to
simpler models —than residual-system statistics (random
configuration mixing), but appears to be adequate for the
analysis of this type of data. Therefore, on the basis of
cross section data it is not possible to discriminate be-
tween the various MSD models. It would be interesting,
however, to extend the current analysis to polarization
data.

Our calculations show that at the energies considered
only the erst two steps of the MSD process contribute
significantly to the preequilibrium cross section. When
the third step becomes important, the MSD cross section
is already inhibited by competing reaction mechanisms.

Thus, the quantum-mechanical MSD models yield a
better description of the experimental data than the
semiclassical preequilibrium models. Furthermore, the
simplest quantum MSD model (FKK) performs as good
as the more complicated ones (NWY and TUL). Hence,
for practical reasons, we would recommend the FKK
model for nuclear data applications.
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