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Pion nucleon scattering up to 600 MeV laboratory kinetic energy is described by a manifestly
covariant wave equation in which the pion is restricted to its mass shell. The kernel of the equation
includes nucleon (N), Roper (N'), delta (b,), and Dis poles, with their corresponding crossed pole
terms approximated by contact interactions, and contact a- and p-like exchange terms. The vrNN
vertex is treated as a mixture of p and p"p coupling, with a mixing parameter A chosen so that
the dressed nucleon pole will be unshifted by the interaction. Chiral symmetry is maintained at
threshold. The resonance contributions are fully unitarized by the equation, with their widths
determined by the dynamics included in the model. The 4 and D&3 are treated as a pure spin 2
particles, with no spin ~ amplitude in the 8 channel. The complete development of this model,
which gives a very good fit to all the data up to 600 MeV, is presented.

PACS number(s): 21.30.+y, 13.75.Gx, 24.10.Jv

I. OVERVIEW, RESULTS, AND CONCLUSION

A. Int, roduction

Pion nucleon scattering has been studied thoroughly
for many years. One of the best known early models,
which treated the nucleon nonrelativistically, was intro-
duced by Chew and Low in 1956 [1]. This model de-
scribed low energy P wave scatter-ing very well, but had
to be modified in order to describe S-wave scattering [2].
Among later efForts is the work based in current alge-
bra [3, 4] and Lagrangian models based on chiral sym-
metry [5—7]. More recently, Banerjee and Cammarata
[8] have extended the Chew-Low model to include nu-
cleon recoil and antinucleon contributions, and Pearce
and Jennings [9], using a Lagrangian model and a rela-
tivistic wave equation, have extended the analysis up to
pion laboratory kinetic energies of 400 MeV.

However, with the construction of powerful new fa-
cilities such as the Continuous Electron Beam Acceler-
ator Facility (CEBAF), it is necessary to have a good
description of vrN scattering which extends up to higher
energies. Such a description must be covariant, and in-
clude not only the nucleon (N) and delta (b,) resonances,
but also the Roper (¹),which plays a prominent role
in the Pii channel at energies above 400 MeV, and the
Dis(1520), which makes a significant contribution to the
total isospin 2 cross section near 600 MeV.

In this paper we present a simple, covariant, and uni-
tary model of xN scattering which works well up to 600
MeV. These are essential features of a vrN model which
is to be used as a reliable input to other model calcu-
lations, such as the calculation of NN scattering up to
nucleon laboratory kinetic energies of 1 GeV, where the

excitations of pion degrees of freedom become important.
It is with such applications in mind that this model has
been developed.

In this work the vrN scattering amplitude is obtained
as a solution of a relativistic wave equation in which the
pion is restricted to its mass shell in all intermediate
states. The rationale for this approach is described in
Sec. II A. In order to describe the nN resonances at
T laboratory 187, 485, and 611 MeV, the kernel
(sometimes referred to as Born or "driving" terms) of the
relativistic integral equation includes undressed 6, N',
and Dis poles in addition to the undressed nucleon pole.
We make no attempt to explain these bare, undressed
states within the model; they are presumably explained
by quark models in the same way that the nucleon state
is explained. The kernel also includes contributions de-
rived from crossed N, 6,¹,and Dis diagrams, and
from cr- and p-like exchange terms. To simplify the equa-
tion, and obtain analytic solutions, these latter terms
are approximated by a contact interaction, as described
in Sec. III. The approximations used to obtain the con-
tact terms give zero for the crossed 4 and Dis poles.
All of these driving terms are shown diagrammatically
in Fig. 1. The solution which emerges from the integral
equation automatically satisfies unitary, and dresses the
resonance poles by shifting their masses and giving them
a width, and hence our model complements quark models
by adding the pion interactions sometimes omitted from
such models. For reasons which we will discuss in some
detail below, we adjust the parameters of the model so
that the dressed nucleon pole is not shifted by the inter
action.

For the vrNN coupling we use a superposition of
both pseudoscalar (ps) and pseudovector (pep") cou-
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FIG. l. Born terms which make up the kernel of the in-

tegral equation used in this paper. The diagrams in box (h)
are eventually approximated by a contact term, shown in (i).

pling, with a mixing parameter A de6ned so that the
coupling is independent of A when both the incoming and
outgoing nucleon are on shell. This mixed coupling was
used succesfully in one boson exchange models of NN
scattering by Gross, Van Orden, and Holinde [10, 11],
who found that a small admixture (about 25Fo) of p
coupling made it possible to fit the data with a minimum
of exchanged mesons. One of the purposes of this study
was to see if this mixed coupling had any justification
within the framework of 7t.N scattering.

The 6 and Dqs are treated as pure spin 3/2 parti-
cles, using a spin 3/2 projection operator proposed by
Behrends and Fronsdal [12], and recently discussed by
Williams [13], and their widths emerge automatically as
a dynamical consequence of unitarity. We also introduce
a new form for the DNA and vrNDqs vertices. The com-
bination of the spin 3/2 projection operator and this
new vertex not only makes the calculation simpler but
also eliminates all spin 1/2 amplitudes. Some authors
[14] have argued that these virtual spin 1/2 amplitudes,
which must be present if the spin 3/2 propagator is to
have an inverse, are an important feature of the physics.
We obtain a very successful fit without them. The Dqs
is inelastic, and in this model we allow for this by cou-
pling the Dqs to the vrA channel, which gives an excellent
description of the data.

The role of the Roper, especially at low energies, has
been questioned for many years. Many authors [9, 15, 16]
do not include the Roper, even in their description of the
P~~ channel. They argue that a cancellation between the
direct and crossed N pole terms can explain the unique
behavior of Pqq partial wave, which is negative at low

energy and changes sign at T laboratory 150 MeV.
Oset, Taki, and Weise [17] argue that the change of sign
is due to the cancellation of the N and Roper pole terms,
but they treated the Roper only at the tree level. In this
paper we include ¹

+-+ N' and ¹
~ N mixing to

all orders, our result is unitary, and the Roper width
emerges as a natural consequence of the dynamics. We
also include the inelastic coupling of the Roper to the xL
channel, which is its dominant inelastic decay mode [18].

We conclude this brief introduction by summarizing
the novel features of this model, which to our knowl-

edge have not been studied before in the context of 7rN

scattering: (i) the scattering amplitude is the solution
of a relativistic wave equation in which the pion is re-
stricted to its mass shell in all intermediate states; (ii)
the ~NN coupling is taken to be a superposition of both
pseudoscalar (ps) and pseudovector (p p") coupling; (iii)
the nucleon self-energy is constrained to be zero at the
nucleon pole, so that the nucleon mass remains unshifted
by the interactions; (iv) the 6 and Dzs are pure spin 2
particles, with widths which develop naturally from the
unitarity of the solution; and (v) contributions from the
Roper (N') and N' ~ N transition amplitudes are iter-
ated to all orders, giving a consistent description of the
Roper and its width.

These new features are discussed in the following sec-
tions of this section, which also includes a presentation
of the numerical results, discussion and conclusion. Sec-
tion II presents the relativistic formalism including the
partial wave expansion and a discussion of unitarity. The
construction and the development of the relativistic ker-
nel are presented in Sec. III where the treatment of the
Roper (¹),6, and Dqs is described in some detail. The
appendixes discuss some technical points.

B. Restricting the pion to its mass shell

One way to ensure that a scattering amplitude is both
covariant and unitary is to obtain it as a solution of a
covariant integral equation. Solving the equation auto-
matically iterates its kernel to all orders, and gives a
unitary amplitude.

The Bethe-Salpeter (BS) equation is one possible start-
ing point for a relativistic description of AN scattering.
If the vrN scattering matrix is M, then the BS equation
1s

M(p', p; P)

= V(p', p; P)
d4k

+i 4 V(p', k; P) Cps(k, P) M(k, p; P),

where V(p, p; P) is the relativistic kernel, GBs(k, P) is
the free relativistic two particle Green's function (two-
body propagator), and p, p', k, and P are the four-
momenta of the incoming nucleon, outgoing nucleon, in-
termediate pion, and the total four-momentum of the
system, as shown in Fig. 2. The integration is over all
four components of the pion four-momentum, and for this
reason the equation is described an a "four-dimensional"
equation. The exact vrN scattering amplitude can be ob-
tained from the BS equation only if its kernel includes the
sum of alt connected boo particle irreducible diagrams.
There are infinite number of these, and no known way to
sum them, so that the kernel must be approximated.

One approximation is to introduce a separable in-
teraction. In Refs. [19, 20] this approach was used to
parametrize the S- and P-wave phase shifts, with a dif-
ferent set of parameters for each phase shift. This worked
well, but the parameters have no physical interpretation,
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FIG. 2. Diagrammatic representation of the integral equa-

tion.

and it is difficult to relate them to masses and coupling
constants.

Since the kernel must be approximated (by using a
few diagrams that we believe to be especially important
physically), there is not necessarily any reason to retain
the full four-dimensional BS equation. There are several
covariant three-dirnensionat equations [21] which can be
used, and the choice depends on the physics and on the
approximations being made. Recently Pearce and Jen
nings [9] used what they refer to as a smooth propagator
[22] to describe vrN scattering. They replace the two-
body propagator of the BS equation,

Not only is this propagator efBcient in summing the rel-
evant Feynman diagrams, but it also suggests some nice
approximations for the relativistic kernel, as will be dis-
cussed in Sec. III.

To ensure convergence of the integral equation, we mul-
tiply all of the driving terms by form factors. Since the pi-
ons are on shell, the form factors will depend only on the
virtual mass (squared) of the off-shell incoming and out-
going baryons (the N, 6, and the ¹;no form factor is
needed for the Dis). For example, we attach a universal
function f (p ) to each off-shell nucleon entering or leav-
ing any vertex, and so the form factor for the 7rNN ver-
tex automatically assumes a factorized form f (p ) f (p'2),
where p and p' are the four-momenta of the incoming and
outgoing nucleon, respectively. For clarity, we will defer
all further discussion of the details of the definition of the
form factors and the construction of the kernels to Sec.
III.

C. m'NN coupling

G(k, P) =
(p, —k —is)[m —(P —A:) —ie]

by the propagator [22]

G, (k, P)

(1.2)

= 2' 6'(~(W) —ko) m+ peE(W) + p k )
2W mz + kz —E2(W) —ie) '

(1.3)

where p, and m are the mass of pion and the nucleon, W is
the total energy in the c.m. system, and E(W) and cu(W)
are the energies of the nucleon and pion when both are on
shell. They derived this propagator by letting the mass
of the nucleon become infinitely heavy and eliminating
the short range structure from their relativistic kernel.
They obtained a pretty good fit to the phase shifts up to
400 MeV.

Our approach follows from the examination of the sin-
gularities of a typical Feynman diagram which the equa-
tion will iterate, and study of these diagrams is carried
out in detail in Sec. IIA. We are led to conclude that
the most accurate method of summing the diagrams is
to put the pion on its mass shell. Since the pion is the
light particle, and previous studies of scattering in which
a light meson is exchanged between two heavy particles of
masses mi & mz led to the conclusion that the heaviest
particle (mi) should be on shell [23, 24], the new result
seems surprising at first glance, and we also explain in
Sec. IIA why a di6'erent conclusion is reached for the
vrN system.

The propagator we obtain can be written

G (k, P) = 2m
6(ug —ko) (m + po (W —~i, ) + p k )

Eiz —(W —~A, )z —i e

(1.4)

where ruA, = gp + k is the on shell energy of the pion.

It is well known that in a model in which pions inter-
act with nucleons which are on shell, the pseudoscalar
and pseudovector vrNN coupling give the same results
[25]. When the nucleon is off shell this is no longer true,
and the results may depend on which coupling is used.
In some early perturbative calculations based on lowest
order Feynman diagrams, p coupling was used because
this coupling is renormalizable [26]. However, the use of

coupling for the nucleon Born terms gives an incor-
rect result for a+, the vrN isospin-even scattering length.
This failure is associated with the fact that ps coupling
violates chiral symmetry unless it is accompanied by a o.
exchange term with precisely the correct strength, as de-
scribed (for example) by the linear rr model introduced
by Gell-Mann and Levy [27] in 1960. The Born terms
in this model include the exchange of a cr particle with
precisely the correct strength to give good predictions in
the soft pion limit. This model was further improved by
Weinberg [5] and others [28], who eliminated the cr and
developed nonlinear chiral Lagrangians. Models based
on these Lagrangians give a good description of 7rN scat-
tering in the soft pion limit without explicit reference
to a 0 particle. One form of these effective Lagrangians
replaces the pseudoscalar coupling and effective o term
with a pseudoveetor coupling and a p term. Since then,
some people have preferred to use pseudovector coupling
to describe AN scattering [6, 9].

However, if one is careful to include the correct sigma
term (which need not be a real o exchange, but could be a
cr-like 7rxNN contact term), then it is still possible to use
p5 coupling. Furthermore, one can show that a coupling
consisting of a mixture of pseudoscalar and pseudovector,
with a corresponding mixture of o.-like and p-like contact
terms, is completely equivalent in the Born approxima-
tion to either p or ps'~ coupling alone. Specifically,
consider a mixed vrNN coupling of the form

(1 5)



706 FRANZ GROSS AND YOHANES SURYA 47

where p and p' are the four-momenta of the initial and
final nucleon, respectively, i is the isospin index for the
pion, and A is the mixing parameter. (The vertex also
includes nucleon form factors, omitted here for simplicity;
see Sec. III.) In this form, we can easily see that when A

is zero the coupling is purely pseudovector and when it is
unity the coupling is pure pseudoscalar, and also that the
coupling will be independent of A if both initial and final
nucleons are on shell. Next, consider a vr7rNN contact
term of the form

0,00

—0,05

05

Q—0.10

—0.15

I
[ I II

l

A &; +(1 —A} [~,~]g
m U 4m (1 6)

where C is a strength parameter, Q =
2 (A:+ k'), and k, i

and k, j the four-momenta and isospin indicies of the in-
coming and outgoing pion, respectively. If the contact
term (1.6) is added to the nucleon Born terms [the N
and crossed N pole terms shown in Figs. 1(a) and 1(e)]
computed from the couphng (1.5), the resulting xN am-
plitude is independent of A if the external nucleons are
on shell, there are no form factors, and C = 1. This
comes about because the contact term in Eq. (1.6) also
depends on the mixing parameter A. It is pure cr-like if
the 7rN coupling is pure ps (corresponding to A = 1) and
pure p-like if the 7rN coupling is pure ps'" (correspond-
ing to A = 0), and these contributions are just what is
needed to cancel the A dependence which arises from the
nucleon Born terms, giving amplitudes independent of A

However, if these amplitudes are used as driving terms in
an integral equation in which the nucleons are oK shell,
they will no longer give identical results, and it is natural
to ask whether a particular choice of A is favored by the
physics.

It was found recently [10,11] that relativistic NN scat-
tering, in a formalism in which one nucleon is oE shell, is
very sensitive to the mixing parameter A, and that a very
good fit to NN data could be obtained using a one boson
exchange (OBE) model with only the four mesons m, o,
p, and w, provided the vrN coupling included an admix
ture of M% ps coupling Furthermore. , this admixture
of pseudoscalar coupling also gives a good description of
the p oCa spin observables [29]. And recently Goudsmit,
Leisi, and Matsinos [30] analyzed 7rN scattering at the
tree level and found that an admixture of about 24% ps
gives a good description of the scattering lengths. They
obtained this value of the admixture from their analy-
sis of data on pionic atoms with isoscalar nuclei using a
relativistic mean field theory.

To get a feeling for the dependence of our model on the
parameter A, we plot the isospin-even scattering length
a+ versus the isospin-odd scattering length a in Fig. 3.
For convenience, both scattering lengths have been made
dimensionless by multiplying by the pion mass p. Three
analyses of the experimental results, labeled I [31], II
[32], and III [33], are shown in the figure. The dashed
line shows how the scattering lengths, as calculated from
the nucleon Born terms only [Figs. 1(a) and l(e)] vary
with the mixing parameter A. Note that the curve comes
closest to the data if A = 0.2. The solid line gives the
dependence of the scattering lengths on A when the nu-

—0.20
0

I I I I I I I I l l I I I I

0.05 0.1 0.15 0.2

FIG. 3. S-wave vr-N scattering lengths. The x's on the
curves mark values of A incremented by 0.1, with A = 0 at
the top left end of the curves.

cleon Born terms are used for the kernel of our nN inte-
gral equation, and we see that the iteration of the Born
terms by the equation produces negligible effects. From
this figure it is clear that if we use a kernel with nucleon
Born terms only, pure pseudoscalar coupling (A = 1) or
pure pseudovector coupling (A = 0) will not give as good
a simultaneous description of the even and odd scattering
lengths as a choice A ~ 0.2. Since the OBE model of Ref.
[10, ll] is most consistent with a model of vrN scattering
based only on the nucleon Born terms, this result may
partially explain why the result A = 0.22 was obtained.

Next, consider a slightly more complete model in which
the driving terms of the integral equation include the
contact terms of Eq. (1.6), in addition to the nucleon
Born terms. Now the Born term result for the scattering
lengths is independent of A, but it turns out that the scat-
tering lengths obtained by solving the integral equation
(the cross in Fig. 3) are also (nearly) independent of A.
Finally, the scattering lengths obtained from the solution
of the integral equation with the full kernel, including all
the terms shown in Fig. 1, also does not depend very
much on A. These results are represented by the large
star burst in Fig. 3. We therefore conclude that the scat-
tering lengths (and most of the low energy observables)
will be insensitive to A if the kernel is chirally symmetric.

Does it follow, therefore, that the mixing parameter A

plays no role in the description of n N scattering? To the
level of sophistication to which we are working, this is not
the case. To see where the dependence on A reappears,
consider the nucleon self-energy Z(p).

D. Nucleon self-energy

If the Roper contributions are omitted for simplicity
(they are discussed in detail in Sec. IIID), our integral
equation produces a nucleon self-energy which can be
written diagrammatically as shown in Fig. 4. The ele-
mentary pion-nucleon bubble diagram is shown in Fig.
4(a), and all other contributions which come from iter-
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FIG. 4. Diagrams (excluding Roper contributions) which
contribute to the nucleon self-energy in this model. (a) Bub-
ble diagram, (b) contributions from connected pieces, with
M, given by the iteration, or integral equation shown in (c).

FIG. 5. Infinite subclass of diagrams not included in our
model. (a) is included, but its iterations (b), (c), . . . , are not
included. All of these diagrams are summed by the integral
equation shown in (d).

E. Description of spin —particles

ating the contact terms are shown in Fig. 4(b). [The in-
tegral equation for the unitarized contact amplitude M,
is shown in Fig. 4(c).j Now the contributions shown in
Fig. 4 include much physics, but also leave out many pro-
cesses. An infinite class of diagrams excluded from our
model is shown in Fig. 5. As the figure shows, this class
could also be summed by the integral equation shown
diagrammatically in Fig. 5(d). We can allow for these
contributions approximately if we demand that, at the
nucleon pole, the nucleon mass not be shifted by the inter-
actions. This requirement means that the infinite family
of interactions is, in eÃect, included automatically, at
least near the pole. It also means that the addition of
the nucleon self-energy to a model with bare nucleons
will produce the minimum eKect possible, meaning that
the model is fairly stable under changes in the dynamics.
We will impose this requirement on our model, and will
refer to it as the stability condition.

At the nucleon pole the nucleon self energy is only a
function of the parameters of the model, and its depen-
dence on the parameter A (with the others held fixed)
is shown in Fig. 6. Note that it is zero for a A = 0.25,
and our stability condition is therefore realized practi-
cally as a constraint on the parameter A. Note that this
constraint yields a value for A which is in rough agree-
ment with the value required to simultaneously minimize
the error in the scattering lengths a+ and a obtained
from the naive model which used only the nucleon poles
as the driving term in the integral equation (recall the
results shown in Fig. 3 and the subsequent discussion).
We do not believe that this is an accident; the value of
A = 0.2 which seems to stabilize the model should also
give the best physical approximation in situations where
the model is incomplete.

Before leaving this section, we wish to emphasize that
the stability condition can only be satisfied if a mixed
coupling is used, and that it is almost completely deter-
rnined by the hubble diagram shown in Fig. 4(a). For
pure pseudoscalar coupling, the self-energy is positive
definite, while for pure pseudovector coupling it is nega-
tive de6nite, so that only the parameter A can be deter-
mined from the stability condition.

i
M —P)

1
gPv 3 fP, "/v

2P„P„p„P„—P„p
3M 3M

where P„ is the four-momentum of the particle and M
its mass. This propagator, which was proposed by Fierz

150 I I I I

]
1 I I 1

)

I I I I

)

1 I I I

)

I I I I

100

0.2 0.4 0.8

FIG. 6. Self-energy of the nucleon (at the nucleon pole)
as a function of A. The three curves which are practically
indistinguishable are the contribution of the bubble diagram
only (dashed line), bubble plus nucleon contact terms (dotted
line), and the total result.

It is well known that the 6(1232) isobar plays an irn-
portant role in describing interactions involving nucle-
ons, and there are many works which include this reso-
nance. However, in spite of the number of papers which
have studied this particle, there is still some disagreement
about the best way to describe a spin 3/2 particle, and in
this section we will discuss the choice we have adopted.
The same choice is used for the Dis resonance.

There are two spin 3/2 propagators used in the lit-
erature. One, which is known as the Rarita-Schwinger
propagator, has the form
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and Pauli [34] and simplified by Rarita and Schwinger
[35] more than 50 years ago, can be obtained from the
Lagrangian for a spin 3/2 particle [6, 14]. Another prop-
agator

1
(P P +P P)

mass rn* in the kernel of the integral equation, and iterate
these contributions to all orders (in the same way other
contributions are handled), being careful to include con-
tributions from the amplitudes which describe the transi-
tion of a Roper to a nucleon, and vice versa. We describe
the principal inelastic channel of the Roper by including
the inelastic transitions ¹

—+ vr + 4 and 7r + 4 —+¹.
The final solution satisfies unitarity, and automatically
dresses the Roper pole. This treatment is discussed in
detail in Sec. III D.

was recently popularized by Williams [13] and used by
Jaus and Woolcock [36], who point out that the Rarita-
Schwinger propagator P&„pr joe tcs out a pure spin 3/2
state only when P = M (when the particle is on its
mass shell). Moreover, Benmerrouche, Davidson, and
Mukhopadhyay [14] have recently pointed out that P„
does not have an inverse, and claim that P„' is therefore
the correct spin 3/2 propagator.

In this paper we are not interested in developing a field
theory of spin 3/2 particles. Instead, we need a propaga-
tor which gives a covariant, phenomenological description
of a composite spin 3/2 state. Iteration of this term by
our integral equation will then generate a dressed contri-
bution which satisfies unitary and has the correct width
as determined by the dynamics. We will use the Williams
propagator for this purpose, because it turns out to have
a very nice property: When iterated by the integral equa-
tion, it retains its structure, giving a dressed propagator
of the form

pdressed
M —p+ z, (p))

1 1" g~ —3&~&. —3P, (P&~P +PgV.P),
(I 9)

C. Results

Our principal results are shown in Figs. 7—15 and Table
I. The S-, P-, and D-wave phase shifts and inelasticities
are shown in Figs. 7—13, the total elastic vr p cross sec-
tion in Fig. 14, and the total elastic sr+a cross section in
Fig. 15. In each of these figures, the solid line is the total
result, including all of the driving terms shown in Fig. 1.
Our fit to the phase shifts and inelasticities is very good,
with an overall y 1.7 per phase point.

Table I gives the final values of all parameters. Those
given in boldface (14 parameters) were adjusted to make
the fit. The mNN coupling constant was initially fixed
at the value shown, but later we did try varying it and
found that the fit could not be significantly improved and
was not very sensitive to small variations in its value.
The Table also gives values of parameters determined by
the fit. These include effective resonance masses and
widths (see below) and two other parameters fixed by
consistency requirements. The nNN mixing parameter
A was determined by the requirement that the nucleon
mass be unshift;ed by the interaction, as discussed above,
and the overall strength C of the combined o.- and p-
like contact terms [recall Eq. (1.6)] was fixed so as to
ensure that they exactly cancel the nucleon pole terms at

where Z~ (y) is the self-energy of the A. With our kernel,
this self-energy turns out to be a simple function. See the
discussion in Sec. III E for more details.

40

20

F. The Roper

The Pii phase shift is small and negative at low energy;
then it changes sign at T 150 MeV and grows rapidly
to pass through a resonance [N*(1440)] at T 485 MeV.
There are two different explanations for this behavior in
the literature. Oset, Toki, and Weise [17] argue that the
Roper is needed to change the sign of the Py~, which is
negative at low energies because of the nucleon pole term.
However, Mizutani et aL [15], Morioka and Afnan [16],
and Pearce and Jennings [9] argue that this sign change
is due to a cancellation between the repulsion from the
nucleon pole and attractive nonpole contributions, and
can be understood without the Roper. Our calculation
supports this latter point of view, as we will show later.

In this paper we study the role of the ¹ both at low

energy and in the resonance region. To describe the ¹

consistently, we include a new "nucleon" pole term with a

~ ~ ~ ~ ~ ~ ~ ~ ~

—20—

—40—

—60
0

I I I I I i I I I I I I I I I I ! l I I

100 200 300 400

T, b (MeV)

I I I I I I

500 600

FIG. 7. Fits to the S11 phase shift. As explained in the
text, the dotted line is the nucleon Born terms only, the dot-
dashed line is the addition of the o.— and p-like contact terms
required by chiral symmetry, the dashed line adds in the N
contributions, and the solid line is the total result, obtained
by adding the additional p-like contact term.
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FIG. 8. Fits to the S31 phase shift. The curves are the
same as in Fig. 7.

0

I I I I I I I I I I

0 100 200 300 500
T... (Mev)

FIG. 11. Fit to the isospin 3/2 P-wave phase shifts.

600

I I I I

(
I 1 I I

I

I I I I

[

f I I I

[
I I I I

[

I I I I 100 I I I I

[

I I I I

I

I I I I

100—
BO

75

60 D,

25 40

0
20

I. . . , I. . . , I. . . , I

0 100 200 300 400 500
T... (Mev)

600 0
0 200

V... (Mev)
400 600

FIG. 9. Fits to the isospin 1/2 P wave phase shi-fts. FIG. 12. Fit to the D13 phase shift.

150 I I I I

I

I I I I

I

f I I I

J

I I I I

I

I I I I

[
I I I I

1.50
I I I I

[
I I I I

I

I I I I

1.25 1.25

1.00 1.00

0.75
D13

0.50 0.50

0,25 0.25

I I I I I I

300

T... (Mev)

p pp I I I I ( I I I I I I

0 100 200
I I » I I

400 500 600
0.00

0

lf
I I I I I I I I J I I I I I I I I I J I I I I I

100 200 300 400 500 600
T... (Mev)

FIG. 10. Pzz inelasticity parameter. FIG. 13. D13 inelasticity parameter.



710 FRANZ GROSS AND YOHANES SURYA 47

100 j j j j
I

j j j j

SO
~ ~

~ ~

60

j j j j
I

j j j j
I

j j j j cussed above, these channels are driven by the nucleon
and ¹ Born terms, and the effective o- and p-like con-
tact terms. These driving terms depend on only eight ad-
justable parameters: the undressed mass of the ¹ pole,
m", the bare mN¹ coupling giv. , the strength of an
"additional" p-like xvrNN contact term Vz not required
by (but consistent with) chiral symmetry, parametrized
by a constant C~, where (omitting the form factors)
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the ~N threshold, as required by chiral symmetry. (This
adjustment is necessary because the nucleon form factors
are not unity at the 7rN threshold. )

Because of our choice of spin 3/2 propagator, and our
approximation scheme which leads to the result that the
crossed 6 and Drs poles are zero when approximated as
contact terms (for details see the discussion in Sec. III),
the D contributes only to the P33 channel (except for a
tiny contribution to the D33 channel, which we will not
discuss), and the Dis contributes only to the Dis and
P$3 channels. Furthermore, approximating the crossed
nucleon and Roper poles by contact terms means that
they only contribute to spin 1/2 channels. Hence the
phase shifts decouple, with the P33 channel driven only
by the direct 4 pole, the Dis-Pis channels driven only by
the direct Dis pole, and all the other (spin 1/2) channels
driven only by the nucleon ¹ and the effective o and-
p-like contact terms.

It is therefore convenient to describe the fits to each
of the decoupled channels separately, and we will begin
with the spin 1/2 channels, shown in Figs. 7—10. As dis-

TABLE I. Parameters of the model. Those in boldface
were varied during the fit; the others are determined by the
fit.

Parameter

g /4vr
A

C
Cp
m'

giv. /4~

Z(m)
Z(m. )

m+~

g~. /4~
A
A*

A~~

Bare

13.5
0.253
0.891
0.903
1444.7
4.792

1074.4
0.031
1294.3
1951.7
1092.1

Dressed

12.72

1456.0
6.857
265.9

—0.019
—0.023i—0.046i

three parameters needed to describe the inelasticity of the
N', and two form factor masses: the mass in the nucleon
form factor A and the mass in the ¹ form factor A'.

The inelasticity of the N" is approximately described
by coupling to the n6 channel, with coupling constant
g~. . Now the 6 which dominates the P33 channel is
fully dressed by the interactions, but for simplicity, we
did not dress the delta in the aA inelastic channel, and
we compensate for this omission by allowing this virtual,
undressed delta, which we denote by 4' to have a differ-
ent mass m~~ and form factor with a different functional
form and mass, A~ . We find that the fit to the Roper
inelasticity, shown in Fig. 10, requires m~ ——1074 MeV.
This low value is close to the sum m+ p = 1078 MeV,
showing that a good description of the inelasticity re-
quires that the Nerd threshold be in the right place. This
leads us to believe that our model can be improved by
replacing this effective delta with the fully dressed delta
determined from the fit to the P33 channel.

Before we discuss the fits to the other channels, we wish
to point out that the S waves, shown in Figs. 7 and 8,

0 I o b t c j L I j j

100

~ ~ ~

j j I j j j J j J J - J J I j ~ ~ e j o j g [ 'j l 'j 0 5 jj j

300 600400200 500
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FIG. 15. Fits to the ~+@ total cross section.

mQ
g~/4~

I'~
A~

grj/4~
r~

go /4~

1318.6
0.459

1506.2
1513.4
0.346

0.073

1229.1
0.365
109.8

1518.6
0.974
179.0
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are particularly sensitive. To show how the total result is
built up from individual contributions, the curves in the
figures show the result when the kernel (i) includes only
the direct nucleon pole term and the contact term derived
from crossed nucleon exchange (the dotted line), (ii) the
terms in (i) plus the combined o- and p-like contact terms
of Eq. (1.6) (the dot-dashed line), (iii) the terms in (ii)
plus N' driving terms (the dashed line), and finally (iv)
the total result, which includes the terms in (iii) plus the
additional p-like rrrrNN contact term of Eq. (1.10) (the
solid line). Since the contributions add nonlinearly, it is
difficult to extract the separate contributions from the
figures, but we can conclude that the chiral model with-
out the N* and rho [(ii)] gives a very good account of the
scattering lengths, but the ¹ pushes the Sii phase shift
in the wrong direction, and only after the additional rho
is added do we restore the correct low energy behavior.
The bend in the Sii is due to the ¹,and we have no
need for the Sii(1535) in our model.

The same curves are shown for the spin 1/2 P waves
in Fig. 9. Note that the nucleon Born terms make a very
small contribution to the Pii channel above 200 MeV,
but that below 200 MeV they already exhibit the change
from repulsion to attraction. The Born terms alone give
a zero in the Pii phase shift at 280 MeV, but inclusion
of the Roper moves this zero down to the correct region

150 MeV. At higher energies the Pii phase shift is
dominated by the Roper, with the contributions from
the o- and p-like contact terms being very small.

We now discuss the spin 3/2 channels, where the sit-
uation is much simpler. The results for the P33 channel
are shown in Fig. 11. This channel is fit by three param-
eters: the bare delta mass m~, the bare rrNA coupling
constant g~, and a mass in the delta form factor A~.
(The nucleon form factor has already been fixed by the
fit to the spin 1/2 channels. ) Note that the mass of the
bare, unshifted delta pole is at 1319 MeV, considerably
higher than the nominal delta mass of 1232 MeV, but
that the dressed 4 mass is very close to the nominal
value of 1232.

The Dis-Pis channels are fit by three more parame-
ters: the bare mass of the Dq3 pole, mD, the coupling of
the Dy3 to the 7rN channel, gD, and the coupling of the
Di3 to the inelastic rrA' channel, g&, which describe the
inelasticity of the Dq3 approximately. The parameters
which describe the effectiv delta in the inelastic chan-
nel, m~ and A~, are constrained to be identical to those
used for the Roper. The fit to the Dis channel, shown
in Figs. 12 and 13, is good, and the bare Dis mass mii
is about 1513 MeV, in good agreement with the nominal
value of 1520 MeV.

The total elastic vr p cross section is shown in Fig. 14.
The data are from Ref. [31]. The three dotted curves
are the result for a kernel with nucleon Born terms only
(practically zero), the Born terms plus the chiral con-
tact terms, and then these with the 4 contribution. The
4 clearly dominates the cross section below 300 MeV.
The addition of the N' (the dot-dashed line) followed by
the additional rho (the dashed line) suppresses the cross
section up to 300 MeV, but gives needed strength above
400 MeV, and adding the Dis to get the final result (solid

line) restores the cross section at very low energies and
gives a very significant addition above 400 MeV.

The total elastic vr+p cross section is shown in Fig. 15.
The two dotted curves which are practically zero are the
result for a kernel with nucleon Born terms only and
Born terms plus chiral contact terms. Then the results
of adding the 6 and the crossed N' are two overlap-
ping dotted and dot-dashed curves. Finally, the addition
of the extra rho (solid line) makes small but important
contributions at low and high energies.

A number of interesting parameters are determined by
our fits, and these are also given in Table I. We have
already discussed how the rrN mixing parameter A is
fixed by the stability condition, and how the strength
of the A-dependent cr- and p-like contact terms, defined
in Eq. (1.6), is fixed by chiral symmetry. In addition,
we have looked at our solutior, s, and extracted an efj'ec-
tive mass and width for each resonance by writing the
solutions, near the resonance, in the approximate form

M=
~ x +B

m g —W —i~I'e 2

where rn, rr and I are constants obtained from the ex-
act solutions (which depend on the total c.m. energy W)
evaluated at W = m,s. In particular, the value of m, g
is the solution of the nonlinear equation

mR —rn, p+ ReZR(m, ir) = 0 (1.12)

where rnR is the bare mass and ZR(W) is the self-energy
of the resonance R. The values of these effective masses
and widths are given in Table I. The definition of the ef-
fective coupling constants for the resonances, g,g, is dis-
cussed in Appendix D. The renormalized rrNN coupling
constant g+ is

R g
—1

~iv(W)/) ( OW W=m
(1.13)

Note that the renormalization of the mNN coupling con-
stant is not insigni6cant.

The coupling of the nucleon to the ¹ means that the
dressed states are linear combinations of the bare nucleon
and N' states. The admixture is given by a function
Z(W) [defined in Eq. (3.27)], and the values of Z at the
nucleon mass and at the effective ¹ mass are given in
Table I. Note that the mixing is only a few percent.

Finally, we close this review of our results by discussing
the form factors used in this model (for a detailed dis-
cussion, see Sec. III C). A form factor is needed to ensure
that the solutions of the integral equation exist, or alter-
natively, to cut off the integrals over the AN loops which
appear in the solution. This form factor cannot be as-
sociated with the pion mass, as is usually done in pion
exchange models, because the pion is on shell. Anticipat-
ing the extension of this model to the description of the
electroproduction of pions, where a gauge invariant treat-
ment of electromagnetic interactions is possible following
the procedure introduced in Ref. [37], we choose to make
the form factor depend only on the off-shell nucleon mass,
and to identify the form factor with the nucleon itself, so
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that the same universal form factor will be used for all
off-shell nucleons, wherever they appear. When the nu-
cleon form factor accompanies the intermediate nucleon
in the direct nucleon pole term, the virtual nucleon mass
(squared) is simply

1.0

0.8

W = m + p, +2m(Ti~b+ p) (1.14) 0.6

and the form factor is plotted versus Ti b in Fig. 16.
When the nucleon form factor accompanies a virtual nu-
cleon in a xN loop, its mass (squared) is

0,4

p = W + p —2Wu(k) (1.15) 0.2

H. Conclusions

We draw the following conclusions from this work.
A simple resonance pole model, with nucleon, delta,

1.0

0.8

0.6

0.4

0.2

0.0 I I I I I I I I I I I I I I

200 400 600

T, b (MeV)

FIG. 16. Form factors for the nucleon, Roper, and A.

where k is the magnitude of the pion three-momentum in
the loop, and u = gp + k . The form factor is plotted
versus k for a fixed W = m + p in Fig. 17. We empha-
size that the same nucleon form factor is shown in both
figures; only the variable on which it depends has been
changed.

Because of the inelastic xA' channel, a form factor
is also needed for the 4', and once form factors have
been introduced for the nucleon and delta, it is natural to
include form factors for the other resonances as well. We
found that no form factor was needed for the Drs, but an
¹ form factor was included because it improved our fits.
The 4 and ¹ form factors are plotted versus Ti~b for the
kinematics of Eq. (1.14) in Fig. 16. In common with the
nucleon form factor, the 4 and 6' form factor was also
chosen to peak at the nucleon mass m, but the ¹ form
factor was chosen to peak at the ¹ mass. The 4' form
factor is plotted in Fig. 17 for the appropriate kinematics
of Eq. (1.15), but with W = m& +p. Unfortunately, our
results are sensitive to the form factors, which are purely
phenomenological.

0.0
200 400

k (MeV)
600

FIG. 17. Form factors for the nucleon and 4' plotted as
a function of the pion loop momentum.

Roper, and Dis poles and other couplings described by
14 adjustable parameters (including 4 resonance masses,
6 coupling constants, and 4 form factor masses) has been
found to give a very good description of vrN scattering up
to pion laboratory energies of 600 MeV. The model is sim-
ple, covariant, satisfies unitarity exactly, and is approx-
imately chirally symmetric at threshold. A very good
description of the data up to 400 MeV laboratory energy
would require only 8 parameters.

The requirement that the nucleon mass be unshifted
by the interaction (referred to as the stability condition)
can be satisfied only if the AN coupling is a mixture of
pseudoscalar and pseudovector couplings, and the value
we obtain (25%%uo pseudoscalar and 75%%uo pseudovector) is
well constrained by our fit, and largely independent of
the values of the other parameters. Furthermore, it is in
good agreement with the value of this parameter obtained
from a OBE model of NN scattering [10].

The spin 3/2 resonances in our model have no vir-
tual spin 1/2 components, leading us to conclude that
such components (which may very well be present in a
less phenomenological treatment) are not necessary for a
successful fit to the data.

The position of the bare 4 pole (m~ 1319 MeV)
is surprisingly far from the efFective mass of the 6 res-
onance (me&~ 1230 MeV). This should be taken into
account in any quark model which neglects pion interac-
tions. The same is not true for the Roper and the Dj3., in
these cases the bare and effective masses are quite close
to each other.

The existence of a zero in the Pqq phase shift does not
depend on the Roper, but its precise location is sensitive
to the presence of a Roper resonance.

The value of the renormalized rrNN coupling constant,
(g+)2/4m, is not well determined by our model; a good
fit is obtained for values in the range 12—15.

The remainder of this paper is divided into two parts,
which give more details about the relativistic wave equa-
tion which we use, and the details of the model.
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II. GENERAL THEORY Plp P 10 Plp Plo

In this part the relativistic equation for the vrK scatter-
ing matrix M is presented, and we show that the theory
is covariant and satisfies unitarity. We include a complete
discussion of the justification for restricting the pion to
its mass shell. Then we develop the technique used to
solve the integral equations.

A. Why should the pion be on shell?

I

I

pip —kl
I

I

P2O p2o+»o

I

I

I pip —k
I

I

P20 P20

pip k
X

pip —k r

p20~10+k P20

FIG. 19. Feynman diagrams used to construct the integral
equation for the scattering of two heavy particles exchanging
a light meson.

Before we construct the covariant integral equation
used to describe 7t;N scattering, we discuss typical Feyn-
man diagrams which contribute to the scattering ampli-
tude. Following the historical route, we first consider a
simplified problem where 7rN scattering is dominated by
diagrams such as the direct and crossed nucleon poles
[diagrams (a) and (e) in Fig. 1]. A unitarized ampli-
tude is obtained from these "driving terms" by iterating
them to all orders. (The role of the integral equation is
to carry out this iteration in a convenient, closed form. )
The iteration of the direct pole diagrams [Fig. 1(a)] is
straightforward; the most challenging case is the iteration
of the crossed nucleon pole diagrams [Fig. 1(e)] and we
are therefore led to look at the diagram in Fig. 18(a) and
the corresponding crossed diagram shown in Fig. 18(b).
The box and crossed box diagrams, which occur in the
meson exchange theory, are shown in Figs. 19(a) and
19(b) for comparison, and will also be reviewed below.

For simplicity, we will carry out our analysis at thresh-
old, with all of the external particles on shell, so that the
four-momenta of the external nucleons is po = (m, p),
and of the external pions is qo = (p, O). The four-
momentum of the internal pion is k = (ko, k), and each of
the diagrams (18) have four poles and two double poles
in the complex ko plane. If the three-momentum k is
very small, the location of these poles is as shown in
Fig. 20, and introducing the quantities u = gp, 2+ k2

and E = gm2+ k, the poles for the box [Fig. 18(a)]
are at

ko = (d 'Ee,

ko' ——m+ p —E+ie,
ko' ——m —E + ie,

ko = —cd + 2E',

ko ——E+ m —ie,
ko ——E+ m+ p —ie

Since m )p, the poles (5a) and (6a) will give very small

Note that only the poles (2) and (6) have a location differ-
ent for the corresponding poles in (a), and that the pole
in the lower half plane, (6), is still quite distant from the
pole (1), which gives the dominant contribution.

We can use this analysis to make some very interesting
estimates. If the pion three-momentum is small, so that
E m, then the contribution from the dominant pion
pole (1) to the box (a) and crossed box (b) is approxi-
mately

M Mb
(w —p)(2cu )(8m ) (u+ p,)(2u )(8m, )

(2.1)

and the contributions from the poles (5) and (6) are ap-
proximately

M
15

m rn (2 )7
(2.2)

From these we conclude the following. If we neglect the
crossed box, we make an "error" proportional to

M a —p,
b

M u)+p (2 3)

contributions, and we see that the box is very well ap-
proxi7nated by closing the ko contour in the lower half
plane, and keeping only the positive energy pion pole
(la). The same argument holds for the "crossed box"
[Fig. 18(b)] with singularities at

ko = Cd —'EE')

ko ——m —p —E+ ie,2b

kos" ——m —E+ ie,

ko = —Ld+ze,

ko ——E+ m —ie,
ko" ——E+ m —p, —ie

po

pp —k

qp pp+qp —k

(a)

pp

pp —k

qp

pp

pp —k

pp

pp —k
pp —qp —k

4 3 2
0

(a)

0
5 6

42 0
~ 0~

6 5

FIG. 18. Feynman diagrams used to construct the integral
equation for ~N scattering. FIG. 20. Pole structure of the diagrams in Fig. 18.
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Since momenta of the order of a few hundreds of MeV
are probably important, the crossed box contributions
are not negligible when compared with the box contri-
butions generated by the iteration of the crossed nucleon
pole term. But these crossed boxes will not be included
in our kernel, and hence our calculation of the effects of
the crossed nucleon driving term is intrinsically approx-
imate. Approximating the crossed nucleon driving term
by a contact term is therefore not inconsistent with the
precision of this method. The "error" which results from
neglecting the two poles (5) and (6) is negligible:

(2.4)

Therefore, the difFerence between the use of the Bethe-
Salpeter equation and our equation in which the pion
is on shell is not large enough to justify the difficulty
which accompanies a serious attempt to solve the Bethe-
Salpeter equation, This is particularly true in view of
the fact that a much larger error results from the neglect
of the crossed box terms, which are neglected in both
methods.

The conclusion that the light particle (the pion) should
be put on shell is very different from the result obtained
in a theory in which a light meson is exchanged be-
tween heavy particles with masses mi and m2, where
both mq and mq are much greater than p. If we take
m2 ) mq, then the best approximation leads to an equa-
tion in which the heavy particle (m2) is on shell [24], and
it is worthwhile to review the difference between these
two cases here. The box and crossed box for the meson
exchange case (Fig. 19) also have four poles and two dou-
ble poles in the complex ko plane, with the singularities
as shown in Fig. 21. If we take mq to be very large, so
that Eq = gmz+ k2 mz, then the singularities of the
box are at

3 2
Qo ~

0
1 5

3
0"0

21 5

FIG. 21. Pole structure of the diagrams in Fig. 19.

kp
——Ei —ie,la

k 'o= my+i~,2G

kp ——mi —4J + lE,

I o = —&i+
Alp = mi + (d —2c,

Sa

kp
——2m2 + mi —i~6a

where Eq = gm2& + k2 and w = gp + k . Because the
exchanged particle is light, the situation is completely
diferent; while the poles at (1) and (2) dominate, the
singularities from the exchanged meson are very close,
and are the most important source of "error. " Because
the singularity at (5) is now very close to (1), the "light"
particle pole at (1) no longer clearly dominates. Here
the crossed box plays an important role. As before, its
singularities are at the same places as the box, except for
the poles at (2) and (6), which are at

2b
kp ——mi —ae,

6b
ko ——mq —2m2 + te

Now we see that the crossed box is well approximated by
closing the contour in the upper half plane, and keeping
only the double pole (3). However, this contribution is
canceled by a similar contribution from the same pole in
the box. Neglecting the distant poles (6) and (4), the
sum of the two diagrams is

M +Mb= 1 1 1
dko ~ 2 2 +

(~ —my+ ko —i~) (~+my —ko —i~) (% —ko) (ko —mz —&&) (mj —ko —&&)
(2.5)

which displays the cancellation. However, (2.5) is not
zero, because the two poles in the bracket "pinch. " The
only way to evaluate (2.5) exactly, without considering
the crossed box at al/, is to close the coutour in the upper
half plane, in which case the total result comes only from
the pole (2) in the box, corresponding to putting the
heavy particle on shell.

I ooking back over the arguments in the two cases, we
see that the essential difference is the mass of the ex-
changed particle. If this mass is large (which is the case
for ~N scattering), then the singularities from the ex-
change are very distant, and the on-shell contributions

of the light particle dominate. If the mass is light, the
singularities from the exchange are important, and are
best canceled by putting the heavy particle on shell, and
as the discussion shows [24], the exact answer is obtained
in the limit when the mass of the heavy particle becomes
very large.

B. Integral equation

To obtain the correct factors for our equation, it is
convenient to start with the Bethe-Salpeter equation for
aN scattering,
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where M (p', p, P) and V ~(p', p, P) are the scattering matrix and the relativistic kernel (potential) of the scat-
tering, n, a', and a" are Dirac indicies of the initial, final, and intermediate states, and the two-body propagator
Gis (k, P) is

(rn+P —g) „„,
(p2 —k2 —ie) [m2 —(P —k) ~ —ie]

(2.7)

The initial and final momenta of the nucleon are denoted by p and p', and the total momentum is P. In center of
mass system these momenta are written

P = (W, 0), p = (W —kp, —k), k = (kp, k), p' = (W —kp, —k'), k' = (kp, k'), (2 8)

where R' is the total energy of the system.
Equation (2.6) can be reduced to the three-dimensional equation with the pion on shell by formally integrating over

the internal pion energy kp and retaining only the contribution from the positive energy pion pole in the propagator
(2.7), giving

M (p', p, P) = V (p', p, P)— d3k
Va'a" (p ~ kt P)gn" 0"'( k)P)Ma"'a(k) p Pi)~27!' 2 fdic

(2.9)

where the two-body propagator G~ ~ ~ (k, P) is now replaced by the off-shell nucleon propagator g ~ - (k, P),

[~+(P—8)] --
[rn2 —(P —k) s —ie]

' (2.10)

and ~A,, = kp
——A@2 + k~ is the on-shell energy of pion.

Consider a kernel which is a sum of a contact term V, ~~~(p', p, P) and baryon pole terms, collectively denoted by
B (the set (B) includes the nucleon itself),

V (&', &, P) = V, ~ (p', &, P)+ ) 2, (&', P) G (P) P (p, P)
B

(2.11)

where I'P& (p, P) are undressed vertex functions describing the coupling of baryon B —+ AN, I'i(p, P)
—C il'+( —p, P)C (wher—e C is the Dirac charge conjugation matrix), and G~&(P) are the undressed propagators of
the baryons. Then, if the baryons do not mix, it can be shown that the solution to (2.9) can be written

M (p', p, P) = M, (p', p, P) + ) I't, (p', P) Gis(P) I'~ (p, P), (2.12)

where M, ~i~(p', p, P) is the infinite sum of iterated contact diagrams,

M, ...(p', „,P) = V,...(„„P) dsk
Vc ~'~&& (p', k, P)g~«o«~ (k, P)Mc ~~1~~(k, p, P),

27K 2(die
(2.13)

I'~ (p, P) is the dressed vertex for baryon B, which is computed from the bare vertex and M, using the equation

r .(p, P) =r'. (
dsk

I'~ ~ (k, P)g (k, P)M, ~ (k, p, P)2' 2(dg
(2.14)

and G~(P) is the dressed baryon propagator, which is calculated from the equation

(
G~(P) = G~(P) l 1+Gp (P) ~ (P) l

(2.15)

where Z~(P) is the baryon self-energy, given by

Z~(P) = d3k rP .(k, P)g...(k, P)r"., (k, P)

d3kd3~'
, I' (k, P)g (k, P)M, (k, k', P)g ~ - (k', P)I' i „,(k', P) + Z'""(P)

2'i! 4d g ldi
(2.16)
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d3k

2' A;

d kh+(m —k ). (2.17)

Purthermore, these equations automatically give a solu-
tion which satisfies unitarity exactly, as we will show in
the next section.

where Z&" contains the effect of the coupling of baryon
B to inelastic channels (discussed in Sec. III G). Equa-
tion (2.12) is illustrated diagrammatically in Fig. 22, and
Eqs. (2.14), (2.15), and (2.16) in Figs. 23(a), 23(b), and

23(c), respectively. The equivalence of Eqs. (2.12)—(2.16)
with Eq. (2.9) is proved in Appendix A for the case of
a single baryon, and the proof is trivially generalized to
more than one if there is no mixing. If there is mixing,
which is the case for the nucleon and the Roper, the self-
energies and propagators become matrices, and this case
is discussed in detail in Sec. III D.

It is more convenient to use Eq. (2.12) instead of
Eq. (2.9) for several reasons. (i) Since we approximate
the crossed terms by contact terms, all of factors which
make up Eq. (2.12) can be expressed as geometric series,
and summed to a closed convenient form. (ii) We want to
keep the nucleon pole unshipped, and this requirement is
conveniently implemented by requiring that Eq. (2.16),
for B = N, be zero at P = m . (iii) The form of
Eq. (2.12) enables us to separate the resonance contribu-
tions from the background, and the widths of resonances
can be easily obtained from Eqs. (2.16).

All of the integral equations above are manifestly co-
variant. This is guaranteed by the covariance of the vol-
ume integration,

a)

+ ~ ~ ~

-K-M -X
/

(c2)

FIG. 23. Diagrammatic representation of (a) Eq. (2.14)
for the dressed vertex function, (b) Eq. (2.15) for the dressed
propagator, and (c) Eq. (2.16) for the self-energy.

where, in this case,

(2.21)

Restoring the indicies and integrating over the magnitude
of k gives, explicitly,

M ~ (p', p, P) —M (p', p, P)

C. Unitarity 16' 2R' dA~M~l l (p', k, P)

M=V — VGM (2.18)

The derivation of the unitarity relation for pion nu-
cleon scattering is similar to the one given in Ref. [11]for
NN scattering.

Let us start from Eq. (2.9), writing it in a compact
form

X (m + p $)~ll llllllM~ll/~ (k p P)
(2.22)

where k = (wg, k) is the pion momentum when both
nucleon and pion are on shell.

If we expand (m+ p —g) ~l in terms of Dirac spinors
with helicity A [38],

where j = j dsk. Taking the Dirac conjugate of this
equation yields

(m+P —g) = 2m) u (p, A) u (p, A),
A

(2.23)

M G V.

Following [ll], we obtain

M —M= 2i MAGM, —

(2.19)

(2.20)

and introduce

M„,~+(p', p, P) = u ~ (p', A')M (p', p, P)u (p, A)

(2.24)

we obtain

M~ ), (p', p, P) M~, ~ (p', p, P)

. rn[k(= —i z ) dAq Mq, ~, (p', k, P)Mq„q(k, p, P).8vr~@'

FIG. 22. Diagrammatic representation of the solution
(2.12) to Eq. (2.9).

(2.25)

Equation (2.25) is an exact statement of elastic unitarity.
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III. MODEL

The results obtained in the previous section hold for
any choice of the relativistic kernel (or potential). In
this section, details of the model of pion nucleon scatter-
ing described in Sec. I are presented. The main goal is to
calculate the scattering amplitudes shown diagrammati-
cally in Fig. 22. The choice of form factors is discussed
in Sec. III C, followed by a discussion of the treatment
of each baryon resonance (¹,6, and Dis) and the in-
elasticity.

A. Relativistic contact terms

The solution of the integral equation (2.13) is greatly
simplified if the relativistic kernel V, is approximated so
that the two-pion production cut, which arises from the
crossed pole driving terms, is eliminated. This approx-
imation allows us to reduce the integral equation to a
geometric series, which can be summed to give a closed
form for the solution.

However, this approximation must be done very care-
fully, as these terms make important contributions to the
8 waves. We require that the approximation preserves

chiral symmetry at threshold (which will give the correct
scattering lengths), that it not depart significantly from
the tree level calculation (where all external particles are
on shell), and that it extrapolates smoothly to the nu-
cleon pole. For the last requirement we extrapolate the
amplitude off shell in the manner suggested by the struc-
ture of our integral equation; we constrain the pions to
their mass shell and allow the nucleons to go off shell.

The exact crossed nucleon Born term with inixed cou-
pling is

v."(~', ~, p) =u'~. ~,
l

~v'+ tl~')2m

m+ P —g —g'
"m2 —(W —k' —k)2

x

&& f~((»i' —k)')tv(»i") tv(p') (3 1)

where w; and wz denote the isospin of nucleon coupled to
the pion Geld i and j, and g is the bare xNN coupling.
The nucleon form factor f~ will be described later in Sec.
III C. This term can be written in the form

Q m-P~. (»i'~ S» &) = g ~'~& I ~i + t i — +
I

&2 + &2 —
I
+ &3+ ~3—

p, 2m ( p) p, 2m

+
I ~4+ b4 —

I tv((S' —k) )fN(P )fN(P ),
0&m

2m ( p, ) 2m (3.2)

which displays its coupling, through the factors m —P (or m —P ), to the negative energy sector. We will first assume
that all the particles are on shell and neglect the off-diagonal part of Q (which gives only a tiny contribution to the
8 waves). This gives us

&, (»i', p, P) = &g'~'~, fN(p")fN(p')f~(u)
1

+
2m m2 —u

1 —A
@ I

= &."(P)f~(&")tv (»i') (3.3)

where C is a proportionality constant, u = (p' —k), and

W2+ p2 —m2

2W
(3.4)

W 0
~2 + ~2 ~p 2p2

(3 6)

Since we are interested in retaining the dominant S-wave
terms only, we will also neglect the p' k in u (this gives
only a tiny contribution anyway). This gives

(W2 —m2)(W2+ m2 —2p2) —p4

2W2
Finally, in order to obtain the correct limit at W = m,
which is very important for a calculation of the stability
condition, we have modified the second term of V, as
follows:

P W(W2 + p2 —m2)
m2 u (W2 m2) (W2 + m2 2p2) p4

This approximate expression is very close to the result
we would have obtained if we had averaged the exact
crossed diagram (evaluated below threshold by putting
the pions on-shell) over the pion three-momentum (such
as would occur when V, is used as a kernel); it gives
only a 6' error when used to evaluate the fourth order
diagram. It is also very close to the exact tree diagram
above threshold, as shown in Fig. 24. Note that the "tree
approximation, " the erst form given in Eq. (3.6), gives a
very bad result below threshold.

To restore the chiral symmetry which is broken by the
pseudoscalar coupling, we introduce a o-exchange term.
A p-exchange term is also introduced in order get a good
description of the S-wave scattering lengths. The o. and
p exchanges are approximated as contact terms, and the
p exchange is divided into two terms, one with a strength
proportional to (1 —A)2 and one independent of A. The
first of these, when combined with the o.-like exchange
term, can be adjusted to give an interaction at the xN
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FIG. 24. Comparison of our approximatiximation ~solid line
with the exact tree result (dashed line). BBoth of these are
defined in Eq. (3.6).

1400

threshold which is independent of A [recall Eq. (1.6)],
while the second will have a strength which is in epen-
dentl ad'ustable [recall Eq. (1.10)]. Specifically, with
the approximation for P made above and wind with the form
factors added, these two contact terms are

V (p'pP)= & fo —4—& +i'&g ']( —
. ) 4

I ~ 2 2 [ +](y

(3.7)

B. Solving the integral equation for M,

In this section we would like to solve the integral
e uation (2.13) for the background amplitude M, . Thisequation ~~ . or e
equation is shown diagrammatica y in ig. &c,

2

V;(p', p, P) = &4, f—o[,r'llg

cult to preserve chiral symmetry to all energies, we main-
tained it at threshold, which required the same form fac-
tors in all of the contact terms, and the condition

C'fo = tv((m+ ~)')
which determines the constant C.

The crossed diagrams for the baryon resonances (¹,
D ) also were approximated in the same way as we13J

in thisapproxima eted the nucleon crossed diagram, an in

approxima ion et' th 6 and D s crossed diagrams are zero.i
s will beThe details of the treatment of the resonances wi e

discussed in Secs. III D—III F.
Finally, the total relativistic contact interaction

V.(p', , P) =V, (p', p, P)+ V, '( ', , P)+V.(„',„,P)
+V" ('pP) (3.9)

can be written in the covariant form

V.(p' p P) =
I &o(W)—+ & (W) I f (p')f (p")

is the first term in the full solution, as represente in
Fig. 22(a). The driving terms for this equation are
given in Eq. (3.10). The calculation of the dressed
pole diagrams which complete the solution, as shown in
Fig. 22(b), will be postponed until we discuss the reso-
nances.

To calculate both background and the pole diagrams,
convenient if we use the projection operators

1+go
2

(3.11)

where

VP = |."i(W) + Co(W). (3.13)

Since V,+ only depends on the total momentum P =
(W, 0), the integral equation (2.13) is a geometric series,

h' h can be summed in closed form. The result is

M, (p', p, P) = (M+A+ + M, A )fiv (p )f~(p' )

(3.14)

where

(3.15)1+V,+(mIo + WIo ~ p,Ii)
The integrals I„,which arise from the bubble integrations
shown in Fig. 4(c), are

ds k ~i,
"

f~~((P —k) 2)

(2~)s p, 2~g (mz —(P —k)z —ie)
'

(3.16)

C. Form factors

Form factors are needed to ensure that the integrals
in Eqs. (2.13), (2.14), and (2.16) converge. Ideally, the
results should be insensitive to the details of the form
factors.

The form factors for the nucleon and ¹ have the form

fB(p') =
li (A2 mz )2 + (

(3.17)

where AB is the form factor cuttoff mass, and mB is
the dressed baryon mass (recall, as we discussed above,
that the dressed nucleon mass is equal to the bare nu-
cleon mass). Ideally, the same form should be used for
h 4 d 4' the delta which appears inside the x

loo s which generate the inelasticities of the N an
resonances, but we found that the same orm . i
no wort rk unless we replaced m~ by m, the nucleon mass.
The behavior of these factors for various illustrative c
has already been shown in Figs. 16 and 17.

The form factor (3.17) not only gives fB(mB) = 1,

In terms of these projection operators, Eq. (3.10) be-
comes

V, (p', p, P) = (V+A+ + V, A )tv (p )tv (p' )

(3.12)



UNITARY, RELATIVISTIC RESONANCE MODEL FOR mX. . . 719

but also satisfies the criteria that was suggested for the
form factor in Ref. [11]. The form factor should be only
a function of p, decrease at most like a power of p as
p~ —+ oo, and have no pole on the real axis.

D. Treatment of the coupled MM' system

In this section we will first calculate the contribution of
the N* to the background diagram [Fig. 22(a)] and then
calculate the ¹ pole contributions. Since N' has the

( . (1 —A*)g&
g~ lA (3.18)

where gN. is the vrNN* coupling constant, m* is the
¹ mass, and A' is the mixing parameter for the AN¹
coupling. The reduced (with the external nucleon form
factors removed) ¹ crossed diagram can be written

same properties as the nucleon, we treat it like a heavy
nucleon. The Feynman rule for the¹¹rvertex is

( „(1—A )gl, r' m +p' —g, ( „(1—A )g'

m* —m A' —1 1 (1 —A*)' )
m* —u m+ m' m' —u (m+ m*) ) (3.19)

where u is approximated as before. We chose A" = 1.
To calculate the dressed pole terms [Fig. 22(b)] com-

ing from the coupled N¹system, we first calculate the
dressed propagators for the N and ¹,including the
transition from ¹ to N and vice versa. This requires
that we diagonalize the inverse propagator matrix

M =rtGI = rf(G-')-'r
=I' t(A 'AG 'AA ') 'I' = I' (A 'G„'A ') 'I'
= riAG„Ar, (3.25)

where the unmixed vertex column vector I' is

G—1 l~gii gi&~l ™P + Zii
qg» g») q Z» m* —P+ Z») '

(3.2O)

I
l

zNN
(r mr.

The dressed vertices are therefore

NN+Z~ NN

(3.26)

where Z,~ is the self-energy, and the indicies i, j can be ei-
ther 1 (for nucleons) or 2 (for ¹).Note that this matrix
is symmetric, but not Hermitian. It can be diagonalized
by a complex symmetric matrix

G =AG A

where, choosing the simple form for A,

(1 zl
z 1)l

(3.21)

(3.22)

where

1

(m —P+ Zii) + (2Zi2)Z+ (m' —P+ Zz2)Z
'

1
(m' —P+ Z22) + (2Ziz)z+ (m —P+ Zii)Z

(3.23)

-(g» + g~2) + g(gii + g2z)' —4giz
2g j.2

(3.24)

It turns out that the quantity gii + g» is negative, and
hence we must choose the minus sign in (3.24) in order
that Z —+ 0 as gg2 —+ 0.

The contributions of these terms to the scattering ma-
trix M is

gives the following results for the diagonal elements of
Gg.

r —0 NN + ZF NN

(3.27)

M=M+A++M A (3.28)

These two poles contribute to spin z (S and P) partial
wave amplitudes.

E. Treatment of the A

In this section we review the properties of the spin 3/2
propagator which we have used in this calculation, and
calculate the contribution of the dressed 4 pole to the
scattering amplitude [Fig. 22(b)].

We start with the most general form of the spin 3/2
propagator:

The mixing therefore depends on Z, which is depen-
dent on energy and is complex above the pion produc-
tion threshold. The values of Z at the nucleon mass and
the dressed Roper mass are given in Table I; note that Z
is very small. Note that this treatment extends that of
Pearce and Afnan [39], which can be applied only below
the irN threshold where all the matrix elements are real.

Each of these propagators and the corresponding
dressed vertex functions can be written in terms of the
projection operators Ay of Eq. (3.11), and then the con-
tributions from the dressed N and N' pole terms to the
scattering matrix, part of the sum shown in Fig. 22(b),
can be easily expressed in this form as well:
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—i(m~ + P)„(P)=, z 2 . , 8„(P),
(77%~ —P —l6)

(3.29)
The angular integration can be carried out using the
formulae given in Appendix B. Using the properties of
8" (P), the dressed propagator becomes

where

8»(P) —ag» + 4ppu + c z +P&i P &pa P (3.30)
G,~(P)

— "( )
m~ —P + Z~(P)

(3.39)

p"8„(P)= 0,

P"B„(P)= 0

From these two conditions we get

(3.31)
(3.32)

(3.33)

where P is the four-momenta of the 6 and m~ is its
mass.

To get a pure spin 3/2 propagator, we impose two con-
ditions which eliminate the virtual spin 1/2 and spin 1
parts:

The dressed vertex is calculated from Fig. 23(a). How-
ever, only the first term (the bare vertex) will contribute;
the second term is zero [using the properties of Bi""(P)af-
ter doing the angular integration]. Then the contribution
of the dressed 4 pole to the scattering matrix is

2

M~ = —
~ f~(P ) T~T;

k' 8 „(P)Bi"(P) B„p(P)kP
m~ —P+ Z~(P)

which can be reduced using the properties of the 8»(P)

Choosing a = —1 gives

1 1 (Pp, P. +P p„P8..(P) = g.-+ 3~.~--+ —, I—

(3.34)

We will exploit several properties of 8& (P). In addition
to Eq. (3.32), we will use

PB (P) = 8 (P)P
(3.35)

8„(P)Bp (P) = 8„,(P)—
To calculate the self energy of the 6, we need the Feyn-

man rule for the coupling of the 6 with pion-nucleon
channel. For this coupling we take

I'~.(»&') =
I I f~(P')[B~ (P)]p k f~(&")T'l~)

(3.36)

where g~ is the bare vrNA coupling, T, is the isospin

3/2 —+ 1/2 transition operator for an incoming pion with
isospin i, fiv(p' ) is the nucleon form factor, f~(Pz) is

the delta form factor, k is the momentum of the incoming
pion, and o. is the Dirae index of the incoming nucleon.
(The Dirac index P and I.orentz index p of the outgoing
6 are suppressed in I'.) Note that T, is related to w; by
the relation [40]

TtT, = 2(6'~, —sr~~, ). (3.37)

The 6 self-energy [only the first term of Fig. 23(c) con-
tributes because the second term does not couple to the
Pss channel] can be written

2

~" (P)=I „ I
f~(P')

l s & (2~)'
fiv((P —k)')

2uri, m2 —(P —k)~ —ie

x Bi' (P)k (m+ P —g)( —kp)BP (P).
(3.38)

F. Treatment of the 17q3

In this section we calculate the scattering amplitude
for the Dq3 dressed pole term. The calculation of this
pole term is similar to the 6 pole term just calculated,
except there is an extra p in the vrNDqs coupling. We
write the interaction Lagrangian for the +NDq3 coupling
as

I
@~ B„.~, p'@& +H.c.,

(g~l -„, B(v
(3.41)

where g~ is the coupling constant and 8„„is the spin 3/2
projection operator which is described in the previous
section. From this Lagrangian one can derive a Feynman
rule for the +XDq3 interaction vertex

—8" (P)
mg) —P+ Z~(P) ' (3.43)

where Z~(P) is the self-energy of the Dis and mo is its
bare mass. As in the case of the 6, the self-energy of the
D&s is given completely by the first term in Fig. 23(c),

X 2

~""(P)=
~l pp (2~)

N((P —k)')
2uA, m~ —(P —k) 2 —i e

xB~ (P)k.~'(m+ p- g)&'kpBp. (P).
(3.44)

The scattering amplitude is calculated in the same way
as the L channel. The D~3 resonance contributes only
to the Dq3 and Pj3 partial waves.

I'o.(» p') = i
I I

[B~-(P')]p k ~'f~(p") ~'ls a

(3.42)

Note that no form factor for the Dqs is used. Using this
coupling, Dqs propagator becomes
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G. Inelastic channels

fi'v*(P)
&S ) *

(2~)'
d k f, ((P —k) )
2GJA; m~1 —(P —k) —'ie

x k~8„(P —k)(m~ + P —g)
x8 ~(P —k)8p (P —k)(—k ). (3.45)

Since (P—g) commutes with 8„~(P k), the t—ensor calcu-
lation can be carried out easily, and the angle integration
can be carried out using the formulas in Appendix B.

For the D&3 inelasticity, we start from a Feynman rule
for an interaction between Dis, 6', and vr,

It is well known that the inelastic channels become
more and more important as we go to higher and higher
energy. In this analysis we consider the inelasticity from
the Pii and Dis channels which is dominated by ~-6
scattering. We approximate the finite width 6 by a zero
width 6', which has the same properties as 6 except of
its mass.

Now calculate the inelasticity of the P~~ channel. Fig-
ure 25(a) can be written

APPENDIX A: ALTERNATIVE FORMS FOR
THE INTEGRAL EQUATION

First, we show that

I'(p', P) = I' (p', P)+ d k V, (p', k, P)G (k, P)I'(k, P)

is equivalent to

r(p', P) = r, (p', P)

+ d k M, (p', k, P)G (k, P)I' (k, P), (A2)

where I'p is the bare vertex, I is the dressed vertex, M, is
the scattering matrix with the crossed diagrams as driv-
ing terms, and V, stands for the potential (crossed dia-
grams). In this appendix we absorb the minus sign in
front of the integral in Eq. (2.9) into Gp, giving a plus
sign in Eq. (Al).

To carry out the proof, simplify the notation, and use
the scattering equation

M, = V, +VapM,

rD(»p') =igh8~ (p)8 (p')f~ (p")T'
v,a,r = M.a,r —v.a,M,a,r.

where p and p' are the momentum of the D~3 and L'
respectively and T, is the isospin 3/2 to 1/2 transition
operator. The self-energy for this channel [Fig. 25(b)]
can be written

Now since

V,GpM, = M,GpV„

to write the second term in Eq. (Al) in the form
(3.46)

(A4)

Z„„(P)= (gD) 2
—
s 8„~(P)

dsk fr2, ((P —k) z)

2(ui, m2~, —(P —k)z —ie

Eq. (A4) becomes

V,G,r = M, G,r —M,G,V,G,r.
Substituting Eq. (Al) into (A6) gives

(A6)

x8 '(P —k)(m~ +P —g)

x8,~(P —k)8~ (P —k)8s„(P) (3.47).

This equation can be simplified using the properties of
8„„(P)and the angular integrations given in Appendix
B. Details of these calculation can be found in [41]. r = ro+ M.Goro

Next, prove that

(A8)

v,a.r = M, a,r —M,a, (r —r, )
= M, GpI'p

Finally substituting Eq. (A7) into Eq. (Al) gives Eq.
(A2), in the shorthand notation
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is equal to the infinite sum of all the possible diagrams
generated from driving terms which are the sum direct
and contact diagrams,

M = (V, + Vg) + (V, + Vg)apM. (A10)

X-
N ( w

N

X-r
D,3

Here M is the scattering matrix, Vg is the direct poten-
tial, Go is the taboo body propagator, -and Go and G are
the bare and dressed propagator of the baryon, where

FIG. 25. Diagrams for estimating the inelasticities of the
N and the Dy3.

G=G, +G, rtG, I G .

Proof:

(Al 1)
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V,t.-,M = V,a,M, + V,o,rart
Mc Vc + VcCOI'CI

= M, —v, + rart —r,art
=M —v, —r,art, (A12)

where k is the on-shell momentum in the c.m. system.
The inelasticity parameter pi~ can be calculated from

g,', ( M'+
+ —+&I

4 a 2 a
where we used Eqs. (A9), (A3), and (Al).

Now consider the direct term, which in this notation
is V, = rpG0I0. Hence

This formula can be obtained easily from Eq. (Cl). The
total crossed section formula is

VGoM = I' G I',G, (M, +rart)
= r.a, (rt —r,') + r, (a —G,)r t

= r,art —r.a,r,', (A13)

where we used the complex conjugate of Eqs. (AS) and
(All).

Adding Eq. (A12) to Eq. (A13) yields

&~.t =
„- ).I.(t+1)~(&~+)+~~(fi )j

t=o

where

Mt~fi„=—
a

For the x+P system,

(C4)

(C5)

(v. + v, )G,M=M —v. —r,a,rt
=M —V, —Vd,

which is the same as Eq. (A]O).

(A14)

I=3/2
&tot = &tgt

and for z P system, we have

] I=3/2 I=1/2,o, = s(o,o, +2o;o, ).

(C6)

(C7)

APPENDIX B: ANGULAR INTEGRALS

4m
gdAA, = (dg, (B1)

4' P&
A:"dOI, ——

Pi'P (,k~gdAg =47r
I

~is + —ks
I

—4vrp" —k2, (B3)W2
q 3

APPENDIX D: WIDTH, EFFECTIVE MASS
AND EFFECTIVE COUPLING

To calculate the width, the effective mass of 'reso-
nances, and effective coupling constant of resonance par-
ticles, we start from the pole diagrams in the scattering
amplitudes (for the Dis and 6 we have only 1 diagram,
but for Pii channel, after diagonalization, we have two
pole diagrams as discussed in Sec. III).

These scattering amplitudes can be written in the form

(2 1 2& 1k~k dAA, , =4~
I

~„'+ -k'
I

—4~g~ k2,W2 i 3 ) 3

k~k"gdAi, =4~ ~g (~~2+ k~)

, 1 ~P—471 g 3 W

(B4)
m* —W —ir/2 '

~h~~~ g~ is the pion-baryon coupling constant.
imaginary part of this M(W) (at W = m*) is

e(M( ))=g'f( ')
I' j2 (D2)

(4~, 5 qi p. +p~&
3

k'~1
I) (B5) Taking the real part of the derivative of Eq. (D]) gives

APPENDIX C: PHASE SHIFTS
AND CROSS SECTION

(BM(m") ) g&s f(m')
BW

and from Eqs. (D2) and (D3),

(D3)

The phase shift is calculated using

M)~ q)~e
' '+ —1

G 2l (C1)

where g~~ and bt~ are the inelasticity parameter and
phase shift. The + refers to j = i+ 2 and a is defined by

29M(m")
+8M(m )

'

BW
(D4)

The efFective mass m' is calculated using Eq. (1.12).
The effective pion-baryon coupling constant can also

be derived from Eq. (D2),

8+ W

mIkI
(C2)

raM(m*)
2f(m*) (D5)
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