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Spin-isospin SU(4) symmetry in ad- and fp-shell nuclei
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For all even-A nuclei in the sd shell we evaluate the overlap between several low-lying states,
obtained by diagonalizing the realistic Wildenthal interaction, and the eigenstates of the SU(4)
Casimir operator. We find that the J = 0+ ground states of even-even nuclei near the middle of
the shell have rather small overlaps (less than 0.5) with the lowest SU(4) Young tableaux, while the
J = 0+ and 1+ lowest states of odd-odd nuclei have noticeably larger overlaps (0.6—0.7). We also
find that the expansion in the SU(4) Young tableaux converges quite rapidly, and that the two or
three lowest tableaux usually account for more than 90% of the nuclear wave function. We then
extend the calculation to the fp shell and evaluate the overlaps between the j = 0+ ground states
obtained by diagonalizing a realistic interaction and the SU(4) eigenstates for even-even nuclei with
maximum isospin. For the fp shell the overlaps are even smaller than in the sd shell. Since we
observe such sizable SU(4) symmetry breaking effects in the relatively simple sd and pf nuclei, we
are rather pessimistic about the prospects of using conclusions based on SU(4) in heavier, more
complex nuclei.

PACS number(s): 21.60.FW, 21.10.—k, 21.60.—n

I. INTRODUCTION

The question whether nuclear states can be character-
ized by the quantum numbers of the spin-isospin symme-
try group SU(4) has been raised many times during the
55 years since the original proposal of Wigner [1]. Even
though it is clear that in most nuclei SU(4) symmetry is
at best a rather crude approximation, various manifesta-
tions of the symmetry (or apparent symmetry) have been
noted. So, Franzini and Radicati [2], and later Gaponov
et al. [3] noted the effect of SU(4) symmetry on nuclear
masses. The giant Gamow-Teller resonance [4], close in
energy to the isobar analog state, is also compatible with
SU(4) symmetry.

There is an obvious intimate relation between nuclear
P decay and SU(4) symmetry. Since the Gamow-Teller
operator is one of the group generators, it can connect
only states belonging to the same SU(4) representation.
Hence, the difference between the ft values of superal-
lowed and "normal" allowed transitions follows naturally
if SU(4) is only slightly broken.

Nuclear double-beta decay (with emission of two neu-
trinos) would also be forbidden in SU(4), at least in the
closure approximation. Treating the symmetry violating
parts of the interaction in perturbation theory leads to
double-beta-decay matrix elements of the correct order
of magnitude [5]. Moreover, when considering the total
double Gamow-Teller strength, one finds that the SU(4)
prediction [6] appears to be reasonable. Detailed numeri-
cal calculations in the sd shell [7] reveal a broad, but rec-
ognizable, "double Gamow-Teller" state near the double
isobar analog state, with the total strength in agreement
with the SU(4) prediction. The distributions of double
Gamow-Teller strength for a few nuclei in the sd and fp
shells have also been analyzed by Zheng et aL [8], and
its relation to SU(4) symmetry breaking has been noted.

It has been sometimes argued that SU(4) symmetry
violation is exaggerated by the theoretical treatment
of nuclear-structure problems. In the extreme single-
particle model, the spin-orbit splitting is the symmetry
violating part. Pairing, in the standard BCS treatment
involves only proton-proton and neutron-neutron interac-
tions, and again violates spin-isospin symmetry. It is pos-
sible that a full calculation, which includes the total nu-
clear Hamiltonian, would, to some extent, "restore" the
symmetry violated by the approximate treatment of the
interaction. Again, in the sd shell one can, perhaps, see
this tendency when comparing the P+ strength derived
from occupation numbers of individual subshells with the
result of a full calculation [9]. The neutron-proton in-
teraction further reduces the P+ strength, in agreement
with the "symmetry restoration" concept. (The same
tendency in a much broader range of nuclei has been
noted by Mairle et al. [10].)

SU(4) symmetry is clearly recognizable in the p-shell
nuclei [11,12]. However, it is well known that LS cou-
pling is only gradually replaced by jj coupling as the
nuclear mass increases and thus the p shell might not
be a good testing ground for the validity of the spin-
isospin symmetry. The sd shell is probably a better can-
didate. The nucleon number is small enough so that an
exact shell-model diagonalization is possible, and good
phenomenological interactions are available [13]. How-

ever, in the middle of the shell there are typically many
() 1000) states for each J, T, and thus one might hope
that the states there are complicated enough to reveal
general trends. An early test [14], based on the spec-
tral distribution method, suggested that SU(4) is badly
broken for reahstic interactions. (However, the method
might exaggerate the symmetry violation [15].) In the
present work, we test the validity of SU(4) using nu-
clear states with good J, T quantum numbers and mod-
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em shell-model codes [16). We also extend the calculation
to Ca isotopes in the fp shell.

Our aim, therefore, is an assesment of goodness of
SU(4) symmetry in nuclei with relatively many nucleons
in valence shells. We expect that the tendencies that we
find here will be even more pronounced in heavier nuclei,
which are inaccessible to the exact shell-model treatment.
Since we observe sizable SU(4) symmetry breaking even
in the simpler sd- and pf-shell nuclei which we can han-
dle, we are rather pessimistic about the prospects of using
conclusions based on the SU(4) symmetry in even more
complicated systems.

Alternatively, one can test the goodness of nuclear
symmetry by classifying the effective Hamiltonian ac-
cording to the irreducible tensor character of the cor-
responding symmetry group (see the review of Hecht [15]
for a general description of the method). For the sd
shell Vincent [17] derived the selection rules for the cen-
tral and spin-orbit interactions, while Pluhar [18] and
Draayer [19] have shown that the Kuo-Brown interaction
(and some of its modifications) contain large symmetry
conserving components. Since the question of goodness
of SU(4) symmetry hinges, as we will show below, on the
competition between the symmetry breaking one-body
spin-orbit force and (largely) symmetry conserving two-
body interaction, it is difficult to estimate the degree
of symmetry breaking a priori. With this in mind, we
chose to perform numerical evaluation of the overlaps
with SU(4) eigenstates as described below.

II. EVALUATION OF OVERLAPS

irreducible representations of SU(10) for the same rea-
son. Since the total wave function must be antisymmet-
ric, the Young tableaux of SU(6) [or SU(10) for the fp
shell] must have the associated shape of the correspond-
ing Young tableaux of SU(4). Again, one can use the
tables [20] to find the orbital angular momenta L and
their degeneracy for the given Young tableaux of SU(6)
and combine them with the S values to obtain the desired
total angular momentum J.

Having calculated the Wildenthal interaction and
SU(4) eigenstates, we then evaluate the direct overlaps
between them and sum their squares over all degenerate
SU(4) eigenstates belonging to the same Young tableau.
[In practice the Lanczos diagonalization in our code is not
particularly well suited to obtain eigenvalues of spectra
that are manyfold degenerate. Therefore, small random
numbers were added to the matrix of the Casimir oper-
ator, Eq. (1), in order to remove the degeneracy to a
small degree. ]

Another way to remove most of the degeneracies would
be to diagonalize not only C[SU(4)] but also (with difFer-
ent coefficients) the Casimir operators of SU(3) and R(3)
of space and SU(2) of spin. (For several sd-shell nuclei
such a program has been carried out by McGrory [21].)
Since our goal here is simply to test the goodness of SU(4)
symmetry, we did not follow this path although it would
be obviously useful when considering, e.g. , Gamow-Teller
transitions that must be diagonal not only in the SU(4)
but also in the SU(3) and R(3) labels.

The Young tableau with the lowest eigenvalue of C,
Eq. (1), for the even-even nuclei with T = (N —Z)/2 is
[T, T, O] in the standard notation [22], or (0, T, 0) in the

We use the OXBASH shell-model code [16] with the
Wildenthal interaction [13) and obtain the eigenvalues
and eigenvectors of the lowest-lying states (typically five)
in each nucleus. We then use the same computer code
and produce the eigenstates of the SU(4) Casimir opera-
tor

C[SU(4)] = ) col 0'2 + Ti T2 + 0'1 0'2 Ti T2.
11 2

TABLE I. SU(4) overlaps of the J = 0+ ground states of
even-even nuclei. The upper entry is the overlap (in %%uo) with
the lowest Young tableau, and the lower entry (in parentheses)
is the sum of the overlaps with the two lowest tableaux. (Oc-
casionally two distinct Young tableaux have identical eigen-
values. In such a case we add the overlaps. )

Z/T 0

The eigenstates of C are degenerate; the degeneracy is
equal to the number of states belonging to the given rep-
resentation of SU(4), and having given angular momen-
tum J and isospin T. One can evaluate this degeneracy
as follow. . First, using, e.g. , the tables of McKay and Pa-
tera [20], one can identify the Young tableau [which we
use to label the irreducible representations of the group
SU(n)] corresponding to a given Casimir operator eigen-
value. Then, in the same tables, one finds the decompo-
sition of SU(4) into SU(2) of spin and SU(2) of isospin,
i.e. , the possible S and T values (including possible de-
generacies) for each irreducible representation of SU(4).
The spatial part of the wave function can be classified, in
the case of the nuclear sd shell, by the Young tableaux
of the group SU(6) (6 is the maximum number of parti-
cles in an identical spin-isospin state, the sum of 2l;+ 1).
In the fp shell, the spatial part can be classified by the

yoNe

y2Mg

y4Si

i6S

63.4
(100.0)

87.1
(98.6)

56.0
(88.1)

39.8 37.9 50.1 78.6
(85.0) (86.7) (91.5) (100.0)

51.2
(87.0)

35.1
(66.7)

30.7 34.9 51.8
(75.8) (82.4) (99.2)

32.0
(72.2)

23.7
(54.4)

28.4 33.9
(76.0) (93.8)

30.5
(70.4)

31.4
(68.8)

34.7
(94.1)

55.2 59.1
(88.7) (100.0)

86.1 61.7 41.9 39.6
(100.0) (99.7) (96.4) (96.0)
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notation of [20]. For odd-odd nuclei, the lowest Young
tableau is [1,1, 0] [or (0,1,0) in the other notation] for
T = 0 and [T+1, T, 1] [or (1,T 1—, 1)] for T g 0. We list
the overlaps with these Young tableaux in Tables I and
II, and display them in Figs. 1 and 2.

SU(4) symmetry is clearly badly broken once we are
dealing with nuclei more than a few nucleons away from
closed shells. States belonging to the lowest Young
tableau are obviously not a good substitute for the true
nuclear state, particularly in even-even nuclei. In odd-
odd nuclei the situation is a bit better, and we tenta-
tively explain the bigger overlaps to the reduced efFect of
pairing in these nuclei. (One can, perhaps, see a hint of
this tendency already in the work of French and Parikh
[14].) We will show in the next section that the pairing
interaction is one of the main SU(4) symmetry breaking
infiuences.

On the other hand, the distribution of the overlaps is
not random. The states belonging to the lowest Young
tableau have 5—10 times bigger overlaps than an average
state. Moreover, the overlaps are related to the value of
the Casimir operator, as Fig. 3 for eight particles (holes)
with J = 0+, T = 2 and six particles (holes) with J = 1+,
T = 0 illustrates. This is a typical situation. One sees
in Tables I and II that by including the first and second
tableaux the difFerences between even-even and odd-odd
nuclei largely disappear, and that a major part of the
nuclear wave function is accounted for. This behavior
suggest that an expansion in SU(4) states might be a
sensible approach if one is interested in processes allowed
under SU(4).

TABLE II. SU(4) overlaps of the lowest J = 1+ or
J = 0+ (entries with ") states of odd-odd nuclei. The upper
entry is the overlap (in '%%uo) with the lowest Young tableau,
and the lower entry (in parentheses) is the sum of the over-

laps with the two lowest tableaux. (Occasionally two distinct
Young tableaux have identical eigenvalues. In such a case we

add the overlaps. )

T = (N-Z)/2

100

I 75

s-
50

25

Z

FIG. 1. Barchart representation of the overlaps between
the J = 0+ ground states of all even-even nuclei and the
eigenstates of the SU(4) Casimir operator corresponding to
its lowest eigenvalue and compatible with the given A, T,
and J.

III. SYMMETRY VIOLATION AND
RESTORATION

In order to trace the role of various components of
nuclear mean field and residual interaction, we made a
number of tests. We chose the case of eight nucleons in
the sd shell and with T = 0, 2 and J = 0+ as suitably typ-
ical cases. Spin-orbit splitting is a major source of SU(4)
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FIG. 2. Barchart representation of the overlaps between
the lowest J = 1+ or 0+ states of all odd-odd nuclei and
the eigenstates of the SU(4) Casimir operator corresponding
to its lowest eigenvalue and compatible with the given A, T,
and J. (The nuclei where 0+ is used instead of 1+ can be
seen in Table II.)
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I IG. 3. Complete decomposition in terms of the SU(4)
representations of the 0+ ground states of Ne (empty
squares) and Si (full squares), and of the lowest 1+ states in

Na (full circles) and Cl (empty circles). On the abscissa
axis are the SU(4) Casimir operator eigenvalues, relative to
the lowest one for each nucleus.

symmetry violation. French and Parikh [14] have shown
that the overlaps with the lowest SU(4) set of states in-
crease dramatically if one makes all single-particle states
degenerate. We have come to a very similar conclusion.
With standard single-particle energies the overlaps with
the lowest Young tableau are 51.2% and 39.8%%uo, while
for degenerate single particle (s.p. ) states they become
89.1% and 90.6%%uo.

Next, we would like to test the role of the residual in-
teraction. By reducing alt matrix elements of the inter-
action by a factor of 10, and keeping the s.p. energies as
they were, we arrive at states that have no resemblance
to SU(4). The lowest tableau gives only 6.3%%uo and 11.0%%uo

for the two cases. Thus, inclusion of the residual interac-
tion "restores" to some extent the SU(4) symmetry that
was initially totally broken by the spin-orbit splitting.

One can look at these tendencies also from a different
perspective. We could consider the Hamiltonian with
degenerate s.p. states but including the two-body in-
teraction as a starting point, and the spin-orbit force as
a symmetry breaking perturbation. Since we saw above
that the Wildenthal interaction is to a large extent SU(4)
symmetry conserving, the zeroth-order states would then
have good SU(4) symmetry. The one-body spin-orbit
force can shift only one block in the Young tableaux
[17), and therefore typically connects tableaux with close
eigenvalues. Thus, the pattern exhibited in Fig. 3 can
be understood.

When comparing the even-even and odd-odd nuclei
we concluded that the pairing interaction is effective in
breaking SU(4) symmetry. Pairing is not a realistic ap-
proximation for the two-body interaction in the sd shell,
but becomes increasingly more effective in heavier nu-
clei. Since we use the sd shell primarily as a testing
ground, we replaced the Wildenthal interaction with the
charge-independent pairing interaction that acts betweenJ = 0, T = 1 states, that is (jiji, J, T]Vjizj 2, J, T) =

TABLE III. SU(4) overlaps of the lowest J,T = 0+, 2
state of Ne and J,T = 1+,0 state of Na for djfFerent
interactions.

Ne

C [SU(4)] Wildenthal Bonn pot. Kuo-Brown Kuo-Brown
bare renorm.

0.0
8.0

16.0
24.0
36.0

&36.0

39.8
45.2
5.5
8.2
1.1

0.22

50.9
39.7
3.8
5.0
0.5

0.05

55.8
38.1
2.7
2.9
0.4

0.02

61.1
33.2

2.1
3.3
0.3

0.03

22N

C[(SU4)] Wildenthal Bonn pot. Kuo-Brown Kuo-Brown
bare renorm.

0.0
8.0

20.0
32.0

&32.0

69.9
19.3
10.3
0.5

0.04

76.6
17.2
5.9
0.2

0.02

83.3
12.7
3.8
O. l

0.02

82.4
13.2
4.2
0.2

0.02

—y+2ji + l)(2j2 + 1)6Jebel i. [The pairing interaction,
even when treated in the isospin conserving way, clearly
violates SU(4) symmetry, since the Casimir operator, Eq.
(1), contains interaction terms in both the T = 0 and
T = 1 channels, with a fixed relative strength. ]

The coupling constant y = 0.39028 MeV was cho-
sen by fitting the T = 1 two-body matrix elements
of the Wildenthal sd-shell interaction to a pairing plus
a density-density interaction composed of monopole,
quadrupole, and hexadecapole components. For the two
cases considered above the first overlaps become 10.1%
and 16.8% showing that pairing indeed efFectively de-
stroys SU(4) symmetry. We then repeated the pairing
interaction diagonalization with degenerate s.p. energies.
As expected, the overlaps with the lowest tableau grew,
to 48.9% and 86.1%. The symmetry, however, has not
been restored, and a closer look shows that the eigen-
states of pairing are very different from eigenstates of
the realistic interaction in their decomposition in terms
of the SU(4) representations. Whereas we observed an
obvious correlation between the overlap and the Casimir
operator eigenvalue for a realistic interaction, the pairing
situation is different. Even for the case of degenerate or-
bits, the admixed SU(4) representations are far removed
from the lowest Young tableau.

The results in Tables I and II were obtained with the
Wildenthal interaction. How different are the overlaps
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with other popular effective interactions? To answer this
question we calculated the complete decomposition of
the J,T = 0+, 2 ground state of ~4Ne and of the low-
est J,T = 1+,0 state of Na for three other widely
used effective sd-shell interactions (Bonn potential based
G-matrix [23], bare Kuo-Brown, and renormalized Kuo-
Brown [24]). The results are shown in Table III. One
can see that the Wildenthal interaction has the smallest
overlap, while the renormalized Kuo-Brown interaction
has the largest overlap. We believe that this is a general
result. At the same time, the pattern of SU(4) breaking,
and the larger overlap in odd-odd nuclei in comparison
to the even-even ones, is a common feature of all interac-
tions. One should keep in mind, however, that the fitted
Wildenthal interaction describes the spectra of sd-shell
nuclei much better than the other ones. For example,
in the two considered nuclei, Wildenthal interaction de-
scribes quite well the splitting between the erst and sec-
ond 0+ and 1+ states while the other three interactions
underestimate it considerably.

IV. fp-SHELL RESULTS

100

80

C4
~ 40

O
20

20
l i I i I

24 28 82 36 40

that the overlaps for the (fry2)" configurations quoted
above are interaction independent. ]

FIG. 4. Overlaps between the J = 0+ ground states of the
Ca isotopes and the eigenstates of the SU(4) Casimir operator
corresponding to its lowest eigenvalue (circles) and to the sum
of the lowest and next eigenvalues (squares).

Unlike the sd shell, the fp shell contains too many
part;icles and cannot be treated by shell-model codes in
a full generality. Thus, it is impossible to extend the
same treatment, described previously, of SU(4) symme-
try breaking to heavier fp-shell nuclei. However, one
can see in Fig. 1 that the most important quantities,
the overlaps of the ground state with the lowest Young
tableaux, are qualitatively similar for the oxygen isotopes
(purely neutron states) and in the other sd-shell nuclei.
It appears that the amount of the overlap depends pri-
marily on the number of nucleons in the shell, and to a
lesser degree on their isospin.

Guided by these considerations, we have evaluated the
overlaps between several low-lying J = 0+ states of even-
even Ca isotopes and the eigenstates of the SU(4) Casimir
operator. Both calculations were performed for the full

fp shell without restrictions, using the interaction pro-
posed by Richter et aL [25]. The results are displayed in
Fig, 4.

The overlaps with the lowest SU(4) Young tableaux
are even smaller for the Ca isotopes than for the anal-
ogous oxygen isotopes. In the middle of the fp shell,
the ground states contain only about 20% of the lowest
SU(4) irreducible representation. However, our previ-
ous finding that the lowest and the next-to-lowest Young
tableaux account for most of the ground state wave func-
tion remains true, as one can also see in Fig. 4.

For Ca one can test to what extent the spin-orbit
splitting is responsible for the SU(4) breaking. When the
diagonalization is repeated with the realistic interaction,
but forcing all neutrons to be in the fry2 subshell, one
obtains overlaps with the lowest Young tableau of 57.1,
31.8, 18.6, and 12.1% for neutron numbers 2, 4, 6, and 8,
respectively. By comparing with the overlaps in Fig. 4,
we see that the finite separation between the fry2 and the
rest of the fp shell "restores" the symmetry somewhat, as
expected, but the restoration is insufficient. [Let us note

V. CONCLUSION

In conclusion, we have evaluated the overlaps between
the wave functions that describe the ground states (and
a few low-lying states) of all even A sd-shell and some
fp-shell nuclei and the eigenstates of the SU(4) Casimir
operator. By adding the squares of such overlaps for
all degenerate states belonging to the same irreducible
representation (Young tableau) of SU(4) we can make a
quantitative statement about the validity of the SU(4)
symmetry in these nuclei. We find that SU(4) symme-
try is badly broken for all nuclei with more than a few
nucleons (or holes) outside closed shells. We identify the
spin-orbit splitting as the main SU(4) symmetry breaking
mechanism, in agreement with previous results. In addi-
tion, the pairing interaction also has symmetry breaking
esects.

Diagonalization in the full shell-model space "restores"
SU(4) symmetry to some extent. However, this effect is
insufficient to make SU(4) a practical starting point in
the development of a truncation scheme (or of a per-
turbation theory expansion) aimed at reducing the huge
dimensions inherent in the shell-model approach to heav-
ier nuclei. On the other hand, our calculations show that
the overlaps with the SU(4) eigenstates belonging to the
lowest possible Casimir operator eigenvalues are signifi-
cantly larger than one would expect on purely statistical
grounds. We also find that the decomposition of the nu-
clear wave functions in terms of SU(4) eigenstates has
characteristic regularities, i.e. , states belonging to higher
SU(4) eigenvalues have smaller overlaps. These tenden-
cies are consequences of tw'o opposing trends. The two-
body interaction is largely SU(4) symmetry conserving,
namely, it contains the space exchange Majorana force
as a major component, At the same time, the symme-
try breaking is caused mostly by the one-body spin-orbit
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force which has very simple selection rules in SU(4).
The features of nuclear spectra, mentioned in the Intro-

duction, which are often considered as indicators of the
SU(4) symmetry, are general consequences of the spin-
isospin structure of the nucleon-nucleon interaction. The
existence of the giant Gamow-Teller state, for example,
is caused by the repulsive crq cry vq 7s particle-hole
force; by itself the existence of the giant Gamow-Teller
state, and even its closeness to the isobar analog state, is
not a guarantee of the SU(4) symmetry.
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