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We derive an approximate boson-quasifermion mapping of a single-j shell-model algebra, appli-
cable to the seniority classification scheme, as an expansion in the ratio of the seniority quantum
number to the level degeneracy, with selective summation of higher order terms. The procedure used
is an extension of the algebraic technique first applied to the purely bosonic part of the mapping by
Bonatsos, Klein, and Li. Only the maps of the generators are needed to derive a Hamiltonian for
the interacting boson fermion model (IBFM), and these can be obtained in Hermitian form with-
out having to go through the intermediary of a mapping of the fermion operators. Application of
the results is illustrated by a fresh discussion of the so-called exchange interaction of the IBFM. A
consistent mapping of the single fermion in terms of bosons and quasifermions is also derived that
includes a consideration of the unusual properties of the quasifermions.

PACS number(s): 21.60.—n, 21.60.Ev, 21.60.Fw

I. INTRODUCTION

Two general methods, each based on a notion of core-
particle coupling, remain in wide use for the theoretical
study of collective motion in odd nuclei. The older core-
particle coupling model (CPCM) [1], based on the geo-
metrical model for the core collective motion, has been
improved [2] by the incorporation of microscopic features
suggested by the equation of motion method (for recent
reviews, see [3,4]). One can defend the view that the re-
sulting models are the most sophisticated ones we possess
at the moment for the study of complex odd nuclei.

At the same time, the interacting boson fermion model
(IBFM) [5, 6], which we view as a semimicroscopic ex-
tension to odd nuclei of the phenomenological IBM, has
proved a very popular alternative to the CPCM. Indeed,
the distinction between the two has become somewhat
blurred in recent years. For example, it is now common
to use the results of IBM analyses to describe core proper-
ties in CPCM calculations [4, 7]. On the other hand, the
basic microscopic justification of the IBFM resides in the
observation that it contains the same physics, mapped
to a boson-fermion basis [8], as a shell-model Hamilto-
nian in which the residual interaction is a sum of pairing,
quadrupole-quadrupole, and quadrupole-pairing interac-
tions. This conclusion did not appear full-blown when
the IBFM was introduced. In particular, the importance
of the quadrupole-pairing interaction as the origin of the
main part of the so-called exchange interaction was only
gradually affirmed [9-12].

The present work was stimulated by the belief that
though the physical conclusions reached by the above-
cited work are unlikely to be modified, except in detail,
there remains room for technical improvement in the
derivations. The original discussions of the IBFM [13]
were based on the application of the mapping technique
of Otsuka, Arima, and Iachello (OAI) [5] to the single-
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fermion operator, resulting in an approximate boson-
quasifermion mapping of the latter. In this approach the
maps of generators of the shell-model algebra, needed for
the study of the Hamiltonian, are obtained by coupling
the products of fermion maps. The main deficiency of
this method as applied thus far is in the accuracy of the
single-fermion maps.

A second approach [12] circumvents this difficulty by
constructing directly a boson-quasifermion mapping of
the generators. This is done in two steps. First one
records the exact but non-Hermitian Dyson mapping,
without doubt the one that of all mappings is the simplest
to obtain, but one that is not appropriate for use with
the physics of seniority conservation. The second step is
to carry out a special similarity transformation [14] to a
seniority basis. This can be done only in successive ap-
proximations, and it is apparent from the results that the
basis is not orthonormal. Nevertheless, it was possible to
give a convincing discussion of the exchange interaction.
Separate treatments of the single-fermion operator [15]
and of the quadrupole operator [16] followed, the discus-
sion of the exchange interaction having required only the
quadrupole-pairing interaction.

In this paper, we extend the method used first by Bon-
atsos et al. [17] to obtain the seniority dictated boson
mapping of the single-j shell-model algebra. (For dis-
cussion of and references to later work of this type con-
sult Ref. [8].) By this means we derive the corresponding
boson-quasifermion mapping of the generators to the first
nontrivial order. The method consists of expanding the
generators that break seniority in a series of successively
more complex tensor operators in the boson-quasifermion
space, each multiplied by a scalar operator, often referred
to as a Pauli reduction factor. The number of terms is re-
stricted by established selection rules on angular momen-
tum, number conservation, and seniority change. Also a
definite rule can be stated for the order of magnitude of
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each term in reciprocal powers of €2, the level degener-
acy. Equations for the unknown Pauli reduction factors
are obtained by demanding that the Lie algebra commu-
tators be satisfied to a consistent order in Q~!. From
the technical point of view, the main task is to evaluate
successively more complicated commutators of products
of angular-momentum coupled operators with each other.
For this purpose a general recursive formula has been de-
veloped and applied [18]. This program is carried out in
Sec. II for the pair and multipole operators for angular
momentum, J = 2, though some attention must be also
given to multipole operators for J =1, 3, 4.

In Sec. III, we revisit the problem of the exchange
interaction. In addition to obtaining the result in the
standard form, a simple angular-momentum recoupling
suggests an alternative interpretation that the contri-
bution of the original quadrupole pairing interaction to
the boson-fermion coupling can be viewed predominantly
as the sum of two direct interactions, of quadrupole-
quadrupole and hexadecapole-hexadecapole type, respec-
tively, together with smaller contributions of dipole and
octupole character.

In Sec. IV, we return to the purely theoretical prob-
lem of obtaining the mapping of the single-fermion op-
erators. As was the case for the generators we obtain
a result that is slightly more complete than that found
in previous work, but not without noticing certain pe-
culiarities associated with our approximations that limit
the accuracy with which the product of maps is equal the
map of products. In Sec. V, we summarize our findings
and suggest avenues for additional investigation. A brief
appendix contains the main algebraic formula used for
the rearrangement of multiple coupled operators.

II. MAPPING OF GENERATORS

We confine our attention in this paper to the single-j
shell model. The associated algebra of bifermion opera-
tors, which is SO(2(25+1)), is generated by the multipole
and pair operators,

Al = \/g(a‘r x at) yu, (2.1)
1 ~
Bim = ?(af X &)sm, (2.2)

where we have used a standard notation for the coupling
of two spherical tensors to a resultant angular momen-
tum, with a;m = a}, a shell-model creation operator for
the mode jm, a, the corresponding annihilation opera-

tor, J =+2J + 1, and

Gm = (=1 "™a_p. (2.3)
We also utilize the definitions

Agne = AT, (2:4)

A = (1) MA; _p, (2.5)
and recognize the condition

Bl =(-1)MBy_m. (2.6)

The pair and multipole operators given above satisfy
the following nonvanishing commutation relations, pre-
sented in angular-momentum coupled form,

- - A 1 TN
[-AJ:ATI']J”M” =Jbj56500 + JJ' T {j'; JJ }BJ”M”a
2.7)
s (TJJ"
[BJ, .AT],]JHMH = 2.]/ {j j ] } AT]I’MU) (2.8)

[B], BJI]JHMII

1" ’ " A~ JJ’ J,,
= (0= (01 { T B,

(2.9)

where the curly brackets are the usual 6-j symbols.

We seek an approximate realization or mapping of
these relations in terms of a restricted set of objects,
comprising bosons and quasifermions. Collective effects
are to be described in terms of the customary s and d
bosons of IBM, satisfying the standard commutation re-
lations, whereas single-particle effects are to be described
in terms of quasifermions, designated as a} ,a,,, whose
algebraic properties will be assumed or derived as needed.
(The set of bosons and quasifermions chosen will be re-
ferred to as mapping operators.) In the present section,
we shall assume that the quasifermions are kinematically
independent of the bosons (cf. Sec. IV, however), a prop-
erty that they do not share with the shell-model fermions.
For the mapping in question, we shall have need for the
multipole operators formed from the quasifermions ac-
cording to the definition that parallels (2.2),

1
Bim = —J=(¢zT X &) Jn- (2.10)
We assume that these operators obey Eq. (2.9). We re-
mark, furthermore, that this property is guaranteed pro-
vided the commutation relations

[Zl, BJ]jlml = —;ajmléjjl (211)

are satisfied, all this despite the fact that the
quasifermions will turn out to obey anomalous anticom-
mutation relations.

For all cases where exact mappings are known (8], there
is no contradiction between these statements. In fact,
the stimulus for these assumptions comes from such ex-
amples. Two extreme cases are germane to the single-j
shell model. At one end, we have the example of the
so-called quantized Bogoliubov-Valatin transformation,
where one introduces only an s boson, the quasifermion
being required to describe all other degrees of freedom
[19]. This division of labor is expressed by a subsidiary
condition on the quasifermions, forbidding them to form
a pair with angular-momentum zero, namely,

A} = (at x al)o = 0. (2.12)
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At the other extreme, one bosonizes all fermion pair de-
grees of freedom. In this case there can be only a sin-
gle quasifermion of any kind [20], a condition that is ex-
pressed by the set of subsidiary conditions, valid for all
J and M,

Al = (af xa)gm =0. (2.13)

Both of these examples are associated with exact sub-
algebras that are decisive in determining the structure
of the solutions. In the first case it is the angular-
momentum zero or quasispin subalgebra,

[Ao, Al] =1— (N/9),
[N’ 'A(T)] = 2"4;[)1

(2.14)
(2.15)

where N = —v/2QB, is the operator for the number of
shell-model particles and 2Q2 = 254-1. In the second case,
it is the full unitary subalgebra of multipole operators
described by Eq. (2.9).

It is a complication that for the choice of mapping op-
erators made in the present work there is no exact sub-
algebra. In the work of Bonatsos and co-workers [17, §],
it is shown that to increase the accuracy of the approxi-
mate boson mapping, it is necessary, successively, to add
bosons carrying higher values of the angular momentum.
Since the properties of the quasifermions depend on the
number and character of the associated bosons, as we
have already illustrated above in the disparate cases of
(2.12) and (2.13), this means that the character of the
quasifermion is not fixed, but must successively be mod-
ified as we change the level of approximation. It may
be helpful to picture this process as one of successive in-
terpolation between the two exact limiting cases that we
have described above.

We turn now to the main task of this section. It is
to obtain approximate mappings for the bifermion shell-
model operators of angular-momentum zero and two. We
begin with an appropriate exact solution of the quasispin
subalgebra (2.14) and (2.15) that identifies our mapping
as a seniority-dictated one, namely,

Al =st/r, (2.16)
NP

r=1-— W—g?iﬂ_’ (2.17)

fo = s's, (2.18)

g = did,, (2.19)
I

fl= Z al am, (2.20)
m

N =27g + 27 + 7. (2.21)

These formulas establish the pattern, to be used through-
out this work, of utilizing the same symbol for a shell-
model operator and for its boson-fermion map.

We consider next the quadrupole pair operator, for
which we assume the approximate form

Agu = del + (ST)zgufl + sf(d! x J)2pf2 + szmfa

4 4
+Y (d' x By)apfas + > (dx By)aufas,
J=1 J=1

(2.22)

where each scalar operator f is allowed to be a function
f(ng,n2,n) of the occupation numbers alone. The ex-
pression as a whole is seen to be a sum of independent
tensors that each carry angular-momentum two, increase
the fermion number by two, and have a definite seniority
selection rule in accordance with the fact that the pair
operator may either increase the seniority by two units,
decrease it by two units, or leave it unchanged. Each such
tensor is multiplied by a scalar operator, f, the so-called
Pauli reduction factor, whose value remains to be deter-
mined. These are indicated to be functions of the scalar
number operators, whose hats have been suppressed. In
principle, we should allow the Pauli factors to depend on
other number-conserving, seniority-conserving scalars, of
which the simplest would appear to be

Sy = (dt x dho(d x d)o. (2.23)

However, we can omit such contributions from the
present discussion because they will enter with higher
powers of (€2)~! than we shall allow. The rule for as-
certaining the truth of this assertion that applies to the
structure of (2.22) is the following: The factor f; asso-
ciated with the d-boson creation operator turns out to
be of leading order unity. For every additional boson
operator or every additional quasifermion multipole op-
erator appearing as a factor in one of the elementary
tensors, there will be a reduction in the value of the cor-
responding scalar factor by at least (1//Q). Thus in
(2.22) we have written down all possible terms, up to rel-
ative order (1/v/Q) compared to the leading term, that
depend on s bosons, d bosons, and quasifermions. Here
we assume that s is of order v/, whereas d is of order
unity. In ascertaining the correctness of the given form,
we must remember that quasifermion pair degrees of free-
dom carrying zero and two units of angular momentum
are required to vanish, according to Eq. (2.12) and to the
corresponding equation for angular-momentum two,
Al =o. (2.24)
We turn our attention to the problem of determining
the Pauli factors. The exact dependence on the number
of s bosons is given by the Wigner-Eckart theorem, that
in our case is expressed by the equation

['Az)v A;u] =0.

A calculation that involves only the commutation of ele-
mentary operators with number operators yields the re-
sults

(2.25)

fi=y/r <T - %)qﬁl(nz,n), (2.26)

fi=¢1(nz2,n), (2.27)
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f2 =+/Td2(na,n), (2.28)  After obtaining a preliminary value for the right-hand
fa =/T¢3(n2,n), (2.29) side of the above equation, by then imposing Eq. (2.6),

we obtain the further restrictions on the Pauli factors,
1
=qfrlr——= N2, M), 2.30 - 1
fra=yfr (7= g ) dastra,m) (2:30) bim—Lostra 1), 2.39

fis = as(na,n). (2.31)

The next step is to determine the quadrupole operator
By, from the commutation relation

pas = —édhu(nz -1). (2.34)

(With these equations we initiate our subsequent practice
10 of suppressing the arguments of the Pauli factors, except
[Ao, A2y] = \/%Bz,“ (2.32)  when we wish to indicate that they take on other than a
reference value.)
where we have inserted the value of a simple 6-j symbol. We thus find

10 2 2 .- 1 ~ n n
—\/ @B = gaksvVTor+ gs'duy[r+ Gi(na — 1) — (@' x d)au (r-3) 62— Bu (r— 32) s

4 4
2 2 - 1
+§ ng(dT X BJ)guS\/F¢4J + 53.t ;(d X Bj)our/ T+ §¢4J(n2 - 1). (2.35)

The final sequence of steps in the evaluation of the Pauli factors, ¢, starts with the calculation of the commutator
[A2u, .A;,,] directly from the expression Eq. (2.22) for A" and its Hermitian conjugate. Subsequently we equate this
result to the right-hand side of the corresponding member of Eq. (2.7), in terms of the required multipole operators.
As a consequence we shall also need to have some information concerning the structure of the multipole operators in
the range J = 1, ..., 4, a question considered below. We also need the updated form of the pair destruction operator,

Ay, = \/7 (T - %)ff)uiu - %451(712 —1)d},s® + vrea(d' x d)2us + Vr$3sBay,
4 4
+3 \ " (T B %>¢4J(_1)J(J X By)oy — '(13 > pas(ng —1)(=1)7(d" x Bj)2,s°. (236)
J=1 J=1

In calculating the commutator of (2.36) with .AL,,, it is important to observe that the only reliable terms are those
proportional to 8., to dI,_ .5 and its Hermitian conjugate, and to terms linear in Byy,_,. The coefficients of other

tensors, such as those that can be constructed from (df x J) or normal-ordered products of two factors of By, that occur
as a result of the algebra, cannot be used because of the absence of contributions of the same size that would arise
from commutators involving terms not included in the approximate mapping. It is the nature of our approach that
the reliable terms will prove sufficient to determine the unknown operators, as will be seen. To identify independent
tensors, the technique is to arrange all tensors into normal form and to discard higher order terms. It is simplest to
present the result in angular-momentum coupled form, in which the magnetic quantum number has been suppressed:

~ 1 -1 ~
[Az, Af]s = [T (7” - 5) - M%’H] $2v5670 + s'd (r + %9) T+ -Sliah(nz —1)¢262

+d's <r + EQQ - ?22') Vre1¢a(ng +1)652 + 2BJ(—l)Jg [7' (7' - é‘) - n_()(‘rgT_l_)] $164s

+JB; {?% ﬂ} [(—1)J(n0 +1)r —no (r + %)] 3

4 ! " ! " p—
+57B; 3 (1) +7" {‘; ‘]2 ‘27} {J J J} X [r (r - —Sli) - (—1)JP—°-£%2—1)] Gagrpagr.  (2.37)

st J JJ
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In the derivation of this result in the most expeditious
manner, we have made use of a recursive formula for
computing the commutator of two products of operators,
each coupled to a good angular momentum [18], which is
described in a brief appendix.

In order to utilize the results just presented, we need
representations for the corresponding terms in the mul-
tipole operators for J = 1,...,4. The quadrupole opera-
tor has already been given in Eq. (2.36) more accurately
than actually required in the current calculation. We
need only the purely quasifermion parts of the odd mul-
tipoles. These are known exactly for the odd multipoles,
which necessarily have the form

Jodd: Byay = Byuy + (boson terms), (2.38)

and the boson terms can be determined from the fact that
the odd multipoles satisfy a closed subalgebra. Since they
involve tensors not utilized in the present calculation, no
further details will be given here. Finally, we note that
the hexadecapole will have the form

[Q
By, = 1—0B4“ (r - %) ¢3 + (boson terms).

(2.39)
J

2(2J+1)\/5—>{;)7§‘;} -2 [r2 (7'2— %) ~2 (%) (,.

+(2J+1)
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The specific term shown here is the analogue of the cor-
responding term of the quadrupole operator, Eq. (2.35).
That such a term must be present can be concluded
by concentrating on the quasifermion contribution to
the commutator [(—1)“B, _,, Bs,] that contains the term
Bay—p-

We now have all the ingredients necessary to compare
the two ways of computing the commutator Eq. (2.8).
For the purely bosonic terms, we are simply reproducing
the results of Bonatsos et al. By comparing the coeffi-
cients of 6,,, we find

1 2ng +n
$r=———— rp=1-"2T"
ro— & @
a

(2.40)

From the coefficient of the operator d's, we can derive

o= 20 3{222}
2—7'2 Q .7.7.7 ’

We turn then to the equations for the new coefficients
¢3 and ¢45. We obtain two sets of equations, the first
valid for J =1, 3,

(2.41)

2 — é)] b1d4s

2n2\ [22J
2 -0 )90 b 6k — My, 2.42
75 (7‘2+ noT2 ){Jj]}¢3 J (2.42)
)y gt 1 2nor 203 [TJ I\ [T T T
_ 1 E:_ J'+J — ) = 02_—1‘]—0 AR ’ ", .
Mm@l Ngmu( Y [rz (r2 Q> D@25 5 fl22 2 b (249
For J = 2,4, on the other hand, we find
22J) /9 2no\ , 1 no 1
2<2J+1)\/€{]]]} 10 (7‘2 Q )¢3—— 2[7‘2 (Tz—-ﬁ> —2(6) (7"2—5)] ¢1¢4J
(2J+1)( 2no> {22.]} 2
R hil4 - . M;. ;
VAR WACEE D iR (2.44)

In addition to the equations that have been recorded
above, Eq. (2.37) contains a contribution proportional to
né,y. We can deal with this term in one of two equivalent
ways. Either we can consider it to modify the value of
¢1 or else we can introduce a term @40, chosen so as to
cancel these extra terms. It can be verified a posteriors
that in any event this term is smaller by one order in
(n/) than the accuracy that we shall maintain for our
result, and therefore we do not pursue this question to
the end.

We proceed to solve Egs. (2.42)—(2.44) to leading or-
der in (1/9). In order to do this we must recognize (by
examining a table of elementary 6-j coefficients) that for
large 7,

1
{22J}={Oé—,—a), J even, (2.45)
1
333 O (hs)s Jodd

[
For J = 1 and from the terms independent of ng, the
dominant terms of (2.42) are

6v5 4221 2r2p . (2.46)
JJJ
To leading order in (1/9Q) this has the solution
221 1
=3V 9V —, 2.47
ou=35{37}} = (247)

which shows that ¢4; is O(Q%/2).

From the terms proportional to ng, again for J = 1,
we obtain in leading order an equation to determine ¢3,
namely,

3 221
0=—4 — 90 Y o0, 82
rod1041 + 7 {JJ]} r203,

of which a solution to leading order, with a definite and

(2.48)



47 APPROXIMATE SENIORITY-DICTATED BOSON- . .. 617

consistent choice of phase, is

10 1

¢3 = an (2.49)

A similar analysis may be applied for the other values
of J, using Egs. (2.42)—(2.44). One thereby verifies the
consistency of Eq. (2.49) and also obtains the values of
the remaining factors ¢45. The results may be summa-

rized neatly by the formula

bas = (—1)7¥1(2] + ws{ (2.50)

22J} 1
N T L
333 3

We have thus obtained mappings at the indicated
level of accuracy for the bifermion operators of angular-
momentum zero and two, as well as more limited infor-
mation about the multipole operators up to J = 4. In
the next section we shall apply these results to the study
of the boson-fermion exchange interaction.

III. BOSON-QUASIFERMION INTERACTION
FROM A QUADRUPOLE-PAIRING
HAMILTONIAN

In this section we apply the results of the previous
section by deriving the boson-quasifermion interaction
that follows from the quadrupole pairing interaction
il

(1’4) + (4’2) = [(dfs) X (aT X 6)2]() (7‘2 - 339) ”7"2 — %¢1¢3,

4
(8) + (62) = Y@ x )y x Bolo(-1)"V5 [+ + (1) 28] 616,

J=1

In order to reach (3.7), we have utilized the recoupling
statement

{d" x [(a! x @) s x d]2}o = (~=1)"{(a' x @) x (d' x d),}o.
(3.8)

The quantities ¢1, ¢3, and ¢4, are given, respectively, in
Egs. (2.41), (2.49), and (2.50).

The contributions, Eq. (3.6), plus Hermitian conju-
gate were pointed out by Bijker and Scholten [9], but
are claimed to be small by Otsuka et al. [10] (by an ar-
gument that bears reexamination). The interaction that
is usually identified as the exchange interaction is that

J

{d" x [(a’ x @); x d]2}o = Z(_l)j+J’\/2—m{gg;

J!

} : {(af X J)J' X (5, X dT)_]/}o S

Hyp = Al Ay, (3.1)
u

where the coupling constant has been omitted. If we enu-

merate the terms of the ingredient operators as follows
Al =1+2+3+4+5 16,
Azy=1+2+3+4+4+5+6,

(3.2)
(3.3)

where the various terms can be read off from Eqgs. (2.22)
and (2.36), respectively, inspection shows that the
leading order contributions to the exchange interac-
tion involve the eight products (1'4),(2'4), (4'1), (4'2),
(1'5),(2’6), (5'1), and (6’2). These decompose into sets
that are Hermitian conjugate to one another, a property
that we shall use in the combinations

(@'1)+ (24 =[1"9) + (421,
(5'1) + (2'6) = [(1'5) + (6'2)]*.

(3.4)
(3.5)

The evaluation of the terms above is elementary. In the
following presentation we shall discard (1/2) compared
to unity, but retain quantities of order (n2/€2) and (n/Q),
at the same time remembering that (ng/Q) is itself of
order unity. We thus find

(3.6)

(3.7)

contained in Eq. (3.7), but is normally presented in a
different form, requiring a further recoupling that is de-
scribed below, following the current discussion. The form
we have given above does not seem to have interested
previous authors, but remembering that the coefficients
@47, for J = 1,3 are smaller by order (1/£2) compared to
those for J = 2,4, we reach the conclusion that the sum
of (3.6) and (3.7) is equivalent to the sum of direct inter-
actions of quadrupole-quadrupole and of hexadecapole-
hexadecapole types.

We turn then to the further recoupling necessary to ex-
hibit (3.7) in the customary form of exchange interaction.
The first step involves the statement

(3.9)

where the colons, as usual, indicate normal ordering. As the consequence (3.7) becomes

(1'5) + (6'2) = Z(-1)J+J'+J'\/5‘(EZL_1){§'§°2’} (et x d)y x @xdh) Yo [ﬁ + (—1)%%] P14

J,J

(3.10)
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With the aid of the explicit form of the coefficients ¢4,
Eq. (2.50), we can carry out the summation over J. This
is done most conveniently if we include a J = 0 term in
the summation. In that case, we may use the standard
sum rules for 6-5 symbols that apply, respectively, to the
two terms of Eq. (3.10). In accordance with our resolve
to retain only the leading order contributions, we can
calculate from a table of elementary 6-j symbols that

j2 J'} ~_ L
j2j ) 2
This is the largest of the 6-j quantities that results from
the application of the sum rules; the symbol where in the
upper right-hand corner j is replaced by J' = j £ 1 is
smaller by order (1/Q), and for J' = £2, smaller still by

the same factor. To the stated accuracy, we thus obtain
an explicit form for the exchange interaction

2
(1'5) + (6'2) = \/‘Z—Q [r +(%)2%]
: [(GT X d)J X (d X dT)j]o :

1 r? ng\2 1
+Enn2[ 2+(-§-) %]

To obtain the total contribution, we must multiply this
result by a factor of 2. Of the two terms of (3.12), the
first one is of the standard form found in the previous
literature [12], except that the dependence on boson and
quasifermion occupation numbers does not agree with
that provided by previous authors. We ascribe that dif-
ference to the more complete and consistent solution that
|

(3.11)

(3.12)

al

4

J=1 J=1

~ ~ 1 j
@m = VTE8m — —=E(n — 1)al s — /7F(d x al)jm —

Va
4
+V7 Y Gyl x d) g x @]jm
J=1

In these equations, the Pauli factors F, f, and G  are
functions of ny and n, the full dependence on the s-boson
occupation operator ng having been separated in the fac-
tors 7.

The natural next step to help determine the unknown
scalar factors in (4.3) and (4.4), that depend on ng and
n only, is to study the commutation relations

[aim -ALJ =0,

5
=/ 559'1'&31;

By analogy with (4.1) and (4.2) these conditions should

(4.5)

(6, Af]jrm = (4.6)

4
+ ) [a’ x (d' x d) 1) jm Gy + % D " st(dt x d) s x @]jmGa(n - 1),

\/_ ZGJ (n —1)sla’ x (d x d)s]m

we have given to the mapping problem. The second term,
of the form of a monopole interaction between the core
and quasifermion, is the compensation for the extra piece
that had to be provided to permit the 6-j sum rules to
be used. In addition to these terms, there are, as we
mentioned, contributions of higher order in (1/Q) that
we have omitted. Though we have thus substantiated
the qualitative results, there would be some quantitative
differences in application to the analysis of data.

IV. MAPPING OF FERMIONS

One of the aims of this paper has been to show how
to derive an Hermitian boson-fermion mapping without
having first to introduce a mapping for the individual
shell-model fermion operators. It is nevertheless a fun-
damental problem to study these operators, not only be-
cause of the empirical interest of single-particle proper-
ties, but also because of the technical requirements of
consistency between the mapping of single-fermion oper-
ators and bifermion operators, namely, that the map of
a product should equal the product of the maps. In the
following, this requirement will be used in part to help
determine the mappings studied in this section.

We shall be somewhat briefer than in Sec. II and start
by recording the form taken by the approximate fermion
mapping that already satisfies the commutation relations

1 . N 1 ~
f =al VTE + —\/—S_)sfamE(n —1) + (d' X &) jm/7F — ﬁsf(d x a!)jmF(ng — 1,n+1)

[, Af] =0 (4.1)
1
[a"}rm -AO] = _ﬁam- (42)
The resulting expressions are
(4.3)
1 fo s
7__—F(n2 —1,n+1)s(d" X @)jm
(4.4)

f

determine the dependence of the coefficient functions on
ny. When we sought to carry through this program, how-
ever, we found that we could not derive results that were
fully consistent with both of the above commutation re-
lations. Later we shall explain how we were able to cir-
cumvent this difficulty and determine the required coef-
ficients, but first let us try to explain the source of the
trouble. First note that the order of magnitude of the
coefficients in Eq. (4.3), e.g., is determined by the same
considerations that we have explained in connection with
the representation of the bifermion operators. Thus the
function E is of order unity, F is of order Q~1/2, and
the G no larger than order Q~1. In fact we know the
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value of E in the limit ny = 0 from the exact SU(2) case,
namely,

E0,n) = [1 — (n/Q)]"/2. (4.7)

If we now consider the commutator (4.6), for instance,
we see from the right-hand side that the leading term
is of order 271/2, and successive terms decrease by the
same factor. When we examine contributions to both
commutators of leading order, we discover that they all
give the same relation,

Feyf2 (m - —1->_1/2E(n —1, (4.8)

Q Q
to terms of order (1/?). At the next order, the commu-
tators yield several difference equations for the coefficient
E, which are, unfortunately not consistent with each
other. The source of the difficulty can be traced to the
assumption, used in the derivation, that the quasifermion
operators commute with the d-boson creation and anni-
hilation operators. However in the approximate theory
constructed in this paper, this assumption fails precisely
at the level of accuracy, (1/92) needed to obtain usable
difference equations for E. We shall leave this as an as-
sertion for the moment, and return to it at the end of
this section to provide a further discussion that we hope
the reader will find convincing. What we shall show now
is that there are means of determining the still unknown
operators E and G;, where the difficulties to which we
have called attention are bypassed.

The tool that we shall use to complete the calculation
undertaken in this section is the requirement that the
product of maps should equal the map of the products.
Since we are dealing with approximate realizations, we
must again apply this requirement with care. We have,
for instance, examined the application of this criterion
to the quadrupole pair operator. Not surprisingly, we
run into the same problem here that we encountered in
trying to apply (4.5) and (4.6). The solution consists in
applying the criterion circumspectly only to the angular-
momentum zero operators. Here we have carried out two
calculations that confirm one another. '

We first study the number operator, which must be
given by the two equivalent expressions

N= Zalnam
m

= n + 2ns + 2nyp. (4.9)

If we write
al,=14+2+34+4+5+86, (4.10)
Om=1+2"+3+4+5 +6, (4.11)

where the numbers refer to the terms of Egs. (4.3) and
(4.4), then the requirement is that a product of 36 terms
should collapse into the simple sum of occupation num-
ber operators shown in (4.9). As indicated in the writing
of this equation, this requirement is not to be taken too
literally. We can only expect the relationship to hold to
order (1/€). This immediately rules out fully one-third
of the products. An additional third can be dropped

because they involve a product of quasifermion creation
or annihilation operators. (Here we are using a bit of
licence since strictly only the J = 0 and J = 2 projec-
tions of these products are required to vanish according
to our starting assumptions.) We then verified explic-
itly that four more terms linear in d bosons cancel out.
Of the remaining eight terms, four are proportional to
ng. These will provide results consistent with what we
report below, but will not be discussed in detail. The
remaining terms that will yield the results we seek, the
products (11’), (33'), (15’), and (51’), will be evaluated
for ng = 0. To put the answer into the required form
it is further necessary to utilize the anticommutation re-
lations of the quasifermions. In the present calculation,
we assume that these are the same as for fermions, since
the error incurred is one order smaller than the accuracy
of our evaluation. (The commutation relations of the
quasifermions will be presented at the end of this section
and the present assertion thereby verified.)

With these preliminaries out of the way, we simply
present the results for the indicated terms, evaluated for
ng = 0. We also have dropped (1/92) compared to unity
in the following. This also means replacing n, — 1 and
n — 1 by ng and n, respectively, in the unknown Pauli
factors, since these occupation numbers always appear
in a ratio to . The calculation finally involves some
standard angular-momentum coupling. We thus find

(11) =nry E?, (4.12)
4
n_ 2 255
(33') = 2no B% — 12—0: 10v/27 + 1 {j ; J}

x[(a' x @)y x (d' x d)s]oE?,

(4.13)
4
15) + (51) =— Y 2v2Q(-1)"r, EG,
J=1
x[(a x @)y x (d' x d) 7)o (4.14)

These equations contain a good deal of information
that we proceed to extract. For instance, if we set all
d-boson factors to zero, then we are back to the SU(2)
limit and the coefficient of n in (4.12) must be unity. This
verifies Eq. (4.7). Next we rewrite the first term of (4.13)
keeping only linear terms in ny and treating (n/Q2) as a
small quantity,

2ny B & 2ng + 2np

~ 2

X 2ng + 2noF a
In this equation, the first term provides the required coef-
ficient, unity, of 2ny. The second term, when considered
as a correction to the coefficient of n, provides part of the
ng dependence of the quantity E. There is another con-
tribution of like form arising from the J = 0 part of the
second term of (4.13) that cancels half of the second term
of (4.15). The requirement that the coefficient of n be
unity now easily yields the result we have been seeking,

E(ng,n) = [1 — (n + ny)/Q]~1/2. (4.16)

(4.15)
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There remain the J # 0 terms of (4.13) that must can-
cel against the content of (4.14). Having determined the

value of the quantity F, this provides a set of equatlons
to fix the G 5. We thus ﬁnd

2J+1(22J) E
Gy = (~1)7+15 __{ E
7=(-1) 2j+1 \Jijfre

2J4+1(22J
(1 J+15,/-——{...}. 4.17
( ) 27+1 337 ( )

We have also studied the related condition
1 ,
Al = —= ~1)y"maf ol
7 oV ;( ) m

=~ st /7. (4.18)

Requiring the same level of accuracy as in the study of
Eq. (4.9) for the number operator, we have verified all

{a,a'}s=3650 — (52_1{—:—%—1) 3 (2s+1) {“ " } (a' x &)y.

$=0,2

the results obtained from a study of the latter, but we
shall spare the reader any additional details.

It remains for us only to dispose of several questions
that we have raised during the course of the discussion
in this section. Let us first consider the anticommuta-
tion relations satisfied by the quasifermions. This subject
is attacked by requiring that the realizations (4.3) and
(4.4) satisfy the fermion anticommutation relations. This
somewhat tedious calculation can be simplified by re-
quiring that the fermion anticommutator will have some
terms that are independent of the boson operators and
others that depend on the boson operators. In an ar-
gument, whose analog has been used repeatedly in this
work, the relation we obtain when we set all normal-
ordered boson operators to zero will determine the anti-
commutation relations sought. Afterwards we must ver-
ify that the boson-dependent terms will vanish, to the
required accuracy, when these new results are utilized.
Again we shall spare the reader any algebraic details,
and only quote the final result:

(4.19)

Except for the term with s = 2, this equation has the same form as for the SU(2) limit and verifies the assertion used
in our previous calculations that the usual anticommutation relations were violated only in relative order (1/9).

We are now in a position to check the validity of Eq. (2.11), the commutation relations of the quasifermion operator
with the quasifermion multipole operators. Using (4.19), we find for the monopole

[Gms,n]) = @m: — \/_ Z _}'.f(cfr X Ag)jm

n+l1 J=0,2

=0am/,

(4.20)

i.e., the exact result. On the other hand, for J # 0, we calculate

. J. 25 +1
[(atxa)-}’a]jm:;.'a +(Q n_,_l)ZZ Z

J! 8=0,2J"=4,86,...

having taken into account the fact that Ay» = 0 for
J" = 0,2. These relations differ by terms of relative
order (1/9) from those that have been assumed and uti-
lized previously in this work. The reader may verify,
however, that this failure does not change any of the re-
sults derived in this paper.

This brings us to the final gap in our work. Earlier
in this section we remarked how we could not use the
commutation relations (4.5) and (4.6) to derive the value
of the factor E, because of the asserted failure of the
quasifermion operators to commute with the d-boson op-
erators. We are now in a position to find values of those
nonvanishing commutators of order (1/2) that would
bring these equations back into consistency. This exercise
would be necessary if we wished to carry the calculation
to the next order.

(-1)7+ (25 + 1) (20" + 1) 7

I I v < Ay, w2

V. SUMMARY AND DISCUSSION

Using the example of the single-j shell model, we
have shown how to construct an approximate boson-
quasifermion mapping applicable to the physical situa-
tion that we are near the limit of good seniority. Such
a mapping can provide a basis for the derivation of an
IBFM model valid near such a limit. (This is the only
limit for which existing derivations have any validity.)
The method generalizes a relatively straightforward, if
unavoidably tedious, algebraic technique first applied to
the purely bosonic part of this problem by Bonatsos et
al. that produces a systematic expansion in the ratio of
the seniority to the level degeneracy with selection sum-
mation of higher order terms subsumed in so-called Pauli
reduction factors. The results are both more consistent



47 APPROXIMATE SENIORITY-DICTATED BOSON-. .. 621

and complete than those produced by methods that have
been previously applied to the same problem.

The order of events in the derivation is to first find an
approximate realization of the Lie algebra, SO(2(2j+1)),
generated by all products of fermion shell-model opera-
tors. To carry out this program at the level that only s
and d bosons are admitted to the mapping, we add to the
mix a set of quasifermions that are in one-to-one corre-
spondence with the shell-model fermions, but with differ-
ent algebraic properties vis ¢ vis the bosons. They are as-
sumed to be kinematically independent of the bosons and
to be algebraically indistinguishable from fermions ex-
cept in the anticommutation of two quasifermions. These
assumptions are known to be correct for all cases where
exact boson-quasifermion mappings are known. It is later
discovered that in the approximate mapping studied in
this paper, the properties assumed for the quasifermions
both with respect to the bosons and with respect to each
other cannot be maintained exactly. This failure is also
seen later not to have affected the accuracy of the results
presented for the generators of the Lie algebra.

The mapping of the generators is sufficient to permit a
discussion of the IBFM Hamiltonian and, in particular,
of the so-called exchange interaction, that is an estab-
lished ingredient of the model. We apply our results to a
cogent source of this interaction, namely, the quadrupole-
pairing interaction in the shell-model space and derive
results that parallel those given previously in the liter-
ature. Nevertheless there are some, possibly significant,
differences of detail, arising presumably from the more
complete character of our mapping.

Finally we turn to the problem of constructing a boson-
fermion mapping for the shell-model fermion operator.
Here, when we study the commutation relations of single
fermions with the generators of the Lie algebra, we are
only partially successful in determining the Pauli factors
for the fermions from the known factors for the gener-
ators. We recognize the source of the difficulty to be
the failure of the ideal properties that were assumed for
the quasifermions. We show nevertheless that a conser-
vative (and justified) application of these commutation
relations and of the requirement that the map of a prod-
uct equal the product of the maps suffices to determine
all unknown coefficients. We also describe the deriva-
tion of the anomalous anticommutation relations of the
quasifermions. Together with previous results, this puts
us in a position to study the deviations of the proper-
ties of the quasifermions from the ideal ones assumed at
the beginning of the work. Since the results of such an
J

(A1 x B)e x (C x D)slx = Y + Ope(—1)F 07972 3" No4[(AT x D)y x (Ct x Bl
gh

investigation are of interest only if one intends to carry
out higher order mapping procedures, our enthusiasm for
this exercise flags after a few examples.

Problems of remaining interest that are not too tedious
are to extend the results of this paper to the multi-j case
and to consider an alternative method for cases other
than the seniority-dictated limit. One such possibility is
the so-called hybrid mapping method suggested by one
of us [21].

This work was supported in part by the U.S. Dept. of
Energy under Grant No. 40264-5-25351.

APPENDIX: COMMUTATORS OF COUPLED
OPERATORS

In this appendix we quote the main formulas used
to calculate the nontrivial terms of the commutator
Eq. (2.37). These formulas are special cases of results
obtained by the authors [18] for evaluating commutators
of coupled operator products. Let A, B, C, D be opera-
tors carrying angular momentum a, b, ¢, d. We consider
a special case where one of the commutators or anticom-
mutators (both indicated by the bracket here) is elemen-

tary,
[B,C1)s = 6pebs0 X const. (A1)

We then have the following formula general for rearrange-
ment into normal form:

[(A)r X B)e X (CT X D)f]k
=Y +6hc D Neal(AT x C1)g x (B x D)nls, (A2)
gh
Y = (—1)tbtetdtk

xeueef /0 { G0} }1B.Clo x (4 x D)y (49)

_ .. | both a and b are half integers,
Oap = F, if {otherwise, (Ad)
abe
Nyg=|cdf (A5)
ghk

For the special case that A and D are fermions and B
and C are bosons, the following alternative formula is
useful:

(A6)
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