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Particle-hole state densities with good isospin
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Earlier results for two-component particle-hole state densities with good isospin have been rederived,
removing a number of earlier approximations. The new results are shown to be consistent with the cor-
responding isospin-mixed state densities and are more suitable for light nuclei. Approximate results ap-
propriate for reaction calculations are presented.

PACS number(s): 21.10.Ma

I. INTRODUCTION

In the study of preequilibriurn nuclear reactions in the
continuum, the extent to which isospin is a conserved
quantum number is still an open question. Most reaction
calculations have been performed assuming (at least im-
plicitly) that isospin is fully mixed, but a few preliminary
studies [1,2] indicate that there may be a significant
amount of isospin conservation, at least in the early
stages of nuclear equilibration. Evidence from compound
nucleus reactions (Ref. [3] and references therein) sup-
ports this possibility.

More recently, Ryckbosch et al. [4] have studied this
problem more directly by following the mixing of
T = T, + 1 strength into the more numerous T = T, states
during the preequilibrum phase of a reaction. Using the
unified exciton model and fairly rudimentary state densi-
ties, they found that for the two systems considered, most
preequilibrium particle emission should occur prior to
isospin mixing. Thus the evidence is mounting that iso-
spin can be a significant quantum number in preequilibri-
um reactions.

In order to include isospin in preequilibrium reaction
calculations, it is necessary to have particle-hole state
densities for specific isospin values. These are typically
evaluated assuming that there is a one-to-one correspon-
dence between states of the same isospin, T, in a set of

I

isobaric nuclei. Letting co( Y,E, T, T, ) denote the density
of states specified by E, T, T„and Y (all other relevant
quantum numbers), the one-to-one correspondence im-

plies

co(Y;E, T, T) =co( Y E+E(T,T —1),T, T —1)

=co(Y E+E(T,T —2), T, T —2)=

(The symbols used here are defined in Table I.)
An earlier paper [5] showed that Eq. (1), while fre-

quently useful, is not fulfilled for two-component
particle-hole state densities where F=p, h,p, h . It
fails for these states because the isospin-Aip transitions
connecting diA'erent members of an isospin multiplet can
convert a neutron degree of freedom into a proton degree
of freedom or vice versa. Thus the "quantum numbers"
Y are not preserved in these transitions, while Eq. (1) in-

herently assumes that they are. The validity of classify-
ing states according to p, h,p, h in an isospin-
dependent formalism is discussed in the next section.

While not exact, Eq. (1) is often a good approximation
[5]. As a result, it was used to derive a simple formula [5]
for the isospin-dependent state density in terms of the
more usual isospin-mixed state densities:

co(p, h,p, h, E, T, T, ) = co(p „,h,p, h „E E( T, T, ), T)—
p„+h 2T p„h (n —1)(n —2)+2T+p +h 2T+p +h g g [E—E(T+1,T ) —Q (p, h,p, h )]2

Xco(p, h,p, h, E E(T+1,T, ), T—+1) . (2)

[The factors (n —1)(n —2) were inadvertently omitted in
the publication of that work but included in the calcula-
tions. ]

Since the T-mixed state densities on the right-hand side
of Eq. (2) do not explicitly depend on T„ this label may
be dropped. The common formula for them when the
single particle states are taken to be equally spaced in en-
ergy is [6]

co(p, h,p„h, E)

(g ) (g, ) '[E —A(p, h,p, h )]"

p !h !p !h !(n —1)!

(3)

While Eq. (2) should be adequate for some preequilibri-
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Symbol(s)

T
T.
E(T, T, )

p„,h, n„=p +h

p, h, n„=p, +h
n =no+n

A{p,h,p, h )

co(p„,h,p, h, E, T, T, )

co(p„,h„,p, h, E, T, ) —=

N(p, h„,p, h, E)

TABLE I. Identification of symbols.

Identification

excitation energy
total isospin quantum number
z component of the isospin =(X—Z) /2
excitation energy of the lowest isospin T state in
a nucleus with T,
numbers of proton particle and hole degrees of
freedom and their sum
same for neutron degrees of freedom
total number of excitons
proton and neutron single particle state
densities in the equispacing model
Pauli principle correction function
isospin-dependent state density

isospin-mixed state density

um calculations, it has difficulties of ambiguity and inac-
curacy and is of uncertain consistency with T-mixed state
densities.

A. The ambiguity question

First, the exact form of the factor inside the large
parentheses in Eq. (2) depends on how often and at what
stage in the derivation various approximations are intro-
duced. For instance, small changes in the derivation
could change the factor 2T in the numerator into 2T —2
or make the denominator in the first term
2T +p +h + 1. Clearly, these ambiguities are not
significant so long as 2T »2, but this will not always be
the case, as discussed below.

B. The accuracy question

The accuracy of Eq. (2) can suffer when the approxima-
tions made in its derivation break down. These approxi-
mations are the following: (1) The single particle state
densities g and g are assumed to be approximately
equal. (2) All of the Pauli correction functions connected
with the derivation of a single T-conserved state density
are taken to be approximately equal. Thus
3 (p, h,p, h, ) is used to replace quantities like
3 (p —1,h„,p +1,h, ), 2 (p, h + l,p, h„—1), and
A (p„—l, h,p, h —1). (3) The quantity 2T+p +h is
taken to be much larger than unity. (4) The quantity
2T+p +h is also much larger than the typical num-
bers of passive particles and holes. (Passive particles and
holes are those that occupy fixed locations and are not
degrees of freedom. They are discussed in Refs. [7] and
[g].)

Relative to approximation 1, the quantities g and g
are typically taken to be proportional to the Z and X of
the nucleus, respectively, and differences between them
were shown [5] not to be of practical significance to the
calculated state densities.

The validity of approximation 2 depends largely on the
size of the Pauli correction functions relative to the exci-

tation energy from which they are subtracted. For the
simple, few-exciton states important in preequilibrium re-
action calculations, the A's are generally small relative to
the excitation energy except near threshold for a given
term.

The third and fourth approximations both essentially
require that 2T+p +h »1. In preequilibrium reac-
tion calculations, the most important states are those
with small (or even zero) values of p and h, so the re-
quirement becomes that 2T»1. Since the quantity T
tends to be close to

~ T, ~

= N —Z l2, the approximations
fail totally for simple states in nuclei with a small neutron
(or proton) excess. It was this observation that led to the
present study.

C. The consistency question

Even for those nuclei in which all of the approxima-
tions are valid and the ambiguities are unimportant, there
is a third concern: Are the results of Eq. (2) consistent
with the usual isospin-mixed state densities? Do they
lead to the same total number of states? This question
was not explicitly addressed in Ref. [5], but comparisons
made there suggest that consistency may not exist.

D. Aims of the present work

In order to resolve the above questions of ambiguity,
accuracy, and consistency, I have decided to embark on a
rederivation of the particle-hole state densities with good
isospin quantum number. The rederivation involved (1)
removing the earlier approximations, (2) demonstrating
consistency with the usual T-mixed state densities, and
(3) looking for simpler approximate expressions that are
adequate for preequilibrium reaction calculations. The
present paper describes this process, and the results it
produced.

II. THE NEW DERIVATIONS

The derivation here follows the general outlines of Ref.
[5]. First the particle-hole state densities for a given iso-
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spin value, T, in isobaric nuclei with different values of T,
are related to one another. Then if the state densities in
one of these nuclei can be expressed in terms of T-mixed
state densities, the state densities in the other nuclei can
as well.

The derivation is done assuming that all of the nuclei
involved have an excess of neutrons. The extension to
the case of a proton excess is discussed at the end of the
paper.

The state densities derived here and in Ref. [5] are
designed for use in the two-component exciton model,
and their function is to estimate available phase space in
the evaluation of particle emission rates and internal
transition rates. The exciton model, as well as other sim-
ple preequilibrium reaction models, is designed to trace
the energy equilibration process in a nuclear reaction by
studying the mixing of strength from the simple, few-
particle-few-hole doorway states into the more complex
configurations characteristic of an equilibrated com-
pound nucleus. It is never assumed that the classes of
configurations are classes of eigenstates. Indeed, they
cannot be eigenstates, or there would be no residual in-
teractions and no equilibration.

With regard to isospin, it is certainly true that any
specific p, h,p, h configuration will not generally have
good T (unless only one value is energetically possible)
and conversely a physical eigenstate of good T will have
components with various different p, h,p, h labels.
Nevertheless, in the context of statistical reactions in the
continuum, and specifically statistical preequilibrium re-
actions, it is useful to know the effective number of states
(or cumulative strength) with given T that looks like

p, h,p, h . This is what is represented by the state
densities co(p, h,p, h, E, T, T, ).

A. Types of isospin Hips and their consequences

The states in an isospin multiplet are related to each
other by isospin-Aip interactions. Describing the types
and relative importance of the interactions encompasses
much of the physics involved in the derivations.

Reference [5] identified the three different types of iso-
spin Hips pictured in Fig. 1. In each case, a neutron in
the nucleus with the larger neutron excess is converted
into a proton in the corresponding single particle state to
form a state in the isobaric nucleus. While all of these
isospin Aips leave the quantum numbers p and h un-
changed, the three types lead to different combinations of
p, h,p, h .

It should be noted that the three analog configurations
in Fig. l (and others like them) are degenerate in energy
and should mix with one another. This is a consequence
of the assumed charge independence of the nuclear force
which makes an isospin formalism reasonable. Given this
mixing, it may be asked whether it makes sense to label
or classify states by the quantities p, h,p, h . The
answer depends on the purpose of the labeling. If the
purpose is to describe eigenstates of the system, then the
answer is probably "no." On the other hand, if the pur-
pose is to identify phase space or reaction strength acces-
sible in a given experimental situation, the proposed

Tz= To Tz= To-1
(2) (3)

0
0

' o +
—- --PO

(2,1, 2, 2) (2,1, 2, 2)

Pass I v 1

pair

(2,O, 2,3)

FIG. 1. Schematic representation of the components in the
T = To 1 isobaric analog of a (p, h,p, h ) = (2, 1,2, 2),
T = To configuration in a T, = To nucleus. The blocks indicate
single particle states occupied in the ground state of this nu-

cleus, with energy increasing in the vertical direction. The ex-

cited particles are denoted as solid circles above the blocks and

the excited holes as open circles inside the blocks. (Taken from
Ref. [5].)

scheme should be quite useful.
Thus the mere fact of mixing between the analog

configurations shown in Fig. 1 does not automatically
render the evaluation of state densities using p, h,p, h,
meaningless for reaction calculations (with or without the
specification of the isospin quantum numbers) any more
than any other configuration mixing. The main question
is whether the mixing is adequately accounted for in the
calculations. In the two-component exciton model
b, n =0 mixing (of which this is an example) is generally
considered along with the An = +2 transitions which are
assumed to dominate early in the equilibrium. The ade-
quacy of this treatment is outside the scope of this paper.
In addition, it is important in developing T-dependent
state densities to be careful that all states are accounted
for and none are double counted.

B. Isospin-Hip weighting factors

Referring back to Fig. 1, the simplest weighting factors
for the three types of isospin Aips given in terms of the
quantum numbers in the nucleus with the larger neutron
excess would seem to be p, 2T„and h, respectively, but
these estimates need refinement.

First, the relative weights for all members of an isospin
multiplet are most naturally evaluated in the analog
configuration where T is the ground state isospin. The
weights in the T, T configuration represent "reservoirs"
of candidates for the three types of isospin Aips. In the
configuration with T, T„ the weights are reduced by one
unit for each isospin Aip of that type already used in get-
ting to the T, analog component being considered. Thus
the weights in a configuration specified by T, T, will de-

pend on how the T —T, isospin constraints are distribut-
ed among the three types of isospin Aips. Second, the
weights need to be corrected for Pauli blocking.
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Beginning with the type-2 isospin Aips, we note that
the base number of candidates in the T, T analog of the
T, T, configuration is 2T. This estimate is modified for
the presence of passive particles and holes by replacing T
with an effective value T, . In reaction calculations, the
passives are derived from the target configuration so that

T, =T —T, +T,„,
(Previously [5], the e6'ect of passives was put in explicitly,

but was later largely removed as approximations were
made. )

The number 2T, is reduced by blocking from proton
particle or neutron hole degrees of freedom that occupy
single particle states in the neutron excess region [i.e.,
that have excitation energies between zero and 2T, /g„
where g, =(g +g )/2]. The fraction of the excitons in

this excitation range should be similar to the result for
T-mixed state densities at the effective energy
E E(T—, T, ). The result is

f2(n, E, T, T, )=1— E E(T—, T, ) —A (p, h,p, h ) 2T, /—g,
E E(T,—T, )

—A (p, h,p„h )

if the numerator of the fraction is greater than zero. Otherwise, f2 is unity. Here E is assumed to have been measured
in the analog nucleus specified by T, T, so that E E(T, T, )—is the corresponding excitation energy in the T, T analog
configuration. Thus values of f2 are (and indeed must be) independent of the isobaric nucleus in which E and T, are
evaluated.

This blocking fraction is weighted by the number of proton particles and neutron holes in the T, T configuration and a
correction for double blocking is applied to give a reservoir of candidates for type-2 isospin Aips that is essentially

Bz(n,p, h, E, T, T, )=2T, —(p +h )f2(n, E, T, T, )+ [f2(n, E, T, T, )]2T.

Moving on to consider type-1 isospin Aips, the base number will be the number of neutron particle degrees of freedom
in the T, T analog configuration. These will be blocked by the Pauli exclusion principle any time the T, T analog has a
proton particle and a neutron particle in corresponding single particle states. A similar consideration pertains to pro-
ton and neutron hole states for type-3 isospin Aips.

The fraction of the type-1 candidates that is blocked is found by noting that the blocked states effectively have one
less proton particle degree of freedom than the others since once the neutron particle state is chosen, the proton particle
state is specified. Because of the similarity of type-1 and type-3 isospin Aips, it is useful to define the quantity

[E E( T, T, )
——A (p, h,p, h ) —2 T, /g, ]"

f,3(n, E, T, T, )=
2g, [E E(T, T, ) —A (p—,h,p„h„)]"

In terms of f» and the numbers of excitons in the T, T
configuration, the number of candidates for type-1 and
type-3 isospin Aips are

To express the three weights in terms of the exciton
quantum numbers in the T, T, configuration being con-
sidered, we note that the particle-hole numbers in the two
configurations are related to one another as

B,(n,p,p, E, T, T, ) =p, [l —p f,3(n, E, T, T, )], (Sa)

B3(n,h, h, E, T, T, )=h [1—h f»(n, E, T, T, )] . (Sb)

In each T, T, isobar component configuration, each of
the three weights will be reduced by the number of iso-
spin Aips of that type which were used in converting the
T, T configuration into that T, T, isobar component. The
numbers used are denoted by i, j, and k for types 1, 2,
and 3, respectively, where T —T, =i +j +k.

h

Pv
h

h +k
P, +l
h —k

Thus the total number of isospin Aips sti11 possible in the
T, T, analog component is

C(p„i,h +k,p—+i, h k, E, T, T, ) i——j —k—
= [B,(n,p i,p +i,E, T, T—, )—i]+ [Bz(n,p —i, h k, E, T, T, ) j]+[B3(n,—h„k, h—+k, E, T, T, ) ——k],

where each pair of brackets gives the weight for one type of isospin flip. (In the earlier study [5], the derivations were
performed without any consideration of the blocking of type-1 and type-3 Aips, and type-2 isospin Aips were considered
only in the f2

=0 and fz
= 1 limits. )
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C. Relation between state densities in an isobaric multiplet

Beginning with the above weighting factors, we now relate the isospin-conserved state densities from different isobar-
ic nuclei. For light particle reactions, states with isospins up to T = T, ~+2 are needed.

Recalling that the weights are given in terms of the quantum numbers of the nucleus with the greater neutron excess
(or T, value), the result for neighboring isobars is

B)(p 1 —i—,p +1+i,E, T, T, ) i—
C(p —1 i,—h +k,p, +1+i,h k, E—, T, T, ) i ——j —k

X co(p —l, h, p +1,h, E,(T, T, ), T, T, +1)
B2 (p i ', h —k', E—, T, T, ) —j '

C(p i', h—+k', p +i', h„—k', E, T, T, ) i' —j' ——k'

Xco(p, h,p, h, E, ( T, T, ), T, T, + 1)

B3(h —1 —k",h +1+k",E, T, T, ) k"—
C(p i",h—+1+k",p„+i",h —1 k",E,—T, T, ) i" j—" —k"—

Xcu(p, h + I,p„h —1,E, (T, T, ), T, T, +1)

where the i' s, j's, and k's refer to the isospin flips used in going from the T, T to the T, T, + 1 isobar, and E, ( T, T, ) is

(10)

E, (T, T, )=E E(T, T,—)+E(T,T, +1) .

In the B's and C's, the argument set E, (T, T, ), T, T, + 1 is equivalent to E, T, T„and the argument n has been dropped
from the notation. Note that for each term in the right-hand side of Eq. (10) different states will have different corn;
binations of the i' s, j's, and k's, and a weighted sum over these combinations is really needed. The result is only explic-
itly defined for T = T, +1, the case with no constraints on the right-hand side. Thus we begin with this case and work
up to higher T —T„each time expressing the co( Y, E, T, T, ) in terms of the various co( Y,E E( T, T, ),—T, T ).

Many of the effective excitation energies occurring in the T-mixed state densities are simplified by evaluating the sym-
metry energies from the corresponding terms in the semiempirical mass equation [9]. This gives symmetry energies that
are proportional to T (T, ) . —

For the explicit case, the effective excitation energy becomes E, ( T, + 1, T, ) =E E( T, + 1, T, ), a—nd it is convenient
to define

E =E E(T, +m, T—, ) . (12)

The desired state density relationship is thus

co(p, h,p, h„E,T, +1,T, )= X,(p„—1,h, p, + I, h„,Ei)a)(p —I,h, p + I,h„,Ei, T, +1,T, +1)
+X~(p, h„,p„h, E, )co(p„,h,p„,h, E„T,+1,T, +1)

+X3(p, h + l,p, h —I, E)a)(p, h +I,p, h, 1,E„T,+—1, T, +1),
with the weighting factors

(13)

B,(p,p, E„T,+1,T, +1)
X, (p, h„,p, h„,E, ) = C(p, h,p„h, E„T,+1,T, +1)

B2(p, h, E„T,+1,T, +1)
X(p, h„,p, h„,Ei ) = C(p, h,p, h, E„T,+ 1, T, +1)

B3(h,h, E„T,+ 1, T, +1)
X3(p, h„,p„,h, E, )=

C(p„,h„,p, h, E„T,+1,T, +1)

(14a)

(14b)

(14c)

Here 2T, in the B s becomes 2( T„+1)and T„ is typically the T, of the target. In the X's, the isospin labels are omit-
ted since E; is always associated with T, +i, T, +i [In the ear. lier work, approximations were made at this stage in or-
der to recover the results of Eq. (1).]

The next step is to express the co( Y,E, T, +2, T, ) in terms of the co( Y', E2, T, +2, T, +2). Applying Eq. (10) twice and
combining identical terms yields
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co(p, h„,p„h, E, T, +2, T, ) = X„(p 2—, h, p +2,h, E2)co(p —2, h,p„+2,h„E~, T, +2, T, +2)

+2X,2(p —l, h, p + l, h, E~)co(p —l, h, p +1,h, E2, T, +2, T, +2)

+2X,3(p —l, h + l,p +l, h, —1,E~)co(p —l, h + l,p, + l, h —1,E2, T, +2, T, +2)

+X2z(p, h,p„h, E2)co(p, h,p, h„,Ez, T, +2, T, +2)

+2X23(p, h + l,p„h —1,E~)co(p, h +l,p, h —1,E2, T, +2, T, +2)

+X33(p, h +2,p, h —2, E2)co(p, h +2,p, h, —2, E2, T, +2, T, +2) . (15)

Here the X factors are given by

Bi(p. p. Ez) —1

X„(p,h,p, h, E~)= C(p, h,p, h, E2)—1 C(p, h,p„h, E2)
(16a)

B2(p~, h„,E2)
X,2(p„,h,p, h„E2)= C(p, h,p, h, E2)—1 C(p„,h,p, h„E~)

Bi(p,p„,E&) B3(h„h~,E2)
3(p~, h~, p~, h~, E2)= C(p, h,p, h„E~)—1 C(p, h,p, h, E2)

(16c)

B2(p,h„E2)—1 B2(p,h„,E2)
X22(p, ",p„",Ep ) =

C(p„,h,p, h, E2)—1 C(p, h,p, h, E2)
(16d)

B2(p, h, E2) B~(h,h, E~)
X23(p~, h„,p„h„,E~)= C(p, h,p, h„E2)—1 C(p, h,p„,h, E2)

(16e)

B3(h„h„,E~)—1 B3(h,h, E2)
X33(p,h,p, h, E2 )=

C(p„,h,p, h, E~)—1 C(p, h„,p„,h„E2)
(16f)

where, for simplicity, the isospin designations T, +2, T, +2 have been dropped from the B s and C's as they were from
the X's.

The result for co(Y,E, T, +3, T, ) in terms of the co(Y', E3, T, +3,T, +3) takes three applications of Eq. (10) and is
analogous to Eq. (15) but with many more terms. The X factors are analogous to Eq. (16) but with three subscripts and
three factors each. (The X's are all independent of the order of the subscripts. )

D. Evaluation of isospin-conserved state densities

To express the isospin-conserved state densities in terms of the more common isospin-mixed state densities, we start,
as in Ref. [5], at low excitation energies where only states with the ground state isospin T = T, are possible and work up
to successively higher energy domains where additional isospin values become allowed. The results from lower domains
are used to evaluate the analog state densities in each new domain. Then the T = T, state densities are obtained by sub-
tracting the T & T, contributions from the full T-mixed state density, taking account of the constrained particle-hole
pair produced in type-2 isospin Hips.

The resulting expressions for the T-conserved state densities in terms of the T-mixed state densities are found to be-
come increasingly more complicated for each energy domain. On the other hand, the second and higher order correc-
tion terms show significant cancellation in the weights of individual T-mixed state densities. Thus these higher order
terms have been neglected, leading to results applicable in all energy domains. These results are

co(p, h,p, h, E, T„T,)= co(p, h,p, h, E) X, (p —l, h, p +—l, h, E, )co(p —l, h, p + l, h, E, )

—X~(p —1,h,p, h 1,E, )co(p —l,h, p—„,h —1,E, )

—X3(p, h +l,p„,h —1,E, )co(p, h +l,p, h —1,E, ),
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co(p, h,p, h„E,T, + 1, T, )

=Xi(p —l, h, p + l, h, E, )co(p —l, h, p + l, h, E, )

+X2(p, h,p„,h, E, )co(p, h,p, h, E, )+Xq(p, h + l,p, h —1,E) )co(p„,h + l,p„h 1—,E, )

—X, (p —1,h, p + 1,h „E()[ X) (p —2,h,p, +2, h „E2)co(p —2,h, p +2,h, E2 )

+X2(p —2,h, p + l, h —1,E~)co(p —2, h, p + l, h —l, E2)

+X~(p —l, h +l,p„+ l, h, —1,E2)co(p —l, h + l,p + l, h —1,E2)]
—X2(p„,h,p, h„,E, )[ X, (p —l, h, p + l, h, E2)co(p —l, h„,p, + l, h, E2)

+X2(p —l, h, p„h —1,E2)co(p —l, h,p, h, —1,E~)

+Xq(p, h„+ l,p, h —1,E2)co(p, h„+ l,p, h —1,E2 )]
—Xq(p„, h + l,p, h —1,E, )[X,(p —l, h +l,p, + l, h, —1,E2)co(p —l, h + l,p + l, h —1,E~)

+X2(p —1,h + l,p, h —2, E2 )co(p —1,h + l,p, h —2, E~ )

+X~(p, h +2,p, h„—2,E~)co(p, h +2,p, h, —2,E2)] (18)

co(p, h,p, h, E, T, +2, T, )

=X„(p 2,h, p —+2,h„E2)co(p 2,h,p,—+2,h„,E~)+2X, (p2—l, h,p, + l, h, E2)co(p l, h—,p + l, h, E2)

+2X,~(p —l, h + l,p + l, h —l, E2)co(p —l, h +l,p, + l, h„—1,E2)

+X22(p~, h~, p„,h~, E2 )co(p~, h~, p„,h „,E2)

+2X2~(p, h + l,p, h —l, E2)co(p, h + l,p, h„—l, E2)

+X~~(p„,h +2,p, h„—2, E~)co(p, h +2,p, h —2, E2)
—Xii(p —2,h, p +2,h, E2)[ X,(p„—3,h, p +3,h, E~ )co(p —3,h,p, +3,h, E~ )

+X2(p 3,h,p„+2—, h —l, E~)co(p —3,h, p +2,h„—1,E~)

+Xq(p —2, h + l,p +2,h„—1)co(p„—2, h„+ l,p, +2, h —1,E~)]
—2Xi2(p„—l, h, p +1,h„,E~)[ Xi(p„—2, h„,p, +2,h, Eq )co(p —2, h, p +2,h„,E~)

+X2(p„—2, h, p + l, h —1,E~ )co(p„—2, h, p + l, h„—1,Eq)

+X~(p —l, h +l,p, + l, h —1,E~)co(p —l, h„+ l,p +l, h —1,E~)]
—2X,~(p —l, h + l,p, + l, h —1,E~)

X [ X, (p —2, h„+ l,p, +2, h —1,Eq )co(p —2, h + l,p, +2, h —1,Eq )

+X2(p —2, h +l,p„+ l, h„—2, E~)co(p —2, h„+ l,p + l, h —2,E))
+Xq(p —l, h +2,p +l,h„—2, E~)co(p —l, h +2,p„+l,h —2,Eq)]

—X~2(p„,h,p, h, E~)[X,(p —l, h, p +1,h„,E~)co(p —l, h„,p +1,h, E~)

+X~(p —l, h,p, h, —1,Eq)co(p —l, h„,p, h, —1,Eq )

+X~(p, h + l,p„,h —1,E~)co(p, h + l,p, h, —1,Eq)]
—2X2~(p, h + l,p, h —1,E2)[X,(p —l, h +l,p + l, h„—l, Eq)co(p —l, h + l,p + l, h —1,E~)

+X~(p„—l, h + l,p, h —2, E~ )co(p —l, h + l,p, h —2, E~ )

+Xq(p„,h +2,p, h„—2, Eq)co(p„, h +2,p„,h —2, E~)]
—Xqq(p, h„+2,p, h, —2,E2)[Xi(p —l, h +2,p +l, h —2, Eq)co(p —l, h„+2,p„+ l, h„—2, Eq)

+X~(p„—1,h +2,p„h —3,E~ )co(p —l, h +2,p, h, —3,E~ )

+X~(p„,h„+3,p„,h —3,E~)co(p, h +3,p h —3,E~)] .
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Equations (17)—(19) are much more complicated than Eq. (2), but contain almost none of its approximations and none
of its ambiguities.

E. Evaluating the state densities

In order to use the above results, two quantities must be defined: the T-mixed state densities and the symmetry ener-
gies, E ( T, T, ). While there is no required form for the isospin-mixed state densities, the most common choice, and the
one that has been used here, is the traditional equispacing model formula given by Eq. (3) with g =Z/(13 MeV),
g, =%/(13 MeV), and the Pauli correction function

3 (p, h,p, h, ) = (q ) (q, ) p (p +1)+h (h +1)+
Nv 4g

p (p +1)+h (h, +1)
4g

(p„—1) +(h —1) (p —1) +(h„—1)~

g G (p, h, p„,h„E) g G,(p, h,p, h, E)
(20)

Here, the quantity q is the total number of proton
particle-hole pairs, typically given by

q =max(p, h ) (21)

with a similar relation for q . The first two terms in A

represent the threshold energy for the configuration,

(q )' (q )'
E,„(p,h,p, h )= +

Nv
(22)

(23)

and G has a similar form. (The G's are slightly different
from those given in Ref. [8].)

In this work, the symmetry energies have been taken
from the volume symmetry term of the Myers and
Swiatecki semiempirical mass equation [9]. Thus we have

(24)

Obviously, the surface symmetry term could also be in-
cluded, or the symmetry energies for T = T, + 1 could be
evaluated from (p, n) reaction g values as proposed by
Anderson et al. [10].

F. Approximations in the present results

While the present results avoid the major approxima-
tions of the earlier study, they are still not "exact." It
has already been stated that they contain only first order
correction terms. In addition, several approximations
have been made in implementing the blocking factors f2

and f&3 given by Eqs. (5) and (7). They are the following:

The first four terms in A are all that is normally used.
They are energy independent and yield accurate state
densities except near the threshold energy. Improved ac-
curacy near threshold is accomplished [8] by including
the last two, energy-dependent terms. Here 6„is

12q
G (p, h, p, h, E)=

q +q
4g [E—E,„(p,h,p, h, ) ]+

(1) The blocking fractions are evaluated using the
energy-independent Pauli corrections even when the full
energy-dependent Eq. (20) is used in the calculations of
the T-mixed state densities. (2) The blocking fractions
use the Pauli correction from the main configuration even
for the analog states with different configurations. None
of these approximations is expected to have a significant
impact on the results.

III. CONSISTENCY CONDITIONS

Given the present expressions, we now consider their
consistency with T-mixed particle-hole state densities, to-
tal Fermi-gas state densities, and Fermi-gas state densi-
ties with good isospin. In a real sense, consistency be-
tween the present results and the isospin-mixed state den-
sities was built into the derivations because the T„T,
state density for a given class of states was found by sub-
tracting the T ) T, contributions from the total (isospin-
mixed) state density. This intrinsic consistency also ex-
tends to the isospin-mixed Fermi-gas state densities
which have been shown [6] to be consistent with the
summed isospin mixed particle-hole state densities. The
main consistency conditions are therefore inherently met.

It is appealing, however, to try to verify this intrinsic
consistency through numerical checks such as the one on
the total number of states:

g g g co(p, h,p, h, E, T, T, )

=g +co(p, h,p, h„E,T, ), (25)

where p -h and p -h are held constant in the sums be-
cause particles and holes are created and annihilated in
pairs. However, this and similar conditions turn out not
to be valid for two principle reasons: (i) the presence in
many states with T) T, of constrained proton particle-
neutron hole pairs, as shown in Fig. 1, and (ii) the
inAuence of passive particles and holes on the sums of
particle-hole state densities. Thus, we examine the role of
passive particles and holes in summed particle-hole state
densities and then look at the validity of possible con-
sistency conditions.
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A. Passive particle and holes in consistency checks a valid condition is

co(E)=g g co(p,p,p,p„E) . (26)

As a corollary, if state densities containing passives are
summed holding p -h„and p -h constant, the result will
always be less than co(E).

Looked at functionally, the role of the passive particles
and holes is to tie up excitation energy, leaving less of it
to be permuted among the excitons. This implies fewer
permutations and thus a lower state density than for no-
passive configurations with the same E and n.

B. Validity of consistency checks

We now consider the consistency condition given in
Eq. (25). For this comparison to be valid, the same states
must be summed in both cases; i.e., the same number and
type of passives should be present in both sums. The
number of passives in the T-mixed state densities on the
right-hand side is unambiguous and is determined by p-
h and p -h . On the right-hand side, however, the iso-
spin constraints mean that a single isospin-dependent
state density has components which are given by (or in a
very real sense "look like, " "sum like" ) a variety of T
mixed state densities with different numbers of passive
particles and holes. As a result, the condition expressed
in Eq. (25) should probably not be rigorously fulfilled
even for completely consistent state densities. On the
other hand, it is still useful.

First, in the p =h and p =h limit the right-hand
side of Eq. (25) gives the total particle-hole state density
of the nucleus. Thus, for any p„,h,p, h, the left-hand
side should always be less than or equal to this limit, and

We begin by reviewing some definitions. A "particle"
is a filled single particle state above the Fermi level, and a
"hole" is an empty single particle state below the Fermi
level. Thus the total number of proton particles must
equal the total number of proton holes, and similarly for
neutrons. Most particles and holes are "active. " They
represent degrees of freedom because they carry excita-
tion energy that can be given up in subsequent interac-
tions. A few may be constrained to specific single parti-
cle states adjacent to the Fermi level (or elsewhere if T is
conserved). They have no permutable excitation energy
and are termed "passive" [7,8]. (For instance, a passive
hole is produced when a nucleon is incident on a target
and the Fermi level moves up to its new position, leaving
an empty single particle state below it. )

We next consider the effect of the passives on sums of
isospin-mixed particle-hole state densities. The key point
here is that the zero-passive state density co(p, h

=p,p„h, =p„E) counts all possible config-
urations of the excitons (active particles and holes) which
have the specified excitation energy. This state density
thus counts, as special cases, the states in which some of
the particles and holes occupy states adjacent to the Fer-
mi level. That is, the no-passive state densities contain
the ones which have passives. From this it should be
clear that the total state density of the system is given by

g g +co(p, h„,p, h, E, T, T, )

(27)

=g ~(p, h,p, h, E, T, ), (28)

g to(p , h ,p , h ,E, T, T, ) =co(p„,h ,p ,h„E,T, ) .
T

(29)

Since there will not be an exact cancellation of the oth-
er terms, conditions that minimize the size of these terms
will lead to better fulfillment of the conditions. Thus
both large symmetry energies and high exciton numbers
are favorable while high excitation energies make the
terms more comparable and fulfillment worse.

C. Comparisons of summed particle-hole state densities

The comparisons suggested by Eqs. (25), (28), and (29)
have been made for both Ni and Pb. Comparisons
are limited to excitation energies where T, +2 is the max-
imum isospin allowed. Values of 5, 10, 20, and 30 MeV
for Ni and 20, 40, and 60 MeV for Pb have been
used. The difference in the energy scales is due to the
difference in the symmetry energies. At the lowest ener-

gy in each case, only the ground state isospin is allowed
so that all of the conditions are exactly fulfilled. The situ-
ation at the other energies is discussed below.

It is found that the conditions expressed in Eqs. (28)
and (29) are satisfied to very nearly the same extent when-
ever p and E are the same, so it is simplest to look at the
combined results of Eq. (28). These are shown in Fig. 2
as the ratio of the summed T-dependent state density to
the summed T-mixed state density. As expected, the ra-
tio is closer to unity at the lower excitation energies for a
given nucleus. Similarly, at comparable excitation ener-
gies Pb shows better fulfillment of the condition than

Ni. In all cases the ratio starts above one and decreases
as the exciton number, n, increases. The ratio generally
levels otf very close to unity, except for the (p, n) reaction
producing Ni at 30 MeV. Here the ratio again begins
to decrease rapidly. [This unusual behavior is due to a

In addition, Eq. (25) should be approximately fulfilled.
The reason is that when T-conserved state densities for a
given configuration are expressed in terms of T-mixed
state densities, the main terms from states with isospin
T+1 will largely cancel the correction terms from states
with isospin T. To the extent that this cancellation is
complete, all that is left in the sum over T is the main
term for T = T, which is identical to the state density in-
side the sums on the right side of the equation. Thus, to
the extent that the cancellation is complete, Eq. (25) will
be fulfilled. Additional conditions that might also be ap-
proximately fulfilled are

g g co(p„,h,p„h, E, T, T, )

p T
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particularly at higher excitation energies. Here the level
density parameter is 12 =m (g +g )/6. Sample calcula-
tions indicate that for Ni, the level of agreement is
about 15%%uo at 5 MeV and improves to about 4% at 30
MeV.

Thus, since the total T-conserved state densities de-
rived here are consistent with the corresponding T-mixed
state densities, they are also consistent with the Fermi-
gas results, but their distribution in isospin may be
different. Typically, the isospin-conserved Fermi-gas
state densities are given by (e.g. , Ref. [11])

FIG. 2. Ratio of the isospin-dependent state densities
summed over T and p„ to the corresponding isospin-mixed state
densities summed over p . The results are plotted as a function
of exciton number for the indicated excitation energies.

co( E, T, T, ) =co(E E( T,—T, ) ) co(E —E( T +—1, T, ) ),
(31)

peculiarity of the reaction system. Because of the role of
the passive particles and holes and because E ( T, + 1, T, )

is only 5.7 MeV, the correction terms in the T = T, state
densities at high n actually have more permutable excita-
tion energy than the main term. ]

With regard to the condition of Eq. (25), the results for
Ni are shown in Table II, again as the ratio between the

T-conserved and T-mixed state densities. In general the
T-conserved results are slightly greater than the corre-
sponding T-mixed ones, but the differences are only of
the order of 1% or less. For (p, n), the ratio is less than
one because of the effect noted above, and the difFerence
is 6% or less. For Pb, the full space was not explored,
but sums up through n =24 indicate a ratio of essentially
unity in all cases. Thus, Eq. (25) is quite well fulfilled.

This leaves the limit of Eq. (26) to consider. The reac-
tion yielding p =h and p =h is inelastic scattering for
which Table II shows that the T-conserved state density
exceeds the limit but only at the level of about 1%. For
the other reactions, the summed T-conserved state densi-
ties are all significantly smaller than the full state density.

D. Consistency checks with Fermi-gas state densities

Williams [6) has already demonstrated that the total
T-mixed particle-hole state density of Eq. (3) with p =h
and p =h agrees with the total two-component Fermi-
gas state density

although sometimes the correction term is ignored. The
results of Eq. (31) are compared with the present results
summed over p and p„ in Table III. Also included in this
table are the inelastic scattering results from a simple ex-
pression suggested by Jensen [11]

co(p, h„,p, h, E, T, T, )

=co(p, h,p, h, E E(T, T, )—)
—co(p, h,p, h„,E —E( T+ 1, T, )), (32)

which gives the same isospin distribution as the Fermi-
gas formula.

Table III shows that for the present results, the distri-
bution of the states in isospin depends on the passive par-
ticles and holes that are present. While inelastic scatter-
ing (with no passives in the main T= T, term) yields
T = T, state densities that are close to the Fermi-gas re-
sult, it is the proton incident composite nucleus that best
reproduces the T dependence of the Fermi-gas state den-
sities. By contrast, the isospin dependence from Eq. (32)
shows little variation with the passives present.

The difFerences in the isospin distributions in the
Fermi-gas and the present particle-hole descriptions do
not necessarily mean that either one is incorrect. Much
of the difference could be related to the role of passive
particles and holes and the fact that p -h„and p -h are
held constant in the sums. (As was pointed out [12], they
are not always constant in physical reactions, and the
effect of passives at the Fermi level should wash out at
equilibrium. ) This explanation is supported by observing

E
{MeV)

TABLE II. Ratios of summed "Ni state densities.

gpp z co(p, h,p„,h„,E, T, T, ) gp~ co(p, h,p„,h„,E, T, )

' Ni(N, N') ' Co+p Co(p, n) "Cu(n, p)

5
10
20
30

1.000
1.003
1.009
1.012

1.000
1.001
1.003
1.004

1.000
0.980
0.957
0.943

1.000
1.002
1.006
1.009
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TABLE III. Issospin de ens
'

p ndenceofsu ed" '
dsu e Ni state ddensities at 30 MeV.
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1

2
3
Sum

"Ni(N, N')

9.41 X 10
2.34 X 10
0.84X10'
9.64X10'

4.18X10'
2.96 X 108

1.20X10'
4.48 X10'

1.49 X 10
4.91X10'
2.15 X 10
1.98 X 10

57
p p ct)(p~, ~ ~,pv, h E T~ Tz, )

Co+p "CCo(p, n) ' Cu(n, p)

2.08 X 10
0.33 X 10
0.09 X 10
2.12X10'

Jensen

(N, N')

8.90X10'
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9.53 X10'

Fermi

9.22 X 10
6.61X10'
3.55 X10'
9.99X10'

that the summed ar
'

p

suit (except for the
an the corresp d' e

or T=T, in inelastic

IV. CALCULATED SD STATE DENSITIES

Having demonstronstrated that theonstr e present results a

on to exami
a isospin-mixed, we m

be
thi bh A 1

Ni and o Pb, but w, but with a given
a unction of

AsinRf, ne . [5], the n

a
'

excitation

Jensen formula of E . 3
new results are compared wi

3
'

its leadq. (32) and with t l
flh '1

3 4
con6gurat ions which d

give the corn
'

rparisons for
t th b

eactions. The
e e avior of r

ey correspond t.„h,h.
g.

e configurations from

(n ,p) reactions.
For Ni, the T=T =

'n Ref. [5j. Belo
are qualitativel

e ow the threshold f
ts agree wh

'th th lt f 1

dth' 1
'

ospins, the res
ea ing term.t. . its h

d
n type of ass

en, dependin

e o t e a e densities is 1

208
errn in Eq. (32 t f

at of the

b, trends are the samr Pb, the
at of the f

ig. 4 in Ref. [5]. 0

inguishable. The
the various cu

means th at the corre
h i d exciton nu

the oth h dar or downward sh'fti s of the

10

(1,1,0,0)

58 N'

I

58 N'

(1,0, 0, 1) (0, 1, 1,0)

10

10

') 10
T —3
(xO. O1)

I—
I—
bJ

3

10

10
208

10

10

10

10

I II ~ I

0 10 20
I I ~ I

0 10 2030 40 50 60

FICx. 3. ' - e

30 40 50 60 0

Isospin-de e

E (MeV

t

pendent state d
'

a

40 50 60

resu ts, the ion d
e ensities as a f

h d r ses from the Jen
e. ).

1 [ ], dth ho td h e eading tenn of the



598 C. KALBACH

104

10

10

I

4)

10

10

10
I—
LLj

10
3

(1.0.1,1)

58

208

(2, 1,0,0) V. APPROXIMATE EXPRESSIONS
FOR REACTION CALCULATIONS

The improvements over Ref. [5] are the result of four
factors: (1) not neglecting dift'erences in the Pauli correc-
tion functions in order to combine the various main
terms and/or correction terms in a single state density
expression; (2) including realistic blocking fractions for
all types of isospin Ilip; (3) treating passives by using the
T, of the target nucleus in estimating the weights for
type-2 isospin Ilips; (4) not assuming that type-2 isospin
Hips are predominant. Of these factors, the first two are
candidates for possible relaxation. Analogs of Eqs.
(17)—(19) have thus been derived in which factors (1), (2),
or both (1) and (2) are relaxed.

10

102

10 I . I . I . I
~ I I ~ I ~ I ~ I
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E (Mev)

present results for T & T, relative to the Jensen state den-
sities are still present.

These comparisons suggest that the present state densi-
ties represent a real improvement over the results of ear-
lier work [5,11],especially for T) T, . We now search for
simpler expressions that will be adequate for routine
preequilibrium reaction calculations.

FIG. 4. Isospin-dependent state densities as a function of ex-
citation energy for three exciton states. Curves are as in Fig. 3.

A. Uniformly applied approximations

Results from the expressions with the simplifications
applied to all terms show that for Pb, any of these ap-
proximations are adequate while for Ni, none are. In
particular, for Ni we note that the upward or down-
ward shifts of the current results for T) T, relative to
the simple or Jensen results are due primarily to three
factors: (i) the weighting factors for the leading terms, (ii)
the dift'erences in the Pauli correction functions, and (iii)
the blocking corrections. Of these, the first is totally
dominant for the very simple states in Fig. 3. As the ex-
citon number increases, however, the other two factors
become rapidly more important, especially at lower exci-
tation energies. Thus it appears that neither factor (1)
nor factor (2) can be totally neglected.

Neglecting only the blocking of type-1 and type-3 iso-
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3.
FIG. 5. Isospin-dependent state densities as a function of excitation energy for eight exciton configurations. Curves are as in Fig.
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spin flips introduces errors of no more than about 10%
into Ni state densities with p (4 but does not substan-
tially reduce the computational effort required.

B. Additional approximations in the correction terms

Starting with the results with no type-1 and -3 blocking
corrections, we next try additional approximations in the
corrections terms only.

Relaxing factor (1) by ignoring differences in the Pauli
correction functions simplifies calculations because the
various correction terms can all be combined and written
in terms of co(p, h,p, h, E E(T—+1,T, )). Neglect-
ing blocking of type-2 isospin Hips as well was also tried
and found to make only a very small difference in the re-
sults so these latter expressions were tested on the Ni
state densities.

For the simple configurations which dominate pree-
quilibrium reactions (n =2 in the residual nuclei and

n =3 in the composite nucleus), the new results agree
with the full results to within about 3%. The agreement
gets worse as the excition number increases, especially for
T = T, and for the (p, n) configurations. At n =8, the er-
rors can be as large as 20%. Still, these results should be
adequate for reaction calculations.

C. Approximate expressions adopted

The approximate expressions for the isospin-conserved
state densities adopted for reaction calculations thus
neglect type-1 and -3 blocking corrections in all terms
and neglect blocking of type-2 isospin Aips and
differences between Pauli corrections in the correction
terms.

Neglecting the type-1 and -3 blocking causes the
weighting factors for the three types of isospin Hips that
occur in the X coefficients of Eqs. (14) and (16) to change
as follows:

B,(p,p„,E, T, T, )~p (33a)

B2(p, h„E,T, T, ) —unchanged, but drop subscript 2, (33b)

B3(h,h, E, T, T, )~h (33c)

C(p, h,p, h, E, T, T, )=p, +h +B(p,h„,E, T, T, ) . (33d)

For the correction terms, Bz~2T„and additional factors are introduced when the correction terms are combined. To
accommodate this, new Y coefficients are defined as

Y, (p, h,p, h, E; ) =
p+1 g

p, +h +2(T„+i) g
(34a)

2( T„+i) (p„+1)(h + 1)(n —1)(n —2)
Y2(p, h,p, h, E;)=

p +h +2(T„+i) g g [E—A (main)]

+1 g
+h +2(T +

(34b)

(34c)

In terms of the Y's and the modified X's, the appropriate T-dependent state densities adopted are

co(p, h,p, h „E,T„T,) = co(p, h, p „h,E) [Y,(p —1,h—,p + 1,h „E,) + Y2 (p —1,h,p, h —1,E, )

+ Y3(p„,h + l,p , h —1,E, )]co(p , h „,p , h ,E, ),
co(p, h,p, h„,E, T, +1,T, )= X, (p —l, h, p +l, h„E, )co(p —l, h, p +l,h, E, )

+X~(p,h,p„h, E, )co(p, h,p„h, E, )

+X3(p, h + l,p„,h, —1,E, )co(p, h„+ l,p, h —l, E, )

(35)

Xi(p —1,h„,p +1,h„,E, )
p +1 g

X[ Y, (p —2, h, p +2, h„,E~)+ Y~(p —2, h, p +1,h —1,E~)

+ Y3(p —l, h + l,p + l, h —1,E2)]
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+X2(p, h,p, h, E, )[ Y, (p —l, h, p +1,h„E~)
+ Y~(p —l, h,p„h„—1,E~)

+ Y3(p, h + l,p„h —1,E2)]

h, g+X3(p, h +l,p„h, —1,E, )' h„+1 g.
X[ Y, (p —l, h +l,p„+ l, h —1,E2)+ Y2(p —l, h +l,p„h —2, E2)

+ Y3(p„,h +2,p, h„—2, E2)] co(p„,'h, p„h, Eq) (36)

co(p, h,p, h„E,T, +2, T, ) = X„(p —2, h,p, +2,h, E2)co(p —2, h, p +2,h, E2)

+2X,2 (p —1,h, p + 1,h, E2 )co(p —1,h, p + 1,h „E2)

+2X,3(p —l, h + l,p, + l, h, —1,E~)co(p —l, h + l,p„+l,h —1,E~)

+X22(p~, h~, p~, h~, E2 )co(p~, h~,p„h„E2 )

+2X~3(p, h + l,p„h —1,E2)co(p, h + l,p„h, —1,E2)

+X33(p,h +2,p, h„—2,Eq)co(p, h +2,p„h —2, E2)
2

p~ 1 gv—.X„(p —2,h,p, +2,h, E2)
p. +1 p. +2

X[ Y, (p —3,h, p +3,h, E3)

+ Y2(p —3,h, p +2, h —1,E3)+Y3(p —2, h + l,p +2, h —1,E3)]

+ 2X,~(p —l, h, p + l, h, E2)
p~+ 1 g~

X[ Y, (p —2, h, p, +2,h„,E3)

+ Y2(p —2, h,p, +l, h —1,E3)+ Y3(p —l, h + l,p, + l, h, —1,E3)]

p h—2X,3(p —l, h + l,p, + l, h, —1,E2)
p +1 h +1

X[ Y, (p —2, h +l,p, +2, h —1,E3)

+ Y~(p —2, h + l,p, + l, h —2, E3)+Y3(p —l, h +2,p„+ l, h —2,E3)]

z2(p. h. p. h.
X[ Y, (p —l, h, p +l,h, E3)

+ Y~(p —1,h,p„h, —1,E3 )+ Y3(p, h + l,p„h —1,E3 ) ]

h g+ 2X23 (p, h + 1,p, h, —1,E~ )
h +1g

X [ Yi(p —l, h + l,p + l, h, —1,E3)

+ Y~(p„—l, h + l,p„h —2, E3)+ Y3(p, h +2,p, h, —2,E3)]
h h —1 g+ X33(p, h +2,p„h —2, E2)33 & 7T v v 2

X[ Yi(p —l, h +2,p +l, h„—2,E3)+ Y2(p —l, h +2,p, h„—3,E3)

+ Y3(p, h +3,p, h„—3,E3)] co(p, h,p„,h„,E3) .' (37)
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These results do not look substantially simpler than the
full results, but the X's and Y's are simpler to evaluate
and the total number of T-mixed state densities that must
be calculated is significantly reduced.

VI. SYSTEMS WITH A PROTON EXCESS

All of the work described so far has assumed that the
nuclei involved have a neutron excess. For nuclei with a
proton excess, the changes needed in the equations are
the following: (i) Replace T, with

~ T, ~
everywhere that it

is used in a calculation, and similarly for T„. (ii) Reverse
the roles of proton and neutron degrees of freedom. This
means reversing the subscripts v and m. everywhere that
they occur (and reordering the resulting "quantum num-
bers" when they appear in designations of state densities).
With these changes the existing results are applicable.

VII. SUMMARY AND CONCLUSIONS

A new derivation of two-component particle-hole state
densities with good isospin was carried out eliminating all
of the major approximations made in the previous work
[5]. When second order and higher correction terms are
ignored, the resulting state density expressions are given
by Eqs. (17)—(19).

The new isospin-dependent state density results are
consistent with the usual expressions for the isospin-
mixed and total state densities. They suggest a different
distribution in T of the total state density than what is
typically assumed in the Fermi-gas model, but this

difference is likely related to the role of passive particles
and holes. It does not necessarily mean an inconsistency.

The current isospin-dependent state densities are
different both from the Jensen result [11] (as seen in Figs.
3 —5) and from the earlier results of Ref. [5] (which did
not show the sizable shifts currently seen for the T) T,
state densities). The differences are significant for Ni
which has a very small neutron excess, but much smaller
f«»8Pb

In a search for simpler approximate results for use in
reaction calculations, it was concluded that the blocking
of type-1 and -3 isospin Hips could be neglected for all
terms and that both the blocking of type-2 isospin Aips
and the differences between the Pauli correction func-
tions of the different analog configurations could be
neglected in the correction terms. The working expres-
sions are given by Eqs. (35)—(37), where the X factors of
Eqs. (14) and (16) incorporate the simplifications of Eq.
(33), and the F factors are given by Eq. (34). These re-
sults are suitable for implementation in two-component
exciton model codes and for studying the importance of
isospin conservation in preequilibrium nuclear reactions.
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