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The NN — NA reaction is investigated within the coupled TNN-NN theory. The model pre-
dictions for the differential cross section, production asymmetry, and spin-correlation parameters
are compared with the Argonne data at Th® = 0.57, 0.81, and 1.01 GeV. Short-range effects are
introduced through the p-exchange contribution. The overall quality of the results is satisfactory,
except for the triplet part of the production asymmetry at the two highest energies. The role of the

3F3 — 5P3 amplitude in this problem is assessed.

PACS number(s): 13.75.Cs, 11.80.Jy, 24.70.+s, 25.10.+s

I. INTRODUCTION

Recently, the pp — prtn reaction with polarized beam
has been studied in the range p}2> =1.18-1.98 GeV/c at
the Argonne zero-gradient synchrotron (ZGS) by Wick-
lund et al. [1] (hereafter refered as WI). The aim of
this experiment was to shed some light on the contro-
versial issue of the dibaryon resonances whose existence
was claimed from the structure in proton-proton scatter-
ing at intermediate energies. The candidates have been
considered as having strong inelastic couplings to the
wNN channel, two most eminent of which are assigned
to be associated with the NN 1D, and 3 F;3 partial waves.
Spin-correlation measurements, aimed to investigate this
dibaryon problem, were done more recently at LAMPF
by Shypit et al. [2] at lower energies.

Among the impressive number of observables extracted
in Ref. [1], some are easily accessible from direct theo-
retical calculations based on three-body models, namely
the data concerning the quasi-two-body reaction pp —
A**n. Indeed, as far as the coupled TNN-NN theory
involves the dominant 7w N-Ps3 (or A) input, it is possible
to extract the NN — NA amplitudes at different values
of the A mass (viz. the invariant mass of the 7N pair in
the P33 state) in the range allowed by a given incident
channel energy, and then to calculate the observables for
that reaction. Note, however, that the comparison with
the ZGS experimental data is not straightforward as we
will explain later.

The coupled 7N N-NN model is a unitary model de-
scribing in a unified manner the following processes:

NN NN
{7rd — < wd
7TINN.

Extensive calculations based on this model have led to
a rather satisfactory overall description of the two-body
final-states processes at intermediate energies [3,4]. How-
ever, one major deficiency appears in the NN — NN
channel: the inelasticity parameter is underestimated for
T}\‘}‘b > 700 MeV, especially in the 3F; partial wave, and
our attempts at improving this situation by introducing
the heavy meson exchange contributions have been un-
successful [3]. This problem seems to be directly related
to the chosen A model: there are some recent indications
that the 3 F3 inelasticity is increased when a two-potential
model is used in the P33 (in combination with the back-
ward propagating pion contribution), but the effect is
still insufficient [4].

The NN — NA process is certainly an appropriate
reaction for investigation of the A model, and the recent
ZGS data should provide new informations quite useful
for this objective. This is the main aim of the present
work. The data we have retained to compare with our
model prediction are the following: (i) The differential
cross section do/dcosfa, where 05 denotes the center-
of-mass (c.m.) production angle of the A, (ii) the differ-
ential cross section do/dMp,+, i.e., the My + (or the A)
mass spectrum, for two slices in cosfa, (iii) the produc-
tion asymmetry parameter Ay (cosfa), (iv) the s-channel
density matrix elements (DME) p11, pa3, p31, and p3_1
as functions of cosfa, (v) the s-channel spin correlations
Pyp11, Pypss, Pypa1, Pyp3—1, Prps1, Prp3—1, P,p31 and
P,p3_1 as functions of cosfa (note that, for example,
Pyp11 is not a product of P, and p11).

These quantities have been evaluated at three different
values of the incident kinetic energy: T}\?b = 0.57, 0.81,
and 1.01 GeV, corresponding respectively to the values
1.18, 1.47, and 1.71 GeV/c of the incident momentum
chosen in the experiment.
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Our results will also be compared with the calculations
of Auger et al. [5]. These authors have investigated the
short-range mechanisms in the NN — NA reaction by
adding in a phenomenological way the p-meson exchange
contribution to the original iterated pion-exchange model
of Kloet and Silbar [6]. They have come to the conclusion
that the NN — NA reaction in the 1 GeV region is less
peripheral than usually believed to be.

The present article is organized as follows. Section II
is devoted to the theoretical aspects: we give a brief de-
scription of the three-body equations for the NN — NA
reaction and of the two-body input used in the P;; and
P33 channels, and we explain how the various observ-
ables may be calculated. In Sec. III, we present our re-
sults obtained with different A models. The effect of the
p exchange is studied in Sec. IV. In Sec. V, we analyze
our results in terms of NN — NA amplitudes, and our
conclusion is drawn in Section VI.

II. THEORETICAL ASPECTS
A. Equations for the NN — INA reaction

Our starting point is the Avishai-Mizutani unitary
model for the coupled TNN-NN systems [7], which
we have extensively used to investigate the md — =d,
nd «+ NN, and NN — NN reactions at intermediate
energy [3]. The basic inputs of this model are the NN
and 7N interactions, which are assumed to be separable.
The two-body partial waves needed to describe correctly
the above processes are the 7N P33 and P;; channels,
the small S and P wN partial waves (i.e., S11, Ss1, P13,
and Ps;), and of course the NN 35;-3D; (d) channel.
The P;; channel, where 7 absorption takes place, is de-
scribed according to the decomposition of the total ¢t ma-
trix into pole and nonpole parts [8].

As we are interested in the NN — NA reaction, we
consider a simplified version of this model where only the
mN P33 and P;; channels are retained, which clearly
should dominate this process. So, the equations read in
operator form

XoN =ZaN + ZaonRNXNN + Z ZopRpXpnN,
B8
1)
a,B e {N,A A"}

Here, the indices A, A’, and N refer to N(wN) three-
body channels with the (wN) pair being in the Pss,
Py (nonpole) and Pj;(pole) partial waves, respectively.
The X are the three-body amplitudes, Z the Born terms
(or driving terms), and R the two-body propagators in
three-body Hilbert space.

The above equation constitutes a set of coupled equa-
tions, leading to the XAy amplitude, which, when eval-
uated at the appropriate A on-shell momentum, corre-
sponds to the physical amplitude for NN — NA. In
practice, after angular momentum decomposition, we
solve a set of coupled one-dimensional integral equations
for rotational invariant partial wave amplitudes. We so
obtain the physical partial amplitudes:

szz,,z.-z,- (kg, ki s), (2)

where I; is the relative orbital momentum and X; the
channel spin in the NN initial channel, [y and Xy are
the corresponding quantities in the NA final channel,
and J is the total angular momentum of the system (J =
L+ =1+ Ef).

In the relativistic approach, s = 2mTR> 4 4m? is the
c.m. total energy squared (m is the nucleon mass), and
k; = y/s/4 — m? is the on-shell initial momentum. In
the final channel, we define the on-shell momentum ky in
terms of the invariant mass squared oa of the 7N pair:

In what follows, we call /oA as the “A mass,” which
corresponds to the invariant mass M+ used in WL In
practice, we must vary the A mass value within the A*t+
bands considered in the ZGS experiment at each incident
energy (note that the upper kinematical limit is \/oA =

V8 —m).

B. The P11 and Pss input

In the P;; channel, we use the same parametrization
as in Ref. [3] (this paper is hereafter refered to as LY87),
namely the total ¢ matrix is written as t = tp + tnp,
where tp is the direct nucleon pole part and txp the re-
maining background (or nonpole part). All the details
can be found in Ref. [8]. The important fact is that the
corresponding three-body channels are treated as differ-
ent channels, so that the Pauli principle can be applied
only to the intermediate N N states coming from the pole
part (see Refs. [3,4, 9] for the discussions concerning this

point).
In the P33 channel, we will consider two types of
parametrizations. The first one is the usual A-isobar

model, where the potential is written as one-term sepa-
rable:
V = |vr)Ar{vr|, Ar=[s— M3l (4)

Here, MA is the bare-A mass, and s is the 7N total
energy squared. A monopole form factor is assumed,

(plvr) = gr(p) = p (P* + AR) ™. (5)

The second type is a two-potential model where V is
written as the sum of two terms,

V =vg +vg. (6)

The resonant interaction vg has the same expression as
in Eq. (4), and the background interaction vg, which
simulates the crossed two-pion process (and possible o
and p exchanges), is treated as a purely phenomenological
separable potential:

vp = |gB)AB(9B| (7)

with a monopole form factor:
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98(p) = Spp (* + A%)™L. (8)

For the resonant part, two types of form factors are
considered, namely a dipole form proposed by Tanabe
and Ohta (model A in Ref. [10]):

(plvr) = gr(p) = p (p* + A%) 72, (9)

or a Saxon-Woods form that we have proposed in Ref.
[4]:

9r(p) = Srp [1+exp (”zﬂ‘%”g)]#l . (10)

In each case, the strength and cut-off parameters are fit-
ted to the experimental phase shifts. Note that the cut-
off parameter A was chosen by Tanabe-Ohta to be 1000
MeV/c. This value corresponds to Ag/+/2 ~ 700 MeV/c
for a monopole form factor, in line with the values used
in the model of Lee [11] or in the cloudy bag model [12].

We now briefly recall the reason why the two-potential
models should be prefered to the A-isobar model (all de-
tails can be found in Ref. [4]). In the A-isobar model
which was used in LY87, the obtained cutoff value is
Ar ~ 300 MeV/c. In the 7NN equations this gives a
too strong cutoff, leading to an underestimation of the
effect of pion production. For this reason, off-shell mod-
ifications where introduced in the LY87 calculations im-
plementing an appropriate off-shell behavior in the Ps3
channel, in order to be consistent with the nd < NN
cross section near the A resonance energy. A more
satisfactory approach to this problem based on a two-
potential model for the P33 (and P;; ) was proposed
by Tanabe and Ohta [10]. Extending the work of these
authors, we have recently shown how it is possible to ob-
tain a coherent description of the wd elastic, 7d < NN
and NN — NN reactions by using in the original LY87
model a two-potential P33 in combination with the back-
ward propagating pion contribution, without employing
the off-shell modifications (see the results obtained with
the LYTO model in Ref. [4]).

C. NN — NA observables

Considering the available ZGS data, we adopt the s-
channel helicity formalism to express the observables.
Following WI, we denote as M, Ay, A¢, and A, the helici-
ties for the A-isobar, beam, target, and recoil (spectator)
nucleon, respectively. The partial-wave helicity ampli-
tudes for the 7" matrix can be expanded in terms of the
partial waves in the (LSJ) representation defined in Eq.

(2):

J _
TS, Maor: = z ,
2l

(JUgEf| TAn M) (—)Y

XTI‘,{Ef,leEi (JlrLEzlJAbAt). (11)

The coefficients of the unitary transformation connect-
ing the two representations are defined according to the
Simonius convention [13],

1
(JLZ| TAeAe) = (=)Z 22 (A1 — A [Z50)

X (; — AJA|L0),
(12)

3
(T Zg I M) = (<)% 72 (3205 — M| )
X(X5 — pJp|lf0),
where A = A\p — At and u = A\, — M.
The transition matrix in the helicity frame is given by

2J +1
47!' TXInM,)\b)\gdiu(eA)’

(AnMIF(6a) o)) = >
J

(13)

where d is the usual reduced rotation matrix, and 4 is
the c.m. production angle of the A.

The phase factor (—)! in expression (11) is introduced
to make coherent the definition of the final-state momen-
tum in the two bases: in the three-body formalism, ky
is the momentum of the recoil particle relative to the A,
while here the definition of 4 implies that k; is the mo-
mentum of the outgoing A, in the total c.m. system in
both cases. We note that in the above expressions, we
have fixed the pr™* pair to be in the A state (with spin
parity JF = -g—+), while in WI the nonresonant JF = %i
isobars are considered in addition to the A.

The parity conservation in production gives the follow-
ing constraint:

(=An — M|F(6a)] — Xp — A¢) = (=) eFAetAntM+1
X(AnM |F(6a)| AeAe ),
(14)

and the Pauli principle imposes the symmetry:

AnM|F(0a)|As)e) = (=)o tretAntM
X(AnM|F(r = 02)Aks).  (15)

We now define the unnormalized production density
matrix:

prrrr =D (AnMIFoXe) Aede| FH AR M), (16)
AbAtAn

This is a 4 X 4 Hermitian matrix with the following sym-
metry properties:

prm = pirags P—m—nr = (=) pppape. 17
The explicit form of this matrix is the following (we use

as indices 2M and 2M’):

P33 P31 pP3-1  P3-3
% *
3/92) — P31 P11 P1-1 P3—1 18
p(3/2) P51 —p1-1 P11 —p3 |’ (18)
—p3-3  P3-1 —pP31 P33

where the diagonal elements are real and the anti-
diagonal elements are purely imaginary.

Taking the trace of this matrix, Trp = 2(p11+p33), and
multiplying by the usual kinematical and spin-isospin fac-
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tors, leads to the differential cross section. In the case
of a polarized beam, the spin correlations denoted as
P; prma, with 4 =z, y or 2, are given by

> GnMIFDAGD,,
Ao A AtAn

X (oA FHIA M"Y/ Trppener,  (19)

P pmmr =

where o(® is the Pauli matrix of the polarized proton
beam. The left-right asymmetry A, is

Ay =2P,p33 + 2P,pq;. (20)

The above expressions allow one to calculate the differ-
ential cross section, the spin correlations and the asym-
metry, as functions of the production angle 84, at a given
mass of the A. However, the data from the ZGS ex-
periment are the cross sections, asymmetries and spin
correlations integrated over the A** bands. In order to
compare our results with these data, we thus define in-
tegrated quantities where the dispersion in mass of the A
is taken into account.

The integrated cross section is written as

do’ omex g
dcosbs /a dcosfa w(oa)doa, (1)

min

where omin and omax are the limits of the experimental
A** band. The weight function w(oa) is the mass dis-
tribution of the A. We use the same prescription as Cété
et al. [14]:

|f(oa)l?

f(ﬁ_*_mﬂ_)z If(UA)IszA .

The f function is the P33 7N — 7N partial wave ampli-
tude, parametrized according to Nagels et al. [15],

w(oa) = (22)

1 MaT (u)

flu) = q(u) M2 — u — iMaT(u) (23)

with
3 2 2
_ 9 9xNna B(u = MR)

Maltw) = e — By

B(u) =1+ R?¢*(u),

1 2 1

2,y _ 1 2 2 2y, L2 2\2

) = gu [1 = S )+ m? = m2)?].
We use the same parameters as in Ref. [14], namely

R =1 fm, m = 938.26 MeV, m, = 134.98 MeV, Ma =
1232 MeV, and the 7 NA coupling constant is taken from
the quark model: grnya = b+/18/25grnN, Where the
symmetry breaking factor is b = 1.21, and the nTNN
coupling has the usual value g2 /4m = 14.43.

The integrated asymmetry and spin correlations are
defined in the same way.

We have also calculated the M,,,+ mass spectrum by
integrating the cross section over the angular range

do * do
d—M_2\/0'A’LU(G'A)/a deOSQA, (24)

where M = /oA stands for the A mass, and w(oa) is
the mass distribution defined in Eq. (22). The a and b
limits are those chosen in the ZGS experiment: two slices
in cosfa have been considered, namely cosfa > 0.5 and
—0.5 < cosfa < 0.5.

III. RESULTS

In this section, we present our results for the NN —
NA observables calculated at T}\‘,‘b = 0.57, 0.81, and 1.01
GeV with three different models. All models have the
Py; (P + NP) used in our LY87 calculations and the
P33 channel. They will be hereafter refered to accord-
ing to the chosen A model: ISO stands for the one-term
A-isobar model, and TOA and SAX refer to the two-
potential models with a dipole (model A from Tanabe-
Ohta) or Saxon form factor, respectively (see Sec. IIB).

da/dcosoA(mb) (a)
5. P

4 0.57 GeV A

20 FErTTT ey

o4
0.81 GeV B i
15 | _ o L . -]
2 - = N -
R
Y N PR
10 0.0 byt — vt
B fegtaane e
_0.2 - -
5
— 04 | .
0 ITUYE FPTYE PWWWE PRt IUYRE FUNYE FUNTEE FWWw
10 05 00 05 10 10 05 00 05 10

0 e

1.01 GeV
20
10
0
10 05 00 05 10 10 05 00 05 10
cos 0A
FIG. 1. (a) Integrated differential cross section and (b)

production asymmetry A, for the NN — NA reaction, cal-
culated at Tp®=0.57, 0.81, and 1.01 GeV with different mod-
els. Curves are TOA (solid line), SAX (dashed line), and ISO
(dotted line). Data are from Ref. [1].
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Note that these models correspond to the simplified ver-
sions of the models used in our recent paper on the TN N
system [4]: ISO corresponds to LY87, and TOA and SAX
to LYTO with model A or Saxon parametrizations of the
P33 , respectively. This means that, apart from the fact
that only the P;; and P33 are retained, other character-
istics are the same. In particular, the backward propagat-
ing pion contribution is taken into account in TOA and
SAX, but not in ISO where the off-shell modifications are
introduced (see Sec. IIB).

The integrated differential cross sections are obtained
as described in Sec. IIC, Eq. (21). The integration is
done numerically through Simpson’s quadrature of or-
der 3, the oa values being the lower limit opi,, the up-
per limit omax, and the middle point (0min + Omax)/2 of
the experimental A*+ band. We use the limits specified
in the ZGS experiments, namely /Omin = 1160 MeV,
\/Tmax = 1200 MeV at TP = 0.57 GeV, and /Omin =
1180 MeV, /Omax = 1280 MeV at T}?b = 0.81 and
1.01 GeV. The results are given in Fig. 1(a) for the three
models. Clearly, the ISO model (dotted curve), under-
estimates the forward (backward) angle cross section at
0.81 and 1.01 GeV by roughly a factor of 2. To a less

Py P11 (a) Py Pas (b)
03 T 02 P
L ]
0.57 GeV 1
+ o1 | ¢

02 -1

L + ++ 0.0 z
0.1 -{‘ y toat +-< 't

0.1 1

LRttty -

FY Y P U PUTT BUTN P POV PO PUUTY O
40 05 00 05 10 40 05 00 05 10
cos 8,
FIG. 2. Integrated spin correlations (a) Pyp11 and (b)

P,ps3 for the NN — NA reaction at ThP=0.57, 0.81, and
1.01 GeV. Same legend as in Fig. 1.

extent, a similar situation was observed with this model
in the md — NN cross section above the A resonance
[3,4]. As expected, the underestimation of the effects of
pion production which characterizes this model is more
apparent in the NN — NA reaction. In comparison,
the two-potential P33 models (combined with the back-
ward pion) give a much better description at all energies.
For this reason, we will essentially discuss the TOA and
SAX models in what follows. Comparing with the ZGS
experimental data, the TOA model (full line) does better
than SAX (dashed line), except at 0.57 MeV in the re-
gion of the minimum. We note that a clear structure at
very forward (backward) angles develops in the theoreti-
cal curves as energy increases, although this structure is
less evident in the data.

The integrated asymmetries are given in Fig. 1(b). The
three models lead to similar results at each of the three
considered energies. The results at 0.57 GeV are consis-
tent with the data given the relatively large error bars.

do/ d cos GA(mD) (a)
30 e

R Bman 0.5

25 0.57 GeV 0.4

20 -
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0.2

s | ] 0.1

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

40 T
04 -
0.81 GeV B

02 | RN

0.0 4+ + ¥
0.2

-0.4

o
o
«n
=4
° ¢
o
«w
o

0.4

0.2

0.0 + + +=
*+++ -
-02 P ++ +

-04 |-

cos OA

FIG. 3.

(a) Differential cross section and (b) production
asymmetry A, for the NN — NA reaction, calculated at
TP = 0.57, 0.81, and 1.01 GeV with the TOA model at
three values of the A mass. The values of \/oa (in MeV) are
1160 (solid line), 1180 (dashed line), and 1200 (dotted line)
at TReP=0.57 GeV, and 1180 (solid line), 1230 (dashed line),
and 1280 (dotted line) at Th*®=0.81 and 1.01 GeV.
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At higher energies, the theoretical calculations stay pos-
itive with a broad maximum around cosfa = 0, whereas
the data become predominantly negative with a broad
minimum around this value.

In Figs. 2(a)-2(b), we show the integrated spin corre-
lations Pyp;1 and Pypss which are the helicity 1/2 and
3/2 contributions to A, see Eq. (20). By carefully look-
ing at the experimental data, it appears that P, ps3 is
responsible for the change observed in the A, structure
from positive values at 0.57 GeV to negative values above
this energy. Clearly, our present models do inadequately
in this helicity 3/2 part: this quantity remains essentially
positive as the energy increases, contrary to the data.

To show the dependance of the observables upon the
A mass, we give in Figs. 3(a)-3(b) the differential cross
sections and asymmetries calculated with the TOA model
at the three values of oca defined above for each At+
band. The cross section is observed to depend strongly
upon oa, so that it only makes sense to compare the
integrated value [solid line curves in Fig. 1(a)] with the
experimental data. The asymmetry is much less sensitive
to oa, and we see that the results at the middle point of
the interval [dashed line in Fig. 3(b)] are almost identical
to the integrated values [solid line in Fig. 1(b)].

cosfp >0.5 (a) -0.5< cos @p<0.5 (b)
70 T T T T 70 T | S S
80 057Gev 80 1
50 } - 50 .
40 | - 4 } ..
30 P —~ 30 P -1
20 } n . 20 } ' .
10 |- ' g 10 -
0 A A A 0 A 1 vl
1.0 1.1 1.2 13 1.4 1.5 1.0 1.1 1.2 13 14 1.5
70 T T T T 70 T T T T
60 - 081GeV ] 6o - R
s | B 50 | 4
>
3 o} . 0 | .
Q
g 30 P 1 30 B
3 20 }- 1 2 P 1
P 3
©
NN - - 10 -
® % 1 1 1 o N
10 11 12 13 14 15 10 11 12 13 14 15
70 T T T T 70 T T T T
60 1.01Gev 60 - 7
« a
50 }- - 50 -
a0 } - w0 .
30 | . 30 | .
20 | - 20 | .
-
10 b - . 10 F .
0 1 1 1 ' 0 1 1
10 11 12 13 14 15 10 11 12 13 14 15
Mpr*(Gev)
FIG. 4. The M,,+ mass spectrum calculated at

T®=0.57, 0.81, and 1.01 GeV with the TOA (solid line)
and SAX (dashed line) models, for (a) cosfa > 0.5 and (b)
—0.5 < cosfa < 0.5.

The M,,+ mass spectrum is calculated according to
Eq. (24). The differential cross sections are evaluated
at various oa values in the allowed kinematical domain
at a given incident energy, and then integrated numeri-
cally over cosfa. We show in Figs. 4(a)-4(b) the TOA
and SAX results at 0.57, 0.81, and 1.01 GeV, for the
two experimental slices in cosfa. For the first slice
(cos@a > 0.5), the two models give a correct descrip-
tion of the strong At+ peak observed experimentally at
all energies (only the low side is seen at 0.57 GeV): the
width is well reproduced, but the magnitude of the peak
is overestimated, this defect increasing with energy. For
the second slice (—0.5 < cosfa < 0.5), the two models
are in good agreement with the data only at 0.57 GeV.
At higher energy, the TOA model does much better than
SAX which underestimates the peak by a factor up to
~ 2 at 1.01 GeV. However, only the low side of the A++
is well reproduced, the magnitude and the width of the
peak being underestimated.

Finally, we give in Fig. 5 the integrated DME’s p11, p33,
and p3+1, and in Fig. 6 the integrated spin correlations
P,y 2p3+1, calculated at 0.81 GeV with the TOA model
(this completes the TOA results given above in Figs. 1
and 2). Concerning the DME’s, the calculations repro-
duce the general trend of the ZGS data. However, the
structure at very forward (backward) angles observed in
the data (except for ps3;) is not reproduced by the model.
Note that the differential cross section is even so good,
since it is related to the quantity p11 + ps3, so that the de-
fects observed in these two quantities compensate. The
situation for the spin correlations is far from being satis-
factory. The tendency of the model is to give pronounced
structures, especially for P; ,p341, whereas there are no
evident structures in the ZGS data, except for P,p3411.

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

FIG. 5.
calculated at Th® =0.81 GeV with the TOA model.

Integrated DME’s for the NN — NA reaction
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FIG. 6. Integrated spin correlations Py, . p3+1 calculated

at TRP=0.81 GeV with the TOA model.

Note that similar conclusions hold when the SAX model
is used.

IV. SHORT-RANGE EFFECTS

A. Semiphenomenological approach

The three-body model used above contains the pion
exchange iterated to all orders, so that only the long-
range part of the interaction is taken into account. It is
by now well established that, in order to obtain a correct
description of the NN elastic phase parameters within
this model, it is necessary to introduce the short-range
contribution arising from the exchange of heavy mesons
such as p, w, and o (see Refs. (3, 16]).

Given this situation, Auger et al. [5] have recently
investigated the short-range effects on the NN — NA
observables. Here we outline the main steps of their semi-
phenomelogical approach.

(1) The starting point is the three-body model of Kloet
and Silbar [6](hereafter denoted as KS). This model gives
for the NN — NA observables a similar trend as our re-
sults discussed above (see the dashed line curves in Figs.
2-5 of Ref. [5]), in particular the production asymmetry

A, at 0.81 MeV is large and positive, in contradiction
with the ZGS data.

(2) Then, the short-range mechanism is introduced by
adding to the KS amplitude a static p-exchange contri-
bution in a phenomenological way. Namely, the total
NN — NA scattering matrix is written as

M (total) = Mks + e'* M, (25)

where Mks is the KS three-body amplitude, M, is the
NN — NA transition potential by p exchange, and ®
is a relative phase. The form of M, is written following
Brown and Weise [17], namely [see Egs. (13) and (14) in
Ref. [5]]

M, =(Sxq)- (o xaq)F,(g), (26)

where S and o are respectively the spin 3/2 and spin 1/2
operators, q is the momentum transfer, and F,(qg) is the
product of the form factors (of monopole type) times the
propagator

2
7rprprNA[ A? —m2 ] 1

F, =4 .
o0 m2 A2 +q? -w?| m2+q?-—w?
(27)

In this expression, m, is the p-meson mass (fixed to 0.77
GeV), A is the cutoff parameter, and f,nn and f,na are
the coupling constants at the vertices.

(3) At each incident energy, a search has been done
for the values of the three quantities: A, the prod-
uct fonnfona and ®, by fitting two main observables,
namely the asymmetry and the differential cross section.

As explained in Ref. [5], different sets of parameters
are obtained: the cutoff parameter A varies between 1
and 2 GeV, and correspondingly the product fonnfona
goes from 4-5 (soft p) to 10-12 (strong p), while the
relative phase ® is found to depend strongly on the en-
ergy. The fitted asymmetries and differential cross sec-
tions are in very good agreement with the ZGS data at
0.8 and 1.0 GeV. The results for the other selected spin
observables (p11, p3+1, Pyp11, and Pyps3, at 0.8 GeV)
are considerably improved in comparison with the pure
KS result. In particular, Pyp;1 shows up a pronounced
minimum around cosfa = 0 and Pyp33 becomes nega-
tive in the whole angular range, so that the asymmetry
Ay = 2Pyp11 + 2Pyp33 is now well reproduced.

The important outcome of the work of Auger et al. is
that apparently the p exchange plays an important role
in the NN — NA spin observables. This means that
this process is not as peripheral as one would normally
expect. However, it is our opinion that the conclusion
they have reached must be taken with some care for the
following reasons.

(i) The calculations have been done for a single A mass.
At each energy, the value is chosen to be close to the reso-
nance value (/oa = 1238 MeV at 0.8 GeV, for example).
As discussed in Sec. III, this procedure is not correct, es-
pecially for the differential cross section, since the model
calculation is compared with the integrated experimental
observables.
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(ii) The fitted relative phase is found to be close to
00 at T}*=1.0 and 1.25 GeV, which means that the p-
exchange contribution practically takes on its Born ap-
proximation value. This is not the case at 0.8 GeV where
the value ® ~ —20° is obtained, indicating that the Born
approximation is certainly not valid at this energy.

(iii) The situation at 0.57 GeV has not been examined
in Ref. [5]. Our feeling is that the p-exchange amplitude
will bring the same type of effects as at higher energies,
so that the asymmetry A,, which is correctly reproduced
with the KS model, will probably go to the undesirable
direction.

B. Iteration of the p-exchange to all orders

From the above considerations, it seemed to us neces-
sary to investigate the p-exchange contribution within a
more satisfactory approach where the p is iterated to all
orders in the three-body equations, as it is the case for
the pion. So, we define for example the Zya Born term
as

ZNa = ZR{a+ Z{p, (28)

where Z7; , is the usual three-body driving term for one-
pion exchange, and Z% , is the driving term for the p
exchange. The Zan and Zaa Born terms will be defined
similarly (and eventually Zyn, but we have observed
that the p contribution to this term could be neglected in
the first approximation). The method to calculate Z% 5
can be found in Ref. [18].

We now describe which parameters we have used in the
practical calculation. For the pN N vertex, we choose the
same description as in Ref. [3]. The coupling constant is
defined as

gT

where gV and g7 are the vector and tensor coupling con-
stants, respectively. We take the values (¢g")%/4m = 0.5,
and g7 /gV = 6.6, which correspond to the strong pPNN
coupling. The cutoff form factor is

A2 _ 2\ V2
fp) = (FTT:%) ; (30)

with the cutoff mass A=1650 MeV. We recall here that
these values have been chosen (together with the param-
eters of other heavy mesonsP in order to reproduce the
NN D, phase shift up to T2 ~ 1 GeV (see Ref. [3] for
more details).

For the pNA coupling, we take the SU(4) quark cou-
pling modified by a symmetry breaking factor b:

72
goNa = b4/ 5= goN N, (31)

with b=1.2 (see Ref. [14]). The cutoff form factor is the
same as for the pNN vertex.

Note that the f coupling constants used in Ref. [5] are
related to the g as follows:

2 2
2 _ 9NN ((Mp
Fonn = =47 (2mN)
(32)
Fiun = Jona ™M
AN A 47 4mNmA ’

Using the above values for the g coupling constants, and
taking for the masses m,= 776 MeV, my= 938.9 MeV
and ma=1232 MeV, we obtain fZyy = 4.9, fiya =
15.6, which gives fonnfona = 8.8 and fona/fonn =
1.8.

We show in Fig. 7 the results for the integrated differ-
ential cross section and production asymmetry at 0.57,
0.81, and 1.01 GeV. The basic model is TOA, which is
given by dashed lines (already shown in Fig. 1 as solid
lines). Adding the p-exchange contribution leads to the
solid line curves in Fig. 7. Since it is known that the p
contribution reduces the effect of the pion exchange, our
result for the differential cross section is an expected one,
and the agreement with the data still remains acceptable
[Fig. 7(a)]. Concerning the asymmetry A,, the descrip-
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FIG. 7. (a) Integrated differential cross section and (b)
production asymmetry A, for the NN — NA reaction, calcu-
lated at TR® = 0.57, 0.81, and 1.01 GeV with the TOA model,
with (solid line) or without (dashed line) the p-exchange con-
tribution.
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FIG. 8. (a) Integrated spin correlations P,p1; and (b)
Py, p33 for the NN — NA reaction at Th®=0.57, 0.81, and
1.01 GeV. Same legend as in Fig. 7.

tion of the data at 0.57 GeV is considerably improved
when the p contribution is taken into account [Fig. 7(b)].
At higher energies, even if this contribution goes in the
right direction, the results still remain in disagreement
with the ZGS data. To understand the cause of this
trouble, it is useful to decompose the asymmetry into
P,p11 and P,p33 as done in the previous section. This is
shown in Fig. 8. Then we see a remarkable improvement
in Pyp;; after including the p exchange. However, the
P, p33 spin correlation has changed very little: it does not
turn to negative values at 0.81 GeV and above, which is
responsible for the undesirable situation for A,. We note
that changing the strength of the p essentially affects the
magnitude of the differential cross section, but the spin
observables are much less sensitive to it. We can thus
conclude that the origin of the trouble in reproducing
the beam asymmetry A, is most probably not only due
to the short range part of the NN-NA interaction.

V. ANALYSIS IN TERMS OF AMPLITUDES

In this section, we analyze which NN — NA ampli-
tudes are controlling the observables, in order to better

understand the asymmetry problem. All results shown
in Secs. III and IV have been obtained as described in
Sec. IIC, with all partial waves included up to J = 9
in the expansions leading to the transition matrix in the
helicity frame [Egs. 11) and (13)]. In practice, we have
found that retaining all contributions up to J = 5 was
sufficient to achieve convergence of the observables. The
corresponding NN — NA amplitudes are the following
[we use the standard terminology 2Z*1(1);, with [, %, J
defined in Sec. IT A):

180 — °Dy,

3Py — 3Py,

Spp— 3P, 5P, [PFY),
3P2—-> 3P2 , 5P2, [3F2 , 5F2],
1Dy — 58, 3Dy, Dy, [5G2],
3, — 3Py, 5P, , 3F, [5F2],
3F3— 5Py, 3F3, [°F3, 5H3),
SFy— 3Fy, 5Fy, [3H,, 5Hy),
gy — ®Dy, [3Gy, 5G4, °L4],
3H4—-> 3F4, 5F4 , [3H4, 5H4],
SHy — 5Fs, [3Hs , °Hs , 5Js).

Now, it is interesting to select among the above 37
amplitudes the dominant ones. We consider the quantity
V2J +1 |T{ n_ nal, which takes on its maximum value
in the 3F3 — 5P; amplitude for the TOA model at T/¢®
= 0.81 GeV. So, we characterize the degree of dominance
of each amplitude by the ratio

Rin_na=V2T+1|[Tin_nal/VT | Tspmsp,|.  (33)

We give in Fig. 9 the bar chart (empty bars) of R’
for the dominant amplitudes, namely those which have
R’ > 0.06. This condition eliminates the amplitudes

FIG. 9.
[Eq. (33)] at TRP=0.81 GeV. The TOA model is used, without
(empty bars) or with (dashed bars) the p contribution.

Bar chart for the dominant quantities Rin_ na
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TABLE I. Dominant NN — NA amplitudes at TR® =
0.81 GeV. The TOA model is used, with or without the
p-exchange contribution. The numbers 1, 2, etc. ... point
out the most dominant amplitudes, in decreasing order of
magnitude.

NN — NA
ISO—> 5D0
3Py — 3P,
3p— 3p; 4
3P1 - 5P1 .
3p, — 3P

3P2 b d 5P2

1Dy — 58, 2 10
1D, —» 3D,
1Dy — 5Dy

3Fy — 3P, 5
3F, — 5P 6
3F2 — 3F2 ..
3F; — 5P 1 1
3F; — 3F; ..
3Fy — 3Fy

3Fy — 5Fy

1G4 b d 5D4 3 3

TOA TOA+p-ex.

O RlIND

Lot

3H4-—) 3F4
3Hy — 5F4

SHs — S5F;s 8 8

shown in brackets in the above list, leading to the 20 am-
plitudes listed in the first column of Table I. Among these
20 amplitudes, 8 of them clearly appear as dominant on
Fig. 9. They are numbered from 1 to 8 in decreasing or-
der of magnitude in the second column of Table I. This
dominance is illustrated in Fig. 10 where we compare
the integrated differential cross section and asymmetry
parameter calculated at 0.81 GeV with the full set of
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FIG. 10. Integrated differential cross section and produc-
tion asymmetry A, for the NN — NA reaction, calculated
at Th=0.81 GeV with the TOA model. The retained ampli-
tudes are full set (solid line), 20 dominant amplitudes from
first column in Table I (dashed line), and 8 dominant ampli-
tudes from second column in Table I (dotted line).

amplitudes (up to J = 9, solid line curves), and with
the sets of 20 (dashed line) and 8 (dotted line) dominant
amplitudes. We see that the set of 8 amplitudes gives
effectively the dominant contribution to the observables.
It should be noted that (i) the very peripheral amplitudes
1G4 — 5D4 and 3Hs — 5F; must be included in order
to obtain the correct magnitude for the cross section, but
they have a negligible effect on the polarization parame-
ters, and (ii) the purely central J = 0 amplitudes have a
negligible contribution to the cross section and a rather
small effect on the polarizations.

Similar conclusions hold for the amplitudes where
the p-exchange contribution is included as described in
Sec. IVB. Applying the same criterion as before for se-
lecting the dominant amplitudes, we find the same 20
amplitudes as above (see first column in Table I), only
the magnitudes (and eventually the signs) of the real and
imaginary parts are changed, depending on the ampli-
tude (this point is examined later). The “global” changes
due to the p exchange are shown in Fig. 9 where we
have plotted the clustered bar chart for the corresponding
quantities R’ (dashed bars). Comparing with the val-
ues calculated without the p contribution (empty bars),
we see that the p exchange lowers the 8 dominant am-
plitudes defined above in the second column of Table I,
especially ! Dy, — 58,, while 3P; — 3P, and 3P, — 3P,
are strongly enhanced up to rank among the dominant
amplitudes. So, we have now the 10 dominant amplitudes
numbered from 1 to 10 (in decreasing order of magnitude)
in the third column of Table I. We give in Fig. 11 the in-
tegrated cross section and asymmetry calculated at 0.81
GeV with the full set of amplitudes (solid line curves),
and with the sets of 20 (dashed line), 10 (dash-dotted
line), or 8 (dotted line) dominant amplitudes. The ef-
fects due to the 3P, — 5P, and 8P, — 3P, partial waves
appear clearly by comparing the dotted and dash-dotted
curves. In particular, we note the change in the structure
of A, (as we will see later, this is due to the 3P, — 5P,
amplitude).

Now that we have selected the dominant amplitudes,
we examine to which of them the observables are espe-
cially sensitive. To achieve this aim, we compare in de-
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FIG. 11. The same as in Fig. 10, but the p contribution
is included. The dash-dotted curves correspond to the set of
10 dominant amplitudes from third column of Table I. The
legend for the other curves is the same as in Fig. 10.
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tail the results obtained with and without the p-exchange
contribution. The differences on the observables have
been already shown in Sec. IV B, Figs. 7 and 8. We first
consider the cross section do which is controlled by the
square moduli of amplitudes. Looking back to Fig. 9, it
is clear that the lowering of do when the p exchange is
introduced is due to the systematic decrease observed on
the 8 dominant amplitudes defined above. In fact, this
decrease comes mostly from 3P, — 3P, 1D, — 58,,
and 3F; — 5P;, and it is only partially compensated by
the strong enhancement in 3P, — 5P, and 3P, — 3P,
Next, we consider the polarization observables, namely
the asymmetry A, and its two components Pyp;; and
P,p33. As we have seen in Fig. 8, the p contribution
improves significantly the description of P,p;; at 0.81
GeV, but has little effect on P, ps3 which remains essen-
tially positive, and the resulting A, is slightly improved
as already shown in Fig. 7. As the polarization observ-
ables are sensitive to the relative phases of amplitudes,
these differences must be analyzed by comparing the real
and imaginary parts of the dominant amplitudes calcu-
lated with and without the p exchange. The correspond-
ing bar chart for the 10 dominant amplitudes defined in
Table I (third column) is given in Fig. 12, where we have
added the J = 0 amplitudes, namely 1Sy — 5Dy and
3Py — 3P,. As expected, the p-exchange contribution is
important in the J < 2 central partial waves. We note
that for J = 0, even if the p contribution is large in rel-
ative value (especially in the 3Py — 3P, channel), the
effect on the observables is small since these amplitudes
are far from being dominant. The most spectacular ef-
fects due to the p contribution appear on the 3P; — 3Py,

-

1 1 1 1 1

-10 -08 -06 -04 -02 00 02 04 06 08 10
Re,Im(\/2J+1 TY)
FIG. 12. Bar chart for the real and imaginary parts of

the quantities V27 + 1 Ty na 8t THeP=0.81 GeV with the
TOA model. The legend is real part without (empty bars) or
with (black bars) the p contribution, imaginary part without
(dashed bars) or with (dark dashed bars) the p contribution.
All quantities are normalized to v/7 Re(Ts Fa— 5P, ), calculated
without the p contribution.

8P, —» 5P,,3P, — 3P, and 1D, — 58, amplitudes. We
note in particular (i) the strong decrease of the imaginary
part of 3P; — 3Py, (ii) the large increase together with
the change of sign in both the real and imaginary parts
of 3P; — 5Py, and (iii) the large increase of the real and
imaginary parts of 3P, — 3P, together with the change
of sign of the real part. By checking the individual effect
of these last three amplitudes on the polarization observ-
ables, no significant change was observed in P,p33, and
the 3P, — 5P, alone was found to be responsible for the
considerable improvement observed in P, p;;.

We point out that the same type of investigation has
been done at 0.57 GeV, leading to similar conclusions.
We now summarize what emerges from the above discus-
sion:

(i) The NN — NA observables are controlled by a
limited number of amplitudes (~ 10), ranging from cen-
tral up to peripheral J values,

(ii) The peripheral amplitudes are needed to obtain
the correct magnitude of the cross section as energy in-
creases, but have little effect on the polarizations,

(iii) The short-range contribution simulated by the p
exchange affects significantly the central amplitudes, but
the corresponding effects on the polarization parameters
are moderate. In particular, the P, p33 spin correlation is
quite insensitive to the various models investigated. The
only sensitive quantity is P,p11 whose shape appears to
be controlled by the 3P; — ®P; central amplitude alone.

Of course, these conclusions are valid within the frame-
work of our model, and they cannot be taken as definitive,
especially regarding point (iii). Certainly, the polariza-
tion parameters must be sensitive to other amplitudes
besides 3P; — 5P;. In particular, the 3F; — 5P; ampli-
tude, which is dominant at 0.81 GeV, is expected to play
an important role in the construction of the polarization
observables at this energy. This can be demonstrated in
the following way. At first, we turn off its contribution in
the calculation of the observables at 0.81 GeV (the TOA
model is used, without the p contribution). The results
are shown in Fig. 13 (dashed line curves) and compared
with the full calculation (solid line). Of course, the dif-
ferential cross section is lowered, but the most spectac-
ular effect appears on A, which becomes negative with
a large and broad minimum around cosfa = 0, in line
with the experimental data. This is due to the combined
effects on P, p1; and Pyp33 which are both negative in the
whole angular range, as shown in Fig. 13. The problem
is that Pyp11 is now in complete disagreement with the
data, while Pyps3 is reasonably reproduced. Next, we
have arbitrarily modified the 3F3 — 5P; contribution,
in order to get intermediate results between the full line
and dashed line curves of Fig. 13. We have found that
this was possible by lowering the real part together with
increasing the imaginary part of this amplitude. As an
example, we show in Fig. 13 the results when the real
part is multiplied by 0.5 and the imaginary part by 1.5
(dotted line): Pypi; is in line with the data, Pyps3 starts
small positive and has a broad negative minimum which
is shifted and too high compared to the data, and A, is
in qualitative agreement with the data. The interesting
point is that the shape of P,p33 appears to be controlled
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FIG. 13. Integrated differential cross section, production
asymmetry Ay, and spin correlations Pyp11 and Pyp33 for
the NN — NA reaction, calculated at TR?=0.81 GeV with
the TOA model, without the p contribution. The full set of
amplitudes is used (solid line), the 3Fy — 5P amplitude is
omitted (dashed line), the real part of 3 F3 — 5P; is arbitrar-
ily multiplied by 0.5 and the imaginary part by 1.5 (dotted
line).

by the relative magnitude of the real and imaginary parts
of the 3F3 — 3P; amplitude. We point out that none of
the other dominant amplitudes was found able to induce
a negative minimum in P, p33 when arbitrarily modifying
its real and imaginary parts.

VI. CONCLUSION

In this paper, we have studied the NN — N A reaction
within the unitary three-body approach which was suc-
cessfully used in previous works to describe the TN N sys-
tem. This investigation confirms our findings in Ref. [4]
that a two-potential description of the P33 mIN channel,
combined with the backward propagating pion contribu-
tion, is better than the usual one-term A-isobar model.
The global agreement of our results with the available Ar-
gonne ZGS data at TP = 0.57, 0.81, and 1.01 GeV is
rather satisfactory. Our results for the integrated differ-
ential cross sections are in good agreement with the data
at the three considered energies. The main problem con-
cerns the integrated asymmetry A, which is consistent
with the data only at 0.57 GeV. At higher energies, the
theoretical model is unable to reproduce the broad neg-
ative minimum observed in the data around cosfa = 0.

Our attempt to improve this situation by introducing
the short-range effects arising from the p-exchange con-
tribution can be considered as partially successful. The
helicity 1/2 component of Ay, namely Pypii, is remark-
ably improved at the three energies, but the helicity 3/2
part Pyps3 is quite insensitive to the p contribution. The

resulting A, is considerably improved at 0.57 GeV, but
the discrepancy with the data still remains at higher en-
ergies, even if a slight improvement is observed.

The asymmetry problem at high energy is directly re-
lated to the fact that none of the used models (even in-
cluding the p contribution) is able to describe Pyp33. The
difficulty in determining which NN — NA amplitudes
are responsible for this situation is that the construc-
tion of the observables involves both central and periph-
eral contributions. However, we have identified a limited
number of dominant amplitudes, and we have shown that
two of them play an important role in the polarization
sector, namely the central 3P; — 5P; and the periph-
eral 3F3 — %P;. The 3P; — 5P, amplitude controls the
Py p11 spin correlation. This effect was observed by intro-
ducing the p contribution which has a strong influence on
this central wave. The 3F3 — 5P3; amplitude appears to
be responsible for the incorrect description of P,p33, and
thus of Ay, at 0.81 GeV. This was clearly demonstrated
by modifying “by hand” the real and imaginary parts of
this amplitude. The problem is that none of the models
investigated is able to bring such variations in this ampli-
tude, in particular the p contribution has no significant
effect on this peripheral wave.

The deficiency of the model to reproduce the change
from a broad positive maximum to a broad negative min-
imum observed in the Pyp33 experimental data as en-
ergy increases is certainly associated with the spin-triplet
problem already encountered in the NN elastic sector
(namely the lack of inelasticity in the 3F3 channel for
T,‘{}b > 700 MeV). Now, the question arises that maybe
some fundamental mechanism is missing in the three-
body approach. One possible mechanism is the direct
NA interaction between the nucleon and the A isobar.
Recently, Alexandrou and Blankleider [19], and Pefia et
al. [20] have investigated the effects of such an inter-
action on the observables of the n NN system. Even
if the description of the instantaneous NA potential is
done differently, the conclusions of the two groups are
similar. In general, strong effects are observed on the
wIN N observables in the intermediate energy range. Nev-
ertheless, the NN 3F3 inelasticity is not improved. In
the NN — NA sector, the interesting point is that the
change in the structure of A, observed experimentally
when energy increases is induced by the NA potential.
However, the agreement with the data at Th3°=0.81 GeV
remains qualitative (see Fig. 14 in Ref. [20]). Obviously,
further investigations are needed to have a better control
over this mechanism, in particular to find a procedure
for determining the parameters of the NA interaction.
In our opinion, this is a promising direction for further
studies in the near future.
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