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Three-quasiparticle states analysis in odd-mass lead isotopes
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Three quasiparticle excitations for odd-even lead isotopes in the mass region 197~ A ~ 203 are calcu-
lated using a realistic two-body interaction. The analysis is performed in a correlated basis constructed

by the tensor product of one times two quasiparticle states. Good agreement with available experimen-

tal data is found. The one phonon approximation of the weak coupling model is also analyzed.

PACS number(sj: 21.60.—n, 21.60.Jz, 27.80.+w

I. INTRODUCTION

In the last years the level schemes of neutron-deficient
odd-mass lead isotopes have been investigated up to high
spin excitations and for many holes outside the magic
core of Pb [1—9]. The three-quasiparticle (3qp) states
have been analyzed mainly within the framework of the
Tamm-Dancoff approximation (TDA) [10] using a sur-
face delta interaction with pairing subtraction [11]. Some
of the levels in individual isotopes could thus be de-
scribed [1—5], but a complete calculation of 3qp states
with a single set of parameters in all lead isotopes has not
been achieved so far. The main difficulty that one faces
in these microscopic calculations is related to the dimen-
sions of the TDA matrices, which hinder the application
of the formalism beyond a few particles outside the core.
This can be overcome by using the BCS approximation,
but then one violates the number of particle conservation
symmetry and spurious states appear by using the TDA
formalism. To deal with this problem, in Ref. [12] a gen-
eralization of the multistep shell-model method [13] was
presented. Within this generalization the spurious state
is decoupled from the rest of the spectrum by calculating
two-quasiparticle states by means of the quasirandom
phase approximation (QRPA). The spurious state is easi-
ly recognized because it is a state 0+ with energy
co(0,+)=0. After the two-quasiparticle states have thus
been calculated one proceeds to calculate systems with an
increasing number of quasiparticles in several steps. The
method was thus called [12] the quasiparticle multistep
shell-model method (QMSM). Within the QMSM a good
description of four-quasiparticle excitations has been ob-
tained for even-even lead isotopes [12].

The aim of this paper is to extend the QMSM to the
case of 3qp excitations. All parameters entering the cal-
culation will be taken from the previously calculated
even-even nuclei. Thus a unified description of lead iso-
topes is intended.
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The formalism is presented in Sec. II, applications are
in Sec. III, and a summary and conclusions are in Sec.
IV.

II. FORMALISM

~a, & =r+(a, ) ~0&,

I'+(a3)= QX(ia2;a3)[a,+I +(a2)]
E CX2

where

(a+a+).
I +(a~)= g X(ij;a2)

g(1+5;~ )

(2.1a)

(2.1b)

(2.1c)

We use the same symbol (X) for the two- and three-
quasiparticle amplitudes. But the arguments clearly indi-
cate which systems are involved and no confusion should

Within the QMSM one solves a many-quasiparticle
system in several steps. Starting with a general two-body
interaction one writes the Hamiltonian in a quasiparticle
representation by using the Bogoliubov transformation.
One then evaluates the quasiparticle energies and BCS
occupation probabilities by requiring an average number
of particle conservation and the condition H2o=0, as
usual. In the next step one calculates two-quasiparticle
states by means of the QRPA. The spurious state 0+,
which appears as a result of the breaking of the particle
number gauge syrnrnetry, is decoupled from the rest of
the spectrum just by neglecting it when building the
QMSM bases for more complex excitations. The two-
quasiparticle states thus evaluated are used to construct
correlated bases for systems with more quasiparticles.
The calculated quantities corresponding to those systems
are, in turn, used to calculate more complex systems.
One can say that at each step of the QMSM procedure
one constructs building blocks to be used in the following
steps. A detailed presentation of the method can be
found in Ref. [12], where two- and four-quasiparticle
states in the lead region were studied.

In our 3qp case we build the QMSM basis as the tensor
product of one times 2qp states, i.e.,
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arise from this coincidence. The backward-going ampli-
tudes in the QRPA 2qp states are very small in compar-
ison with the forward-going amplitudes [12], except for
the spurious state 0&+ which we exclude from the calcula-
tion. Therefore we neglect the backward-going ampli-
tudes, and the normalization of the states is performed
according to the TDA metric,

(2.1d)

F(iaz', a3) = (a3~ [a,+. I +(a2)] ~0) . (2.2)

The angle 0 between the calculated state ~a3) and the
basis vectors can be defined by

F(ia~;a3)
cosO=

N(ia2 a3)

where N is the norm of the basis vector, i.e.,

(2.3)

N (ia,;a, )=(0~[a,+1+(a,)] [a,+I +(a2)] ~0) .

(2.4)

The quantities cosO play the same role as the wave-
function amplitudes in an orthonormal basis. They speci-
fy the structure of the calculated physical states

~ a3 ) .
The dynamical equations for the 3qp excitations can be

derived by using the graphical procedure described in

In an overcomplete basis the wave-function amplitudes
are not well-defined quantities. But the projections of
basis vectors on the physical state are well defined in all
cases. In our 3qp case that projection is

FIG. 1. Graphical representation of (a) the Hamiltonian ma-
trix and (b) the overlap matrix corresponding to the three-
quasiparticle system. The double bar vertex represents the
quantity A(ik;P2) in Eq. (2.5), the one bar vertex represents the
projection F [as in Eq. (2.2)], the crossed circle vertex is the
wave function amplitude X which, in this case of two-
quasiparticle excitations (where the basis is orthonormal), coin-
cides with the one bar vertex.

Ref. [11]. Even the overlap matrix among the basis vec-
tors can be evaluated using that procedure. In our case
the graphs corresponding to the dynamical and overlap
matrices are very similar to each other, as seen in Fig. 1.
The only difference is that the double bar vertex from
Fig. 1(a), which has the value [11]

A(ik;p2) = [co(p~) E; Ek ]X(ik—;p2)—, (2.5)

is replaced in Fig. 1(b) by the one bar vertex, which is just
X(ik;p2). From Fig. 1(a) one can write the dynamical
equation as

M( 3a) F(i a,
' 2a)3=[E; +co(a2)]F(ia2', a3)+ g g [co(p2) E; Ek]~—(ia2 J—p2'k)F(jp2 a3)

JP, k

where, with standard notations,

i k p2
A (ia2,j p2;k)=a2p2 ' . 'x (kj;az)x (ki;P2)J Q3 CX2

and x (ij;a2 ) =+1+5;~X(ij;a2).
For the overlap matrix one obtains from Fig. 1(b) a similar expression

(0~[a,+r (P,)].' [a,+r+(a, )].~0) =S,,S.~+ y a(la, ;JP;k) .

(2.6)

(2.7)

(2.&)

One can see that the dynamical equation and the overlap
matrix for the 3qp excitations can be evaluated simul-
taneously. The QMSM building blocks contained in
these equations are the one- and two-quasiparticle quanti-
ties, which have been calculated in the previous steps of
the QMSM. In general, the blocks used in a given step
are assumed to be taken from previous steps of the calcu-
lation. The suitability of these blocks is assured by com-
paring with the corresponding experimental data. Even
more, one can often take the building blocks directly
from experiment. This "renormalization" of theoretical

values has long since been used with great success in
shell-model calculations [14,15].

III. NUMERICAL RESULTS AND DISCUSSIONS

The formalism presented above will be applied to cal-
culate 3qp states in odd-even lead isotopes. The two-
body interaction matrix elements were taken from Ref.
[16]with some suitable changes, as described in Ref. [12],
where it was found that in ' Pb a sudden deviation of the
predicted 2& and 4&+ energies appears. This was ascribed
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to the inhuence of the intruder two-particle —two-hole
proton excitations [12]. To avoid these complications we
present here only applications for odd-even isotopes with
A ~ 197.

In the first step we calculate the one-quasiparticle
states. For the single-particle energies we use the experi-
mental values given in Ref. [16]. The results for lqp en-
ergies are plotted in Fig. 2.

In the next step we calculate the 2qp states by means of
the QRPA as described in the preceding section. In par-
ticular, we neglect the backward-going components and
normalize according to the TDA metric. The calculated
spectra are in good agreement with experimental data, as
shown in Ref. [12].

With the one- and two-quasiparticle states thus calcu-
lated we proceed to calculate the 3qp excitations within
the QMSM basis (2.1). For this we evaluate the Hamil-
tonian matrix (2.6), which is not Hermitian, and the over-
lap matrix (2.8). We then use the Schmidt procedure to
construct an orthonormal basis and evaluate within this
basis the corresponding Hermitian dynamical matrix (for
details of this procedure see Ref. [12]). Since we make
approximations (like truncating the basis or neglecting
QMSM vectors with small norm, i.e., vectors that are
strongly suppressed by the Pauli principle), the dynami-
cal matrix in that orthonormal basis may not be exactly
Hermitian. We actually used this feature to check our
approximations. The departure from hermiticity of the
final dynamical matrix gives a measure of the adequacy of
our approximations. Usually the calculated vectors are
contained in very small QMSM subspaces. As we will
see, this is true even in the case of 3qp states. This not
only reduces the calculation efforts but also allows one to
compare with more intuitive methods, like the weak cou-
pling model.

In Fig. 3 we present the results of the calculation cor-
responding to high spin states in ' Pb for which there
are experimental data to compare with. To facilitate the
analysis we also present the spectra of adjacent even-even
isotopes. As seen in this figure the experimental spec-
trum is well reproduced by the calculation. The largest
deviations appear for the states 21/2 and 25/2+. The
state 21/2 is mainly a superposition of the QMSM basis
vectors 5 Si,3/Q and 12+ep3/2 The projections (cos8)
of the physical state with those two basis vectors are 1.22
(0.99) and 0.92 (0.92), respectively. We found that the
rather large energy difference between the calculated and
experimental level 2i/2 is due to the corresponding
difference for the level 5 in the adjacent even-even iso-
topes, as seen in Fig. 3. The two most important QMSM
basis vectors to describe the level 25/2+ are 6+@i/3/2
and 9 @f7/2 The projections of these states upon the
physical vector are 0.96 and 0.86, respectively. Since the
experimental value of the energy corresponding to the
state 6+ is not available, it is not clear how much this
two-quasiparticle state is responsible for the difference
between the calculated and experimental energies of the
state 25/2+ jn ' Pb. In spite of these differences, one
can say that the agreement between theory and experi-
ment in Fig. 3 is very good.

A similar agreement can be seen in Figs. 4—6 corre-
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FIG. 3. Experimental [6] and theoretical three-quasiparticle
states in ' Pb. The experimental [17] and calculated levels cor-
responding to ' Pb and ' Pb are also given. In ' Pb spins are
doubled and energies are referred to the single quasiparticle
state i &3//2.

FIG. 2. One-quasiparticle energies in odd-even lead isotopes.
Full lines are the calculated levels. Experimental data are from
Refs. [6—9].
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FIG. 6. As Fig. 3 for Pb. Experimental data are from
Refs. [9] and [17].
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FIG. 5. As in Fig. 4 for 'Pb. Experimental data are from
Refs. [g] and [17].

sponding to the nuclei ' Pb— Pb. The differences be-
tween theory and experiment in Figs. 4—6 are about the
same as in Fig. 3 and the causes of these differences are
also the same.

To have a clear view of the general trends followed by
the energy levels in odd lead isotopes, we present in Fig. 7
the theoretical and experimental energies as a function of
the mass number A. The tendencies of the levels shown
in Fig. 7 are similar to that corresponding to 2qp states,
as seen in Fig. 8, indicating that the structure of the 3qp
states is similar to the one corresponding to 2qp states.
This can be understood by noting that high spin states
are recombinations of a few single quasiparticle states.
Thus, the states 29/2+ and 33/2+ in Fig. 7(a) have both
the simple shell-model structure (i»&z) and, therefore,
in the corresponding QMSM description the states 10,+

and 12&+ play a fundamental role. Similarly the groups of
levels (15/2, 17/2+), (19/2+, 21/2+), and
(23/3, 25/2, 27/2 ) are dominated by the QMSM
basis vectors 2+(3i,3/2 4 i/3/2 and 7 i&3/2 respec-
tively. Even more, as we mentioned before, the basis
state 5 i &3/2 determines the behavior of the level
21/2, which explains the similarities among these levels
and the levels 5 in Figs. 7 and 8, respectively. This
feature is repeated in all cases where there are similarities
in the tendencies of Figs. 7 and 8.

The overcompleteness of the QMSM basis can be illus-
trated by the level 29/2 which is a superposition of two
almost parallel basis vectors, 9 I', 3/p and 12+f5&2.
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Since the levels 7 and 9 have the same shell-model
structure their behavior is the same as the one corre-
sponding to the states 29/2, as also can be seen in Figs.
7 and 8.

Because the first 2+ state is well separated from other
states, one expects, according to the weak coupling mod-
el, to identify a multiplet structure in this region. In Fig.
9 we present the multiplet 2+ @i &3/p in ' Pb calculated
within different QMSM subspaces. One sees in Fig. 9
that a large splitting among the constituents of the multi-
plet develops as the dimension of the QMSM subspace in-
creases. Moreover, in the calculation performed within
the large QMSM basis one notices that the vector
p&~~@5 is important to describe the state 13/2 in Fig.
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FIG. 8. (a) Theoretical 2qp energies in even-even lead iso-
topes as a function of the mass number A. (b) Experimental
[23] low-lying energies in even-even lead isotopes as a function
of the mass number A.
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FIG. 7. (a) Yrast high spin 3qp states calculated in odd-even
lead isotopes as a function of the mass number A and (b) the
corresponding experimental values [6—9]. Spins are doubled and
energies are referred to the states i&3/g.

FIG. 9. The multiplet (2+@i&3/p) in ' Pb corresponding to (a)
zeroth-order QMSM basis vector, (b) QMSM calculation in a
one-dimensional basis, and (c) QMSM calculation within a 40-
dimensional basis. In (d) the experimental energies [6] are
given. The numbers attached to the lines joining the main com-
ponents of the physical vectors are the values of cosO. The ener-
gies are referred to i~3/p and the spins are doubled.
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9. In particular the energy of the state 13/2+ is lowered
due to the inhuence of that basis vector.

As another example we show in Fig. 10 the multiplet
2 Is fz&z in Pb [9]. In this case the one vector approx-
imation implied by the weak coupling model reproduces
rather poorly the experimental data. It is worth pointing
out that for the states 1/2 and 9/2 the QMSM basis
vector 2+ f5&z has small norms (0.77 and 0.62, respec-
tively) as expected from the structure of the states 2,+

shown in Fig. 11. As a result the state 1/2 in Fig. 10
has the largest projection with the QMSM vector
2 (3)p3/p in contradiction with the weak coupling model.

We have also verified that the convergence of the
QMSM calculation as the dimensions are increased is
good. Thus including only the two or three basis vectors
with the largest overlaps with the physical state, one ob-
tains virtually the same results as those with full dimen-
sions.

IV. SUMMARY AND CONCLUSIONS

In this paper we have analyzed three-quasiparticle ex-
citations in the odd-mass lead isotopes 197& 3 &203
within the framework of a quasiparticle rnultistep shell-
model method (QMSM). In the first step of the calcula-
tion one evaluates the quasiparticle quantities (e.g., occu-
pation probabilities) starting with a "realistic" [16] in-
teraction. In the second step one calculates two-
quasiparticle excitations by using a quasiparticle RPA.
One thus isolates the spurious 0+ state that appears as a
result of the breaking of the number of particles (gauge)
symmetry. In the last step of the calculation the QMSM
basis vectors are constructed as the tensor product of one
times two-quasiparticle states. The spuriosity mentioned
above is avoided by excluding the 0,+ two-quasiparticle
state in the basis while the violations of the Pauli princi-
ple as well as the overcounting of independent states are
corrected by evaluating the overlap matrix among the

FIG. 11. The wave function amplitudes for the states 2I+ in
even-even lead isotopes as a function of mass number A. Only
amplitudes in absolute value larger than 0.2 are plotted.

basis vectors. Since the backward-going QRPA ampli-
tudes are negligible we exclude them from our calcula-
tion. As a result our three-quasiparticle formalism is of a
TDA form, i.e., the metric is the normal geometrical
metric. This allows us to define "angles" among vectors,
in particular the angle 0 between the physical vector and
a given QMSM basis vector. The value of cos8 is the
equivalent of the wave-function amplitude in a formalism
that uses orthonormal basis (like the standard shell mod-
el).

The results of the calculation agree well with the corre-
sponding experimental data. We found that usually only
few QMSM basis vectors are important to describe the
physical states. In most cases only one basis vector is
enough to describe reasonably well the yrast states. This
explains the similarities between the yrast spectra of two-
and three-quasiparticle levels found in lead isotopes.

For the isotopes ' Pb and Pb we have presented the
evolution of the states belonging to the rnultiplets
(2i+sii3/p) and (2i f5&z) as a function of the basis di-
mension. We found that the members of these multiplets
are often strongly mixed with other QMSM components
thus limiting the validity of the weak coupling model.

This work completes the QMSM analysis of two- and
four-quasiparticle excitations in lead isotopes started in
Ref. [11]. We thus hope to have accomplished a unified
QMSM description of even-even and odd-even lead iso-
topes, in which the states calculated in a given nucleus
are building blocks for the calculation of other nuclei.
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