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The two-nucleon phase shifts and deuteron properties are fitted using relativistic, (m +p')'
kinetic-energy operators to obtain realistic models of v;j, the two-nucleon interaction in the frame in
which the total momentum P;j of the interacting pair is zero. The relativistic Hamiltonian Hz contains
the relativistic kinetic energy, v;, , and 5v'j(P j) which describes the dependence of the interaction on the
total momentum of the pair. The 5v;j(P;j) are obtained from the 0;, using relativistic mechanics. The
ground states of 'H and He are calculated using the HR with the variational Monte Carlo method, and
the results are compared with those obtained using the nonrelativistic HNR. Results of calculations in-

cluding the three-nucleon interaction are also reported. The relativistic effects reduce the binding ener-
gies of H and He by -0.34 and 2.02 MeV, and they do not change the momentum distribution of the
nucleons in these nuclei significantly.

PACS number(s): 21.45.+v, 27.10.+h, 21.60.—h

I. INTRODUCTION

The ground-state properties of nuclei, nuclear, and
neutron star matter have often been studied with nonrela-
tivistic quantum mechanics (NRQM) using the Hamil-
tonian

Pl
HNR —g + g Ui+ g Vik

i i&j i&j &k2m

NRQM calculations of nuclear binding energies are pos-
sible, with errors ( 10%, with the Brueckner-Bethe-
Cxoldstone method, by going beyond two-hole-line terms
[1,2] and by the more recently developed variational
methods [3—5]. Exact calculations have also been carried
out with the Green's-function Monte Carlo method [6,7]
for nuclei having A ~ 5 and for the triton with the Fad-
deev method [8—10].

Realistic models of the two-nucleon interaction v; are
obtained by fitting the N-N scattering data with NRQM.
Several realistic models of v," give rather similar results;
without any Vjk, H and He are underbound and the
equilibrium density of nuclear matter is too large. These
difBculties can be mostly eliminated by using a three-
nucleon interaction V;k that has an attractive, long-
range, two-pion-exchange part VJk and a repulsive
shorter-range part Vjk. The strengths of Vjk and VJk
are obtained by fitting the binding energies of 3H and He
and the saturation properties of nuclear matter [3,5].
Typically, the contribution of V; k is -3%%uo of that of u,

in H and "He; however, because of a large cancellation
between the kinetic and interaction energies, it is —15%
of the total binding energy.

+
i&j &k

pj1=Pl +Pj

PlJk =Pl+PJ+Pk .

(1.2)

(1.3)

(1.4)

The average value of p /m in nuclei is —0.05, and
thus it is possible that relativistic corrections to their
binding energies are comparable with the contributions of
V; k. The relativistic dynamics of interacting composite
objects, such as nucleons, is nontrivial, and two different
approaches have been used to study relativistic effects in
nuclear binding energies.

In the first approach, the nucleons are described by
Dirac spinors, which interact via exchange of observed
mesons and "effective bosons". The theory is patterned
after quantum electrodynamics and is elegantly relativist-
ically covariant. Its mean-field limit [11,12] is rather sim-
ple, and it can describe nuclear ground states with an ac-
curacy comparable to that of nonrelativistic mean-field
theories based on Skyrme models. Lowest-order Dirac-
Brueckner calculations [13—15] have also been carried
out for nuclear matter with realistic interaction models.
In this approach the antinucleon degrees of freedom, i.e.,
the lower components of the Dirac spinors, play an im-
portant role. Experimentally, however, there is no indi-
cation of a simple coupling of NN states to mesons or
photons. In QCD also the coupling N~N+ meson is
not trivially related to the NN —+ mesons.

The other approach is based on the work of Bakamjian
and Thomas [16] and Krajcik and Foldy [17]on relativis-
tic dynamics. The Hamiltonian (1.1) is generalized to

H= g [(m +p, )'~ —m]+ g u(P;, )
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The interactions depend upon the total momentum of the
interacting particles and may be written as

v;.(P;, ) = v, +5v, (P;,. ),
Vv u(P;~g ) = V~jk+5V~k(P, ~k ),

(1.5)

(1.6)

where v, ("V; k ) is the interaction in the P; =0 (P, q =0)
"rest frame" and 5v;~(P;~ =0)=0 and AVE�(P;~k =0)=0.
The rest-frame interactions u," and V,"k can be deter-
mined by fitting the data, and relativistic covariance is
used to obtain the momentum-dependent parts 5v;~(P,")
and 5V,"&(P; k) from the v; and V,"k. If the antinucleon
degrees of freedom contribute to nuclear binding ener-
gies, then, in this approach, their contribution would
have to be included in v," and V,"k.

The relativistic corrections to the binding energies of
nuclear matter [18] and the triton [19]have been estimat-
ed by Coester and co-workers using this approach,
lowest-order Brueckner theory and the Faddeev method.
It appears that the variational and Green's-function
Monte Carlo methods can be effectively used to obtain
accurate or exact solutions for the ground states of the
relativistic Hamiltonian (1.2). In the present work, we re-
port variational Monte Carlo (VMC) studies of the bind-
ing energies of H and He with the relativistic Hamil-
tonian.

In Sec. II we describe a realistic model of v; obtained
by fitting the X-% phase shifts and deuteron properties
with the relativistic two-body Hamiltonian in the P12=0
frame:

H~ =2[(m +p )'~ m]+ v~—,

P1= P2=P .

(1.7)

(1.8)

Here v, is assumed to have the form of the Urbana [20]
v14 interaction. It has a one-pion-exchange long-range
part and a soft repulsive core of finite height.

Variational Monte Carlo calculations of H and He,
with the semirelativistic Hamiltonian

Hs„—= g[(m +p;)'~ —m]+ g v; + g V, k

(2.1)

where the operators O~j are

O~ " '=1, a; cr, S;, Ls, L

L o;cr, , (LS) (2.2)

(2.3)

and n =1, . . . , 7. Here S,. is the tensor operator, L the
relative angular momentum, and S the total spin of the
pair. It is convenient to use the letters c, w, o., o.~, t, t~, b,
b~, q, qv, qu, qo. v., bb, and bbv in referring to the terms
p =1—14, respectively. The occurrence of the first eight
operators in Eq. (2.1) is uniquely determined by the two-
nucleon singlet and triplet S- and P-wave phase shifts.
The I. -dependent terms differentiate S and D waves, and
P and F waves, while the (L.S) components provide a
third independent way (in addition to the S," and L S
operators) for splitting triplet states with different J
values, such as D12 3 states. It should be emphasized
that the last six operators are not uniquely identified.
The operator structure of v is identical to that of the Ur-
bana [20] and Argonne [21] potential models. However,
in the Paris [22] potential model, the last six operators
are replaced by four terms quadratic in p (p is the rela-
tive momentum of the pair) and two terms quadratic in
L.

The 14 operators in Eq. (2.1) provide sufhcient Aexibili-

ty to characterize the 14 singlet and triplet S-, P-, D-, and
F-wave phase shifts. The potential includes a long-range,
one-pion-exchange (OPE) part v~(r), which is nonzero
only for p =o.r and t7.. Here vp and vp ' are the
usual Yukawa and tensor functions modified by smooth
Gaussian cutoffs which make them vanish at r =0,

II. REALISTIC MODEL OF 8;J-

The two-nucleon interaction v,- is taken as a sum of 14
operator components:

i &j&k

(1.9) 3 4a pr
2

(1 —e '"
)

H~ —=HsR+ g 5v; (P, )+ g 5V;,k(Pp) .
i &j&k

(1.10)

Here 5v;, (P;, ) is expanded in powers of P; /4m, and
only the leading term of order PIJ /4m is kept. Its con-
tribution is calculated perturbatively; it is very small,
—1% of that of v,", and that of 5 V~ k(P; k ) is neglected.
The results are discussed and compared with those of
Ref. [19]in Sec. V.

are reported in Sec. III. The momentum distribution of
nucleons in H is also discussed in this section. Because
of the assumed soft-core nature of v;, the maximum
momentum of nucleons is —m, suggesting that the prob-
ability of P; being greater than m is negligibly small.

A pedagogical discussion of 5v;, (P;J ) based on classical
relativistic mechanics is given in Sec. IV. Note that the
relativistic Hamiltonian (1.2) is given by

=(3.635 MeV)Y (r), (2.4)

1+ + (1 —e '"
)

pr p2r 2

=—(3.635 MeV)T (r) . (2.5)

Vf(r)=I~T (r) . (2 6)

The Gaussian cutoff of v
' should simulate the effects due

to p-meson-exchange interactions [23]. The parameter c
is taken as 2 fm, while the coefficients in brackets are
calculated using f /4m=0. 079 and @=0.69953 fm
with Ac =197.327 MeV fm. The intermediate range part
Uf (r) is assumed to come mainly from two-pion-exchange
processes, such as those associated with the intermediate
excitation of a 6 isobar. As these have predominantly
tensor character, we have taken
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TABLE I. Potential strengths in singlet states (MeV) for the 0'i4 model.

S(, io

—8.663
0.080 33

3042.2
78.01

90.21
—32.12

—8.196
0.3926

5515.
—93.48

319.1
—1221.

—=S~~W, (r)+S~~W2(r) . (2.7}

The values used for R& (R&) and a& (az) are 0.5 (0.36)
and 0.2 (0.16) fm, respectively. These values as well as
that for c are the same as those used in the Urbana and
Argonne potentials. The parameters I, S&, and S2 are
determined by fitting the np phase shifts up to energies of
400 MeV in the laboratory and deuteron properties with
the relativistic two-body Hamiltonian (1.7). However,
rather than fitting the phase shifts obtained from the
analysis of nucleon-nucleon scattering data, we have
chosen to fit the phase shifts calculated with the nonrela-
tivistic Argonne v &4 interaction and the nonrelativistic ki-
netic energy.

We have attempted to make the present v, 4 phase-shift
equivalent to the Argonne v &4 NR, since our main interest
is to study the differences between the nuclear properties
predicted by nonrelativistic calculations with the Ar-
gonne v &4 N& and the present calculations using a relativ-

Finally, the short-range part is parametrized as a sum of
two Woods-Saxon functions,

S~i Ss'
us(r) = 2

(»
+

istic Hamiltonian based upon v, 4.
The potential operators in channels with isospin T and

spin S are denoted by vT&. In the S =0 singlet channels
and S = 1 triplet channels, we have

vTo= vTo +vToL

uT&
—uT&+vT&SJ+uT&L S+vT&L +uT&(L.S)

(2.8)

(2.9)

and

V T=su' Ts(r)+ITsT (r)+S', TsW, (r)

+S~ TSW2(r) . (2.10)

The other viz are also similarly expressed; however, the
tensor vTi does not have short-range terms, and only the-1

vT& and vT, have pion-exchange terms.
The strengths Ifs, S& Ts, and S2 Ts are determined

from the fits, and their values are listed in Tables I and II.
The values for I~, S~&, and S~2 used in Eqs. (2.6) and (2.7}
are easily obtained from these. Standard momentum-
space techniques are used to solve for the K matrix in the
JTS channel [24]:

+L', L(P ~P) vL', L(P ~P)+ y dk k uL', L"(P ik) 2 p )/p 2 p )/2 +L",L(klP)
7T 0 2(p'+m ')'"—2(k'+m')'" (2.11)

where P denotes principal value,

uL L(p', p)= f dr r jL (p'r)uL, L(r)jL(pr)

and

—JTS MJf MJ
vL', L( )= d& yL'sJvTsyLsJ

(2.12)

(2.13)

i' JHere the jL(x) are spherical Bessel functions and yLsJ are
spin-angle tensors. The K matrix is real and symmetric,
and is related to the on-shell S matrix via

ip(p +m )' K (pp)

[ 1 SJTs(pp) ][ 1 +SJTs(pp ) ] 1 (2 14)

in obvious matrix notation. The momentum p is given by
p =QmT„b/2, T„b being the kinetic energy in the labo-
ratory (this latter relation is identical to that in the non-
relativistic case). From the S matrix, the phase shifts are
easily obtained. The integral equation (2.11) is discre-
tized, and the resulting system of linear equations is
solved by direct numerical inversion. Care must be taken
to accurately calculate the Bessel transforms in Eq.
(2.12). The principal-value integration in Eq. (2.11) is el-
iminated by a standard subtraction technique [24]. A
similar method can be used to calculate the deuteron
momentum-space wave functions uL(p), L =0,2. They
satisfy the homogeneous integral equation

TABLE II. Potential strengths in triplet states (MeV) for the v i4 model.

H, oi

C

b

q
bb

—6.682
0.6440
0.1042
0.7110

—0.9252

2882. 1

0
37.86

175.4
75.26

—866.6
0

14.58
—527.1

55.59

—4.452
—0.1409

0.2318
—0.2038
—0.002 418

2402.0
0

—52.22
—129.9

116.9

—1846.0
0

—3145.0
1148.0
846.9
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uL(p) = 1 2

2m +E„—2(p +m )'

X dk k Ul. l. (pk)ur (k),
p

(2.15)

and Ed is the deuteron eigenvalue.
As stated above, U, 4 has the same operator structure as

the Urbana and Argonne interactions, and is almost
phase-shift equivalent to the Argonne U&4 NR. There are
three differences between the UI4 and the Argonne U&4 NR.
First, the value for f in U, 4 is =2% smaller than that of
U&4 NR, second, as in the Urbana potential, we do not al-
low for short-range tensor components in u&4, namely,
S) T=S2 T=O for T=O and 1; third, the short-range
part is parametrized as a sum of Woods-Saxon functions
rather than a single one as in the Argonne U, 4 NR.

The U&4NR phases in singlet Sp P~ and 'D2 states
are almost exactly reproduced by the present U &4, as can
be seen in Figs. 1 —3. The central potentials U', p and Upp in
the S =0 states are compared with their nonrelativistic
counterparts in Fig. 4. The relativistic (R) and NR
vT& p are similar, though the R potentials have slightly
larger repulsive cores, and the U &p is also a little less at-
tractive than U;p NR ~ The wave functions can be bent
more easily when the relativistic kinetic-energy operator
is used in place of the nonrelativistic. Hence U', p has to be
more repulsive and less attractive than U &p NR to maintain
phase equivalence.

It is more dificult to compare the present U, 4 with the
Argonne v&4N~ in the S=1 triplet states because of
differences in the tensor forces. The phase shifts given by
these two models and the Urbana U &~ NR in S, P, and D
states are compared in Figs. 5 —14. The S =1, U and Ar-
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gonne U, 4 NR forces are not as phase equivalent as the
S =0 forces. Typically, the differences between the U and
Argonne v&4 zR phase shifts are smaller than those be-
tween the Urbana and Argonne NR potentials. The bind-
ing energies obtained with the Urbana and Argonne NR
models for H and He are not very different, and hence
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S = 1 states are compared in Figs. 15 —17. Here Uo, is
more attractive than the Argonne v o, NR, presumably be-
cause the tensor potential is weaker in the R interaction;
U o is positive as in the Urbana v, 4 NR, while that in the
Argonne U &4 NR is negative. This difference is also due to
that in the behavior of v o at small r.

The deuteron S- and D-wave functions are shown in
Fig. 1 8, and the momentum distributions are compared
in Fig. 19. The R deuteron n(k) has a minimum at
k=6. 8 fm '. The NR Urbana n(k) has a structure at
this value of k which gets developed into a minimum in
the R model. It is due to a diffraction minimum in the
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TABLE III. Deuteron properties and effective range parame-
ters.

Ed (MeV)
Q~ (fm )

gd
'a„(fm)
r„~ (fm)
'a„(fm)
'r„(fm)

U&4

—2.2249
0.289
0.0265
5.44
1.73

—23.67
2.81

V14 NR

—2.2250
0.286
0.0266
5.45
1.80

—23.67
2.77

models at low energies. The D state accounts for 6.43%
and 6.08% of the deuteron wave function in the R and
NR Argonne models, respectively.

III. VARIATIONAL MONTE CARLO CALCULATIONS

Variational Monte Carlo (MC) calculations with Hsa
[Eq. (1.9)] are analogous to those carried out with
NRQM [3,6]. The variational wave functions are of the
form

q. = 'sgF;, le), (3.1)

having a symmetrized product of correlation operators
F," operating on an antisymmetric, uncorrelated wave
function

l
@) . The expectation values of U; and V~ k are

calculated as in the NR calculations. The main difference
between Hs~ and H&~ is in the kinetic-energy operator.

Contrary to naive expectations, it is rather simple to
evaluate the expectation value of the square-root kinetic-
energy operator in coordinate space with the MC
method. The required expressions are obtained from the
identity

(%1[(p, +m )'~ —m]lV„) = lim (%1l(1 —expI —br[(p, +m )' —m]I )l+„) .
1

dr~0 47

The above expectation value is calculated using the free-particle imaginary-time propagator G (r):

(0'l
l exp[ —b~(p; +m )' ]l'0„)= fdR fdr';%1(R+r,')G(r';)%„(R),

where R is the 3 A-dimensional vector r„r2, . . . , r ~ denoting the positions of all the nucleons in the nucleus,

(3.2)

(3.3)

G(r)=G(r)= K~[m(r +b~ )'~ ],2' (r +br )
(3.4)

and ~ (x) is the modified Bessel function of order 2. Note that in the limit b,&~0 this G (r) does not become a 5 func-
tion as in the nonrelativistic theory. At small b, r, G (r) has a range of order I/m due to the nonlocality inherent in the
relativistic kinetic-energy operator. Using

fdr G (r}=exp( —m hw), (3.5}

the relativistic kinetic energy is found to be

T~ = lim g f dR f dr,'[ql~(R) —qlI(R+r, '. )]G(r,')%„(R) .
oh~

l

(3.6)

Here G(r) is singular at r =0 in the limit b,~~O; however, this singularity does not contribute to T~ since
[4'~(R) —4'&(R+r,'. )]~0 as r,'~0. The limit 5~~0 can be used to obtain

2

T~ = g fdR f dr,'[41(R)—%1(R+r,')], K~(mr, ')%(R) .2~'; r
(3.7)

It is useful to subtract the gradient and quadratic terms in the expansion of O'I about r,
' =0. The former give zero con-

tribution, and the quadratic terms give the nonrelativistic kinetic energy, so that
2

Tz —Tza= g fdRf dr,'[qltI(R)+r, '.V;@t&(R)+—,
' gr, '

V; +tI(R) —qlt&(R+r,')] Kz(mr, ')+(R) .2~'; r
(3.8)

This expression is very useful because it directly com-
putes the small difference between the relativistic and
nonrelativistic kinetic energies.

In the variational MC calculations [3,6] the Metropolis
algorithm is used to generate many thousands of
configurations Rl, I = 1, N, labels the configurations, dis-
tributed with the probability l'Pl(R)%„(R)l. The integral
over r'; is evaluated for each configuration. The radial in-

tegral over r,
' is estimated by sampling r,

' with probability
proportional to r,

' Kz(mr, '). The r,
' factor in this proba-

bility comes from observing that the leading contribution
from the terms inside the square brackets in Eq. (3.8) is of
order r,'; the r,.

' factor in G (r', ) is canceled by the r,
' in

dr,'. The integration over the directions of r,' is carried
out by randomly choosing three orthogonal directions.
The six points along the positive and negative sides of
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these directions are summed together. In this scheme all
terms of first, second, and third order in p; cancel exact-
ly. These terms do not contribute to the difference be-
tween the relativistic and nonrelativistic kinetic energies,
and canceling them exactly reduces the variance of the
MC sampling.

The variational wave functions used in the present cal-
culation are of the type reported in Ref. [6]. The pair
correlation F has six terms belonging to the operators
OP~

' given in Eqs. (2.2) and (2.3). They are obtained
from the solutions of the relativistic two-body equations

TNR

TR TNR
&v)

E,
%%uo

S=—
2

R, , (fm)

V 14

46.8(2)
—2.62(2)
51.4(2)

V 14, NR

43.6(4)

51.0(2)

—7.27(2) —7.38(2 )

8.76(2) 8.32( 3 )

1.78(1) 1.79(1)

V14+ Vij k

51.7(2)
—2.96(2)

—55.9(2)
—1.21(2)
—8.41(2)

9.94(2)
1.69( 1)

TABLE IV. Triton results in MeV.

V 14, NR + Vij k

48.7(2)

—56.0(2)
—1.12(2)
—8.42(2)

9.37(2)
1.69( 1)

[2(p +m )' —2m+v(r)+A(r)]F(r)=0 (3.9)

in the 'So, S, D„'P-, , and P2 F2 stat-es. The A(r) are
used to vary the F(r). The propagator G(r) is also used
to solve the two-body equations in coordinate space. We
write them as integro-differential equations in which the

integral term corresponds to the difference between the
relativistic and nonrelativistic kinetic energies. The in-
tegrals can be reduced to a one-dimensional form depend-
ing only on G(r) and the angular momentum l. For ex-
ample, the radial wave equation in S =0 states with J = I
is obtained as

f"(r)+ u(r)+ A,(r)+ f

f r'dr'F(r') f x dx PI
I

K2(mx) —f r'dr'F(r) f x dx K2(mx)
X /r —r'f

r dI
r

l(l +1) 1 ~+' 1F(r) —f x dx K2(mx)
r x

(3.10)

where f =rF. The three terms on the right-hand side
are, respectively, from 2(p +m )'~ F, —2mF, and
—p Flm. Equation (3.10) is solved iteratively using the
solution of the last iteration to calculate the right-hand
side. This method is useful when the relativistic effects in
F are small, and we have verified that the coordinate- and
momentum-space solutions are identical for the deuteron.
It is convenient to tabulate J x "Kz(mx)dx for the re-

quired values of n at the beginning of the calculation.
The results obtained with the Hs~ are compared with

those of NR calculations with the Argonne U, 4 N~ in
Tables IV and V, respectively, for H and He. These
tables also show the results obtained by including the Ur-
bana VII three-nucleon interaction in both HNz and
Hsz. The differences between the results obtained with

HsR and HNz are very small. Without the VIjk, the E„
obtained with Hsz is above the E,(HNz) by 0.11(3) and

40

10

—1
10

—2
10

~ R

NR

0.48(10) MeV for H and He. Here (u ) changes by less
than l%%uo and Tz in the SR model is close to TNz in the
NR model. The L =2 D-state percentage is larger in the
SR model by -4% of its value presumably because it is
easier to bend relativistic wave functions. On including
V; k, the E, obtained with the SR model is higher by
0.01(4) and 0.31(20) MeV than the E,(HNz) in H and
He, respectively.

There is little difference between the nuclear radii ob-

TABLE V. Alpha-particle results in MeV.
3

10

TNR

R NR

(v)«)
Ecoul

%%uo S=—'
2

R, , (fm)

014

95.1(1.1)
—6.16(2)

—112.3( 1.0)

0.71( 1)
—22.68(7)

14.2( 1)
1.59{1)

V 14, NR

88.5(9)

—112.4( 1.0)

0.70(1)
—23.16(7)

13.7{1)
1.61( 1)

V14+ ~;,k

112.6(6)
—7.58( 10)

—127.4(5)
—5 ~ 89(10)

0.74(1)
—27.64( 10)

17.7( 1)
1.47(1)

V 14, N R + Vij k

105.2(7)

—128.5(7)
—5.43(15)

0.75(1)
—27.98(7)

16.6( 1)
1.47(1)

—410

10

10
0 3

k(fm )

FIG. 20. Momentum distribution of the nucleons in 'H. The
solid circles and open squares show results obtained with the
semirelativistic and nonrelativistic calculations.
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tained with the SR and NR models; the values listed in
Table IV are for point nucleon rrns radii. The differences
between the momentum distribution n (k) of nucleons are
also small. The n(k) in H are compared in Fig. 20; the
SR n (k) is a bit larger than the NR n (k) at k )2 fm

The variational wave functions used here are not the
best available. In calculations using Hza, Wiringa [3]
has obtained -3% improvements in E„by adding to F,
spin-orbit terms and by including the three-body correla-
tions induced by the V;;k. Wiringa's results are only
3—4 % above the true NR Eo obtained with the Faddeev
[8] and Green's function Monte Carlo [6] methods. How-
ever, it is unlikely that these improvements will
significantly inhuence the comparisons between the NR
and SR models presented here.

P roP
ro —r=[1—(1—P )'~ ]

P-rP
2[2m +u(r)]

( )=-( )+ P rP Vv(r)
2[2m +u(r)]

up to terms of order P,
5u (P, r) = u (P, r) —V(r)

p2
u(r)

4m [2m +u(r)]
P rP Vu(r)

2[2m +v(r)]

(4.8)

(4.9)

(4.10)

IV 5V J' ( P 'J' ) CQNTRIBUTIOXS

The relativistic Hamiltonian H~ [Eq. (1.10)] contains
the 5u; (P;~) interactions in addition to Hsa. These in-
teractions can be expanded in powers of P; /4m, and
since the probability of P; being larger than m is very
small in nuclei, it is probably sufficient to keep only the
leading terms of order P /4m . They have been calculat-
ed by Krajcik and Foldy [17] and Friar [25] using quan-
tum mechanics. However, the two terms in 5u; (P,. ) con-
sidered here have simple origins in classical mechanics, as
discussed below in pedagogical fashion.

In classical relativistic mechanics, the energy of two
particles at rest with interparticle distance ro is given by

5u(P, r)= — u(r}+ P rP Vu(r},P 1

8m 2 8m 2
(4.11)

as used in this work.
The above calculation can be repeated for a many-body

system having particles 1,2, . . . , A. Consider, for simpli-
city, that they are all at rest in a frame. Their energy in
this frame is given by

ED=Am+ g v(r;Jo), (4.12)

As discussed later, almost all the contribution of 5u (P, r)
in nuclei comes from the region r )0.7 fm in which u(r)
is ~5%%uo of 2m. Hence it is appropriate to neglect the
u(r)'s in the denominator to obtain

E0=2m +u(ro} . (4.1)
i &j(A

Consider a frame in which these two particles are moving
with velocity f3. In this frame the particles have momen-
tum

where r;~o are the interparticle distances in the P =0
frame. Now consider a frame in which this system has
momentum P; i.e., each particle has momentum P/A.
Its energy in this frame is

Pi =P2=P/2,

energy

(4.2) Ep=
]. /2

Am+ g u(r;, 0) +P
i &j~A

(4.13)

and

(E2 +P2)1/2 (4.3) On expanding it in powers of P and neglecting terms of
order (u/m), we obtain

P=P/Ep . (4 4)

Let the distance between the particles be r and their in-
teraction potential be u(P, r) in the moving frame. We
can calculate Ep in the moving frame:

Ep=Am+ g u(r; )+
p2

(q ' 2Am

P r;,.P.Vv(r; ) p2
U r,

;&j(g 2A m 2A m

Ep=2(m +P /4)'~ +u(P, r) . (4.5) (4.14)

Since we are primarily interested in momenta P (m, the
square roots can be safely expanded to obtain

u (P, r) =u(ro)+
p2

2 2m +v(ro)
1

2m
(4.7)

plus terms of order P and higher. Since

Equating the expressions (4.3) and (4.5) for Ep, we obtain

u(P, r)= [[2m +u(ro)] +P ]'~ —(4m +P )'

(4.6)

suggesting that Hz of a many-body system contains a
sum of 5u,"(P; ) as assumed in Eq. (1.10). This property
of 5v; (P,") is called "cluster separability" and has been
discussed more generally by Coester [26].

The above classical calculation of 5u ( P ) is primarily
for pedagogical purposes. These terms have been ob-
tained earlier with quantum mechanics. The 5v(P) ex-
tracted from Eq. (Sc) of Ref. [25] contains the above two
terms, and it also has a spin-rotated term, which in two-
body systems gives zero contribution in perturbation
theory. This spin-rotation term can give contributions to
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TABLE VI. Results obtained with the relativistic HR in MeV.

H 4He

E.(HsR)

P 0

8m
P.rp. VU

8m

Ev (H~ ) Ev (HNg )

A(A 1)
2 'J J

—7.27(2)

0.21(1)

0.10(1)

—6.96(3)

0.41(4)

0.21

U+ VJ.k

—8.41(2)

0.23(2)

0.10(1)

—8.08(3)

0.34(5)

0.26

—22.68(7)

0.89(4)

0.41(1)

—21.38(8)

1.78( 15)

0.95

8'+
V;~g,

—27.64( 10)

1.17(3)

0.53(1)

—25.97( 8)

2.02(25)

1.27

lJ 1J IJ P7 7J
(4.15)

the binding energies via the small P-wave components in
the wave functions of H and He. It is neglected in the
present work.

The contributions of the 5v; (P;,r; ) are calculated in
first-order perturbation theory after the energy has been
minimized with Hsa. We calculate P;~ ~'Il„), PJ ~

qi„), and
&%'&~P,J numerically by moving particles. The expecta-
tion values of P; U; and P, r., .P, .VU; (r;J) are easily ob-
tained by using these, since P,. commutes with U, , r, ,

and Vu; (r; ). The results for H and He are given in
Table VI. It is obvious from these results that these
6v;J (P,j., r,j ) terms give most of the difference between the
energies obtained with the relativistic and nonrelativistic
Hamiltonians.

In order to study the dependence of the 6v;. contribu-
tion on r;, we calculated the expectation values of the in-
teractions

2 2 4m
A —1

' A(A —1)
(4.19)

From Eqs. (4.17) and (4.19), we obtain:

2 4m 3 —2
&P~~J ~= TNR . (4.20)

The values of

A(A —1)
16m

1 1 A —2
2m A A —1

(4.21)

are listed in Table VI; they are fairly close to the calculat-
ed expectation values of the —P v/Sm term. Thus it
appears that P; and u;J. (r;~) are not strongly correlated,
and Eq. (4.21) can be used to estimate the largest relativ-
istic effect in the present work.

and

P.r,,8(r r,~
)P VU,J (r,j ), .—1

;() 8m
(4.16) p.4

&&, &
= &p )+ &p,')+2&p; p, )

4m
TNR+2& pi 'PJ ~ (4.17)

Since the total momentum of the nucleus is zero,

cutoff at r, . =r . These expectation values for r =0.5,
0.7, 1.0, and 2.0 fm are shown in Fig. 21. They indicate
that most of the 5U, contribution comes from the
r, . —1 —2 fm region in which U;. &(m, and hence it is
reasonable to neglect the U;. in the denominators
(2m +U) in Eq. (4.10).

The average value & U," ) is just & U ) / —,
' A ( A —1) since

there are A ( A —1)/2 pairs. The average value

03—

0.2—

0.1—

PII

~p
0

~ II

-r
I

r (f~)

therefore

(4.18) FICx. 21. Contributions of the cutoff interaction given by Eq.
(4.15) (circles) and (4.16) (squares) as a function of the radius r
The dashed lines joining data points are purely for convenience.
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V. CONCI. USIONS

The estimated relativistic effect in the binding energy
of H, i.e., the difference between the energies obtained
with H~ and HN~, is 0.41 MeV without V; k. This efFect
has been estimated to be -0.2 MeV by Glockle, Lee, and
Coester (GLC) [19] in a conceptually similar calculation
also without V;&. There are two main differences be-
tween the present and GLC calculations. GLC use a
modified MalfIiet-Tjon interaction in place of the realistic
u used here, and they do not expand 6u,. (P;,. ) in powers of
P; /4m; however, the terms of order P, . /4m in their
5u; (P; ) are identical to those used here. In retrospect, it
appears that the smaller relativistic effect obtained by
GLC is due to their use of the simple MalAiet-Tjon in-
teraction which does not contain the pion-exchange ten-
sor force. The TNR and (v ) obtained with this potential
are, respectively, 29 and —36 MeV instead of the 47 and—51 MeV (Table IV) given by the realistic u. The leading
relativistic correction is proportional to TNR(u), and
hence the GLC estimate of it is approximately half of
ours.

The approximation (4.21) can be used to estimate the
contribution of the —P v/8m terms to the binding ener-

gy of nuclear matter. At the empirical equilibrium densi-
ty pc=0. 16 fm, the values of TNR/A and ( v ) /A are,
respectively, 45 and —56 Me V with the Argonne
v, 4 NR+ V; k [5]. Using these, we expect the Pu/—8m
terms to give —1.34 MeV per nucleon. The total relativ-
istic correction in H and He is approximately twice the
contribution of the —P u/8m terms, and thus it could
be -2.5 MeV per nucleon in the present approach. It is
interesting to note that the difference between the
lowest-order Dirac-Brueckner and NR-Brueckner calcu-
lations [14] of the energy of nuclear matter is also -2
MeV/nucleon at po. However, the relations between the
present and Dirac-Brueckner approach are not yet under-
stood.

The model VII of V;& contains the Fujita-Miyazawa
two-pion exchange V;k and a phenomenological repul-

V
sive term V~I, . The strengths of these two terms are ob-
tained by fitting the binding energies of H and He and
the equilibrium density of nuclear matter using NRQM.
Here ( V ) is 0.62 and 3.53 MeV in calculations with Kit
and 0.71 and 4.17 MeV in calculations with HNR in H
and He, respectively. The relativistic effects in the bind-
ing energies of H and He are almost half of ( V ) . Thus
we would presumably need a weaker V; k to fit the ob-

served properties of nuclei with the relativistic Hamil-
tonian. However, we must be able to study the energies
and radii of a few heavy nuclei with the H& in order to
obtain realistic models of V; k. In heavy nuclei the con-
tribution of the spin-rotation term in 5v(P) also needs to
be evaluated.

During the course of this work, Rupp and Tjon [27] re-
ported results of H calculations using Bethe-Salpeter-
Faddeev (BSF) equations. Their estimate of the correc-
tion of the H binding energy, due to relativistic effects, is
——0.3 MeV, quite different from the +0.3 MeV found
in the present work. There are at least two major
differences between the BSF and present approach. The
free-particle propagator used in the BSF equation is
I/[ko —k k —m +iE]; it allows propagation with both
positive and negative energies. In contrast, the free-
particle propagator of the present relativistic Hamiltoni-
an, I/[E+m —(m +k k)'i +iE], has propagation with
only positive energies since the eigenvalues of
(m +k k)'i are positive by definition. Second, the
methods used to make the interaction covariant are also
different. Rupp and Tjon use separable approximations
to realistic interactions. In the nonrelativisitic calcula-
tions, these are functions of the relative three-momentum
square p p, while in the relativistic calculations they are
assumed to be functions of the four-momentum squared,
i.e., po —p-p. Which of these differences is primarily re-
sponsible for the different final results obtained in Ref.
[27] and the present work is also not known. Neverthe-
less, these differences clearly indicate that relativistic
corrections to nuclear binding energies may depend
strongly on the Inethod used to generalize the NR Hamil-
tonian for use in relativistic calculations. The present ap-
proach may prove to be useful if the compositeness of nu-
cleons plays an important role in suppressing the antinu-
cleon degrees of freedom and if classical relativistic
corrections dominate.
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