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Two values for the asymptotic D /S ratio of the deuteron g =0.27 01+0.000 19 and
g=0.02713+0.00006 are obtained using two empirical linear e, -Q and g-y Q relations we found for
standard nonrelativistic potential models. It is shown that fitting the deuteron quadrupole moment Q,
the deuteron rms matter radius rd, and the triplet scattering length a, simultaneously by a nonrelativistic
nucleon-nucleon potential model is a critical task and it has been achieved by the inclusion of a short-
range attractive nonlocality in the potential.
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I. INTRODUCTION

u= A, e (1.1a)

e
—r 1+ +3 3

yr (yr)
(1.1b)

in the first integral of the formula

The experimental value of the deuteron quadrupole
moment Q, which is one of the most precisely measured
deuteron properties (e.g., the results of the last two pub-
lished measurements of Reid and Vaida [1]
Q'" =0.2860+0.0015 fm and of Bishop and Cheung [2]
Q'"i'=0. 2859+0.0003 fm are altnost the same), has been
used in the literature [3,4] to put constraints on other
S&- D& state properties. The deuteron quadrupole mo-

ment Q is approximately related [5—7] to the scattering
mixing parameter e, at low energy and to the asymptotic
D/S ratio of the deuteron rl. The genesis of the relevant
approximate formulas is to substitute the asymptotic ra-
dial deuteron wave functions

e, =(1 yr, )&—2Qk (1.5)

The factor ( ) is written ( ) in the paper of Biedenharn
and Blatt [6]. Bulter and Sprung [7] have shown that the
second integral in Eq. (1.2) is about —,', of the first and
they modified relation (1.5) by incorporating the multipli-
cation factor —,", on the right-hand side.

Two different cases will be considered in the following
discussion of the relations connecting e,„Q,and k . The
first case is to consider one single potential model and to
see a possible correlation between its value of Q and its
values of e, which change smoothly and continuously
with the scattering energies. The second case is to con-
sider a large number of potential models and a certain
value of scattering energy k and then to calculate for
each ith potential its model values Q" and eI'.

In the first case, when considering a single potential
model, poor results are obtained for the value of Q by us-
ing [8]

Q= f ruwdr — J rw dr,V50 o 20 o
(1.2)

d E'i

&2 dk' k2=o

giving Q in impulse approximation, and to neglect the w

integral, hence,

Q = A, g/(&8y ) . (1.3)

This is plausible because the D-state probability is rela-
tively small and Q is an "outer" quantity; the r weight-
ing factor in the integrands in (1.2) and the slow fall-off of
u and w wave functions as r increases (due to the small-
ness of the binding energy y ) make the main contribu-
tion to Q come from outside the range of force.

Blatt and Weisskopf [5] used in Eq. (1.3) A, =2y given
by f o"u dr= 1 and obtained

e, =&2Qk', (1.4)

where k is a positive low energy. Biedenharn and Blatt
[6] used in Eq. (1.3) A, =2y/[(1 —yp)(1+ ri ) j, given by
the effective range but with the assumptions g &&1 and

implied by Eq. (1.4), and [4,9]

dEi
Q =

I V'2(1 yr, )j-
dk k2=p

implied by Eq. (1.5). It has been shown [10] that in this
case of a given single potential model, the smooth varia-
tion of e& with energy is not a linear relation even at very
low energies. In the second case, when considering a
large number of standard nonrelativistic nucleon-nucleon
N-N potential models at a fixed very low energy in the
laboratory scattering range 0—1 Me V, the points
(Q",eI') representing the potential models lie on a typi-
cal straight line which does not pass through the experi-
mental points (Q'", e',"~) reported within this range of
energy [10]. For such empirical e, —Q lines (of case 2)
drawn at fixed values of low scattering energy k (see Fig.
1), and using the "eigen" scattering mixing parameter e,
of the Biedenharn and Blatt parametrization [6], it is
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ty in the potential model.
Bhaduri et al. [19] and Sprung et al. [20] have looked

into the relationships between r& and the asymptotic
quantities a, and r, which are determined by the low-
energy dependence of the S, phase shifts. This is
different from the present analysis involving the deuteron
quadrupole moment Q, since Q is intimately related to
both the mixing parameter e, at low energies (Sec. II) and
to the noncentral forces of the nucleon-nucleon interac-
tion. Also, Q is not a pure asymptotic quantity (e.g.,
phase equivalent potentials can have difFerent values of Q
[8,21,22]) and it is more directly observable than r, . The
present analysis emphasizes, in particular, the inhuence
of the tensor force on the value of rz.

0.05
II. ei AT LOW ENERGIES AND THE APPROXIMATE

RELATION OF BLATT AND WEISSKOPF

0.2 0.3

FIG. 1. The empirical e, -Q lines for the scattering energies
E, =0. 1 and 0.3 MeV. The middle (lower) part of the upper
line is magnified in the upper (lower) inner frame. The poten-
tials are referred to by the names given in Table II. The e, is the
"eigen" mixing parameter of the Biedenharn and Blatt parame-
trization [6].

shown in this paper (Sec. II) that

=v'2
(k'Q) k'=o

and that the empirical e&-Q lines can be used to determine
a new value of i) (Sec. III). Another value of z) is also ob-
tained from the empirical linear zi-Qy relation between
z) and y Q of potential models implied by (1.4).

Klarsfeld et al. [11] found that the relation between
the triplet scattering length a, and the deuteron root-
mean-square (rms) radius rz of standard nonrelativistic
potential models is a typical straight line which does not
pass through the experimental point a, =5.419+0.007 fm
[12] and r&= 1.953+0.003 fm [11]. Mustafa and Hassan
[13] and van Dijk [14] have shown that short-range non-
locality can change r& without changing a, . Kermode
et al. [15,16], Mustafa and Kermode [17], and Mustafa
et al. [18] fitted the experimental values of a, and rz
simultaneously by potential models incorporating short-
range attractive nonlocal components. These potentials
[15,18], which fit a, and rz simultaneously, do not also fit
the experimental value of the deuteron quadrupole mo-
ment Q. It is shown in Sec. IV, and by using the unitary
transformations, that fitting Q, rz, and a, by a potential
model is a "critical" task. This could be achieved (Sec.
V) by the inclusion of an attractive short-range nonlocali-

V= V~+ VLSL.S+S)2V~

where
6

rV,.(r)= g A, (n)e "&", i =C,LS,
n=1

n=6
re = Ar(1)( Y, —Y&)+ g Ar(n)e

Pl =2

Y„=n[I+3/nor+3/(nor) ]e

(2.1)

(2.2a)

(2.2b)

(2.2c)

A;(1) is determined by the one pion exchange potential,
i.e.,

Ac(1)= Az (1)= —14.947 14 MeV fm

and ALs(1)=0.0 and @=0.7 fm
"Experimental" values e&" of the scattering mixing pa-

rameter e, in the center-of-mass scattering energy range
0—0.55 MeV have been extracted from 36 empirical e,-Q
lines; they are the values of e& which correspond to the
experimental value Q'"~=0.2859+0.0003 fm [2] of the
deuteron quadrupole moment. Two such lines are shown

The N-N potential models being used to draw the
empirical e,-Q lines are the standard potential models
(with reasonable values of Q and e, at low energy range):
e.g., the potential models of Lacombe et al. [23], de
Tourreil et al. [24], Reid [25], Hamada and Johnston
[26], and Glendenning and Kramer [27], in addition to
the local potentials of Mustafa and Zahran [28] and Mus-
tafa [29] which have extremely low values of e& and Q,
and, the local potentials referred to as 1 —6 of Table I,
which have extremely high values of e, and Q&.

The potentials 1 —6 fit the deuteron binding energy [30]

Eb —2.224 575+0.000 009 MeV

and the scattering parameters of Amdt et al. [31] in the
laboratory scattering energy range 0—300 MeV with
y /datum=0. 02. They reproduce well, in particular, the
relatively "large" experimental values of E'& at low ener-
gies even better than the local potentials r1 —r7 of Ref.
[10]. The functional form of the local potentials 1 —6 is
similar to that of the Reid hard-core (RHC) potential
[25]. It consists of central (C), spin-orbit (LS), and ten-
sor ( T) parts:
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in Fig. 1. The very-low-energy dependence of the "exper-
imental" scattering mixing parameter ej"" is compared to
those of some potential models and of the Mathelitsch
and Ver West empirical formula [32]

e&=0.347k (1+5.5k )
' in Fig. 2. The two graphs of

E'& and e& of the Glendenning and Kramer CsK9 poten-
tial [27] are indistinguishable by the scale used. The
value of the scattering mixing parameter e, of Amdt

Potential

TABLE I. The values of the free parameters and the hard-core radii of the local potentials.

&&&{n) AT(n)

0.35 —1.965 8989 (3)
3.1905649 (4)—1.6564210 (5)
3.3816262 (5)—2.390 5246 (5)

2.918453 6 {2)—3.4898986 (3)
2.206868 8 (4)—6.2622382 (4)
6.343 7800 (4)

—7.292287 3 (2)
9.752595 7 (3)—4.1166812 (4)
6.2578005 (4)—2.402 3224 (4)

0.4

0.45

0.5

0.548 33

0.55

0.548 33

—2.1483373 (3)
3.675488 6 (4)—2.002 526 1 (5)
4.3136321 (5)—3.2427173 (S)

—2.1936964 (3)
3.8405622 (4)—2.144960 1 (5)
4.696927 1 (5)—3.502 3504 (5)

—1.859988 8 (3)
3.305 8424 {4)—1.9003113 (5)
4.3429047 {5}—3.416000 1 (5)

—2.336855 8 (3)
4.338 5597 (4)

—2.5679490 (5)
6.015 3174 (5)—4.846072 9 (5)

—2.3645654 (3)
4.~4~ 2949 (4)—2.6643987 (5)
6.309848 1 (5)—5, 1237516 (5)

—1.581 S122 (3)
3.009415 0 (4)—1.8025808 (S)
4.2481624 (5)—3.4SS 2711 (S)

3.555 9182 (2)—3.793 7745 (3)
2.2462705 (4)—6.368 5582 (4)
6.647 793 0 (4)

4.6770393 (2)—6.2742542 (3)
3.819907 8 (4)—9.583 563 9 (4)
8.0047872 (4)

6.318 6043 (2)
—8.7137959 (3)

5.704043 1 (4)—1.6634570 (S)
1.7149722 (5)

6.SS26S14 (2)—8.728 8173 (3)
5.198942 1 (4)—1.300 832 6 (5)
1.1116266 (5)

5.965 5948 (2)—7.301 3147 (3)
4.171171O (4)—1.029 143 2 (5)
8.80S 4599 (4)

5.322331 1 (2)—7.394491 2 (3)
4.478 642 7 (4)—1.144741 7 (5)
1.0016539 (5)

—8.010 1674 (2)
1.046434 1 (4)—4.343 7854 (4)
6.261 227 6 (4)—1.7797677 (4)

—8.2739145 (2)
1.086963 7 (4)—4.605 263 8 (4)
7.3738937 (4)—3.719216 1 (4)

—9.8470166 (2)
1.362483 4 (4)—6.412288 7 (4)
1.1965290 (5)—7.445 5724 (4)

—1.0649206 (3)
1.520646 8 (4)

—7.429276 3 (4)
1.447205 6 (5)—9.5107668 (4}

—1.070279 7 (3)
).52723) 4 (4)—7.4194105 (4)
1.432 2904 (5)—9.305 7806 (4)

—8.137058 8 (2)
1.2392303 (4)—6.352273 8 (4)
1.298215 8 (5)—8.949 6890 (4)

Ll 0.548 33

0.548 33

—4.27S 79O0 (2)
1.146 6402 (4)—8.090928 9 (4)
2.102 8283 (S)—1.858 6564 (5)

—2.835 8295 (2)
8.7208427 (3)—6.547943 7 (4)
1.7800609 (5)—).6368140 (5)

S.2515296 (2)—7.227 502 3 (3)
4.086 843 8 (4)—1.027498 3 (5)
9.102665 1 (4)

6.748478 7 (2)—1.045 8102 (4)
6.261 2120 (4)—1.5861683 (5)
1.3797874 (5)

—5.9550059 (2)
9.567 2106 (3)—4.9534190 (4)
) .0)9 028 6 (5)—7.035 3612 (4)

—6.002 3380 (2)
9.3235839 {3)—4.606 367 8 (4)
8.928228 1 (4)—5.731217S (4)
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et al. [31] at E, =0.5 MeV, represented by a circle in
Fig. 2, is given in the "eigen" par ametrization of
Biedenharn and Blatt [6] [by using both the published
values of the scattering parameters 5( Si ), 5( D, ) and e,
given in the "bar" parametrization of Stapp et al. [33]
and the relations [34] between the "eigen" and the "bar"
parametrization]. The high quality fitting of e, of Amdt
et al. [31] with the potentials 1-6 of Table I may be seen
from Fig. 2 (only the potential 6 is drawn).

The slope of an e, -Q line divided by k would be 1.398
upon extrapolation to zero scattering energy (Fig. 3),
which is about 1% smaller than &2, in agreement with
Eq. (1.4).

0.1
III. VALUES OF g CONSISTENT WITH Q'"~

A. g from the very-low-energy dependence of e&

The very-low-energy dependence ei=ei(k ) of the ex-
perimental scattering mixing parameter e&" is extrapolat-
ed to the deuteron bound state to obtain the deuteron
asymptotic D/S ratio g, where

0.1 0.2 0.3 0.4 0.5 i)= —Ei( —y') . (3.1)

E (MeV)

FIG. 2. The low-energy dependence of the "experimental"
mixing parameter e& is compared to the corresponding energy
dependences of some potential Inodels and of the empirical for-
mula of Mathelitsch and VerWest (MW) [32]. The experimental
point (circle) is of Amdt et al. [31]. The references to the po-
tentials are the same as in Fig. 1.

The reliability of this method is first checked by using
model values of e&. The very-low-energy dependence of
e& of a given potential model is fitted by a polynomial of
fifth order in k (36 data pieces, in the center-of-mass
scattering energy range 0—0.55 MeV), and as shown in
Table II the substitution k = —y gave a value g for the
asymptotic ratio which is almost the same as that ob-
tained from the deuteron waves g. The experimental
value

q =0.027 009+0.000 007 (3.2a)

1.4

is obtained for g by applying the same procedure to the
experimental mixing parameter e&" of Fig. 2, and using
the experimental value of the deuteron binding energy
Eb =2.224 575+0.000 009 Me V [30], where,

y =Eb/41. 471 397 fm . A similar value

Slope / k g =0.027 003+0.000 007 (3.2b)

1.3

is obtained by using in Eq. (3.1) tan@i instead of ei. Prac-
tically; e&= tane& within this very-low-energy range. The
corresponding results for the potential models are also
listed in Table II. Although the small standard errors in
Eqs. (3.2) are smaller than the values of rI —il, it is more
convenient to choose for the standard error the largest
model value obtained for g —g. Hence,

g =0.027 01+0.000 19

represents the result of this method.

(3.3)

0.2 0.4
B. q from the g-y Q empirical line

E (MeV)

FICx. 3. The variation versus the center-of-mass c.m. scatter-
ing energy E, of the quotient (slope/k ), given by dividing the
slope of an empirical e, -Q line by k of that line.

The relation between il and y Q of standard nonrela-
tivistic potential models —as implied by the approximate
relation (1.4) of Blatt and Weisskopf [5]—is a typical line
as shown in Fig. 4. The potential models used in Fig. 4
are the same as those used in Fig. 1, plus the potentials of
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TABLE II. The diQ'erence g —g between the two values obtained for the asymptotic D/5 ratio g (us-

ing the deuteron waves) and g (using the low energy dependence of e&). The potentials are ordered in
the table by their quality of Atting e&" of Fig. 2. The lower values are for the case of using tane& instead
of e& in Eq. (3.1). The standard errors are only listed for the experimental data; they are smaller than
the largest value of

~ rl —rI~ in all cases.

Pot. Ref.

GK9

TRS

RSC

Paris

RHC

RSCA

MZ

[27]

[26]

[27]

[24]

[25]

[23]

[25]

[25]

[28]

[291

[29]

[29]

[29)

[29]

[29]

[29]

[29]

[29]

0.026 709

0.026 485

0.026 592

0.026 222

0.026 226

0.026 080

0.025 902

0.025 958

0.030 151

0.031 176

0.031 308

0.032 766

0.033 085

0.033 095

0.013 353

0.011702

0.011 550

0.011 538

0.011260

0.011 161

0.011090

0.010979

0.010904

0.010702

0.026 614
0.026 630
0.026 369
0.026 336
0.026 425
0.026 406
0.026 226
Q. 026 230
0.026 106
Q. 026 121
0.026 101
0.026 121
0.025 825
0.025 813
0.025 846
0.025 820
0.030 188
0.030 187
0.031 208
0.031 219
0.031 175
0.031 208
0.032 866
0.032 830
0.033 107
0.033 102
0.033 094
0.033 082
Q. 013216
0.013 224
0.011 592
0.011 593
0.011441
0.011 438
0.011415
0.011419
0.011 144
0.011 150
0.011050
0.011048
0.010962
0.010948
0.010 892
0.010 887
0.010789
Q. 010781
0.010575
0.010568

0.000 095
0.000079
0.000 116
0.000 149
0.000 167
0.000 186

—0.000004
0.000 007

—0.000 120
—Q.OQO 105

0.000 021
0.000 042
0.000 077
0.000 089

—0.000 112
—0.000 138

0.000 036
0.000 036

—0.000 023
—0.000 044

0.000 133
0.000 100

—0.000 100
—Q.000 064
—0.000 022
—0.000 017
—0.000 001

0.000 012
0.000 137
0.000 129
0.000 110
0.000 109
0.000 109
0.000 112
0.000 123
0.000 119
0.000 116
0.000 110
0.000 111
0.000 113
0.000 128
0.000 142
0.000 087
0.000 092
0.000 115
0.000 123
0.000 128
0.000 134

Exp. (this work) 0.027 009+0.000 Q07
Q. 027 003+0.000 QQ7
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fitting simultaneously Q, rd, and a, :

0.03
Z„O

Z 0 Z

where

Z„=Z = 1 —2g (s)g (s'),
0.02

-F, GK5,
h-C

Mach-B

0TRSO ORSC
PARIS O

GK3 O
O

RHC

g (s) = Cs (1—Ps)e

s —r yc

0.01
-0.016 -0.008 C= [4a /(a —3aP+3P )]'~

Machleidt et al. [35], Machleidt [36], Mustafa et al.
[10,18], Mustafa [37], de Tourreil et al. [24], de Tourreil
and Sprung [38], and the local potentials L 1 and L2 of
Table I. The experimental value

r] =0.027 13+0.000 06 (3.4)

is obtained as the value of g corresponding to the experi-
mental values of both the deuteron quadrupole moment
Q'" =0.2859+0.0003 fm [2] and the deuteron binding
energy Eb =2.224 575+0.000009 MeV [30].

As revealed by the relations (3.3) and (3.4), the two in-
dependent methods of the Secs. III A and III 8 gave very
similar values for g, which is evidence that the experi-
mental data favor these two determinations.

The two values of g of Eqs. (3.3) and (3.4) are also in
agreement, within the quoted errors, with the most recent
published values g=0.02712+0.00022 of Stokes et a1.
[39] and rI=0.0273+0.0005 of Borbely et al. [40].

IV. CRITICALITY OF FI'I l'ING Q, rz, AND a,
SIMULTANEOUSLY BY A POTENTIAL MODEL

Unitary transformations of the following form used by
Kermode et al. [8] are used to find nonlocal potentials

FIG. 4. The variation of the deuteron asymptotic D/S ratio
r) versus y'Q of deuteron potential models. The potentials used
are the same as in Fig. 1 plus rl r7 of Mus-tafa et al. [10],
MHKZ of Mustafa et al. [18], "Bonn" of Machleidt et al. [35],
"Mach" of Machleidt [36], A and B of Mustafa [37], TS of de
Tourreil and Sprung [38],and the potentials L1 and L2 of Table
I ~ The middle part of the graph is magnified in the inner frame.

rc is the hard-core radius and C is a normalizing constant
such that (g ~g ) = l.

The unitary transformations are applied to the radial
deuteron wave functions u and u of three local potentials
which fit the experimental value a, =5.149+0.007 fm of
Klarsfeld et al. [12]. These three potentials are the po-
tential referred to as a in Table I, the potential C of
Machleidt [36], and the Paris potential of Lacombe et al.
[23]. The potential a fits well the experimental scattering
parameters of Amdt et al. [31] in the laboratory scatter-
ing energy range 0—300 MeV. Its functional form is
defined by the relations (2.1) and (2.2).

Pairs of values of a and P producing transformed
waves with correct rd or correct Q are represented by
points (a,P) which lie on typical smooth lines in the a-P
diagram of Fig. 5. A point of intersection between the
line of correct rd and the line of correct Q would corre-
spond to a nonlocal potential having the correct experi-
mental values of Q, rd, and a, . The lack of such intersec-
tion points [see Figs. 5(a) —5(c)] reveals the difficult of
fitting Q, rd, and a, by deuteron potential models; it may
point out the existence of a possible correlation between
these quantities. The Reid hard-core potential [25] hav-
ing a, =5.397 fm, which disagrees with experiment, has
the interesting point (a,P) = (2.325, l. 103) corresponding
to a nonlocal potential fitting rd and Q but not a, [see
Figs. 5(d) and 6(a)].

The local potentials L 1 and L2 of Table I fit both Q
and rd, but not a, . The shapes of the D-state wave func-
tions of these potentials [Fig. 6(b)] are expected for nonlo-
cal potentials, but we emphasize that these are the result
for local potentials.

It is interesting to note both the signs and the shapes of
the transformed radial u and w wave functions produced
by using points (a,P) of the graphs of Fig. 5(a) [Fig. 5(a)
is taken as an example]. For a given value of a in the
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2

(fm ) (fm )

(fm ) Q (fm )

2-

(fm ) r

U

(fm )

(fm ) 0 (fm )

FlG. 5. Using pairs of values of the two parameters a and p of the unitary transformations represented by points (a,P) on the
solid thick lines (dashed lines) will produce transformed waves having the correct Q(rz ). The local reference potentials are (a) the po-
tential a of Table l, (b} the potential C of Machleidt [36], (c) the paris potential [23], and (d) the Reid hard-core (RHC) potential [25].
The transformed and the untransformed u (w) wave functions will be the same if a point (a,P) on the straight thin solid line labeled
u {m) is used.
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ALs(n)
2.7064937 (2)

—5.4294136 (3)
4.9931485 (4)

—1.588 838 3 (5)
1.5062659 (5)

TABLE III. The values of the free parameters of the nonlocal potential which has the correct Q, rd,
and a, . A, = —325 fm 'and re=0. 54833 fm.

n Ac(n) A, (n)

2 —2. 1344518 (3) —5 ~ 2035946 (2)
3 4.3517222 (4) 7.063765 1 (3)
4 —2.790 1108 ( 5 )

—2.6789495 (4)
5 7.8785799 (5) 3.429 1469 (4)
6 —7.3792605 (5) —9.5543182 (3)

0.4

I

I

I

I

0.2

(a)
range a ~ 1.S fm ', two pairs of values of P may be
found, the first [second] pair corresponds to the correct
rd [Q). The transformed wave functions are positive
[negative] at small radii if the larger [smaller] value of P
is used, which means using a point on the upper [lower]
graph, as shown in Fig. 7(a) [7(b)]. The transformed
waves using points (a,P) of the upper graphs have short-
range structures [Figs. 7(a) and 7(c)] similar to those of
the potentials [15—18] which incorporate short-range at-
tractive nonlocality. The "complexity" of these struc-
tures [Fig. 7(c)] increases with "increasing" nonlocality
(i.e., by using relatively large values for a and P).

V. A POTENTIAL MODEL
WITH CORRECT Q, r~, AND a,

-0.1

0.5 2.5
r (~m)

4.5

[b)

It was possible to fit Q, rd, and a, simultaneously by a
nonlocal potential model incorporating short-range at-
tractive nonlocahty with equal strengths in both S and D
states (see Table III). This nonlocal potential consists of
a local part V' ' plus a nonlocal attractive separable part
V(x).

0.5 V V(L)+ V(N) (S.l)

0.3

The functional forms chosen for the local part V' ' are
defined by the relations (2.1) and (2.2). The coupled radi-
al Schrodinger equations in this case have the following
form:

TABLE IV. Properties of the nonlocal potential of Table III.

0.1 I
I
I

4.50.5 2.5
(fm)

FICs. 6. The radial deuteron wave functions having the
correct Q and r„(solid lines), (a) determined by the intersection
point a=2. 325 fm ' and P=1.103 fm ' of Fig. 5(d), and (b) of
the local potential I.1 of Table I, are compared to the Reid
hard-core potential [25] (dashed lines). The upper (lower)
curves are the u (ur) wave functions.

Binding energy Eb
Quadrupole moment Q
D-state probability pD
Asymptotic S-state amplitude Az
Asymptotic D-state amplitude AD

The asymptotic ratio g= AD/Az
rms radius rd

D2 parameter
Scattering length a,
Effective range r,
Shape parameter P

2.2242 MeV
0.2862 fm2

6.544%%uo

08898 fm
0.0255 fm
0.0287
1.953 fm
0.5317 fm
5.418 fm
1.724 fm
0.039
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FIG. 7. Th e transformed radial deuteron wave functions with correct ~~ (solid lines a
potential (dashed lines). Three airs of values o

rec ~~ (so i ines) are compared to those of the reference local
n ia as e ines . ree pairs of values of a and P of Fig. 5(a) have been used: (a) a=3 fm ' and P=1.633 fm ' (b) a=3 fm

and P= —0.064 fm ', and (c) a=4 fm ' and P=2.436 fmm . The upper (lower) curves are the u ( w) wave functions.
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where A, = —325 fm is the nonlocality strength,f (r)=e ", and a=2. 1 fm
During the computer search, the nonlocality strength

parameter A, is fixed at a series of successively increasing
negative values. For each of these values of A, , the poten-
tial free parameters A are adjusted in an attempt to fit
the deuteron binding energy Eb, the quadrupole moment
Q, the rms radius rd, the triplet scattering length a„and
the scattering parameter of Amdt et al. [31] in the labo-
ratory scattering energy range 0—300 Me V. It was
difficult to also fit the experimental value of the asymp-
totic S-state amplitude Az =0.8838+0.0004 fm '~ [39]
and the experimental value of the triplet effective range
r, =1.754+0.008 fm [12] because of the correlations be-
tween rd and Az [11,41] and between rd, a„and r,
[19,20]. The values of deuteron and low-energy scatter-
ing properties of this potential are given in Table IV.
The radial deuteron wave functions of this nonlocal po-
tential are compared to those of the Reid hard-core po-
tential [25] in Fig. 8.

CONCI. USION

(fm)

FIG. 8. The radial deuteron wave functions of the nonlocal
potential of Table III (solid lines) are compared to those of the
Reid hard-core (RHC) potential [25] (dashed lines). The upper
(lower) curves are the u (w) wave functions.

The two empirical linear e, -Q and g-y Q relations, im-
plied by the approximate relation of Blatt and Weisskopf
[5], that have been found for standard nonrelativistic po-
tential models of the deuteron are used to obtain two very
similar values consistent with Q'" for the deuteron
asymptotic D/S ratio g. The criticality found in fitting
Q, rd, and a, by a potential model points to a possible ex-
istence of a correlation between these quantities.
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