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We have reformulated the relativistic theory of internal bremsstrahlung in electron capture (IBEC)
and developed a numerical code for calculating a transition amplitude for any initial atomic state. All
relativistic as well as screening effects are included within the independent-particle approximation. We
have shown the advantage of the theory even in the pole-dominance region of the IBEC spectra, thus
making it suitable for comparison with the observed spectra in experiments that search for light- and/or
heavy-neutrino mass components. In addition, we have applied our code to study the interference effects
in the IBEC transition amplitude of '*Ho and found, in agreement with experimental data, a smaller in-
terference suppression than predicted by several recent models.

PACS number(s): 23.40.—s, 31.15.+q, 14.60.—z

I. INTRODUCTION

In 1981, De Rujula [1] was the first to put forward an
idea that internal bremsstrahlung in electron capture
(IBEC) could be used to investigate the possibility of
nonzero electron-neutrino mass. He noted that the sensi-
tivity for radiative p capture was considerably enhanced
when the electron-capture (EC) Q value was sufficiently
low to be in the x-ray region. The photon distribution is
determined by a phase space that is mass dependent; the
spectral end point is studied analogously as in 3-decay ex-
periments. Experimental investigations of the best candi-
dates, '*Pt and '®*Ho, set an upper limit of 500 eV [2]
and 225 eV [3], respectively, to the mass of the electron
neutrino.

In 1986, the CERN-ISOLDE group of Barge et al. [4]
used the IBEC spectrum of %I to search for an admix-
ture of heavy neutrinos, whereas the nonzero result for
the corresponding antiparticle was reported earlier in the
nuclear B-decay experiment by Simpson [5]. Simpson in-
terpreted an anomaly in the 3-decay spectrum of tritium
as being due to the presence of a heavy neutrino of a mass
of 17 keV, with an emission probability of a few percent.
Subsequent beta-decay experiments, however, did not ap-
pear to confirm this effect [6]. For the same purpose,
later on, Zlimen et al. [7] studied IBEC from >>Fe and
found no evidence for a heavy neutrino, in accordance
with the finding of Borge et al.

Renewed interest in the heavy neutrino started in 1989
when Simpson and Hime [8] measured anew tritium and
%S beta decays and again reported positive evidence for
the 17-keV anomaly. More recently, the *>S experiment
was reported [9], while the Berkeley group of Sur et al.
[10] measured the spectrum of '“C; both experiments
gave positive results. It is interesting that recent S-decay
data have received some confirmation from the study of
the IBEC in *Fe [11] and "'Ge [12]. Both groups ob-
served a kink or distortion in the IBEC spectra, indicat-
ing the emission of a heavy neutrino with a mass of 17
keV and 1% mixing with the electron neutrino.

Considering the large number of constraints which the
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17-keV neutrino has to obey, one is forced to conclude
that such a particle is unlikely to exist (see, e.g., Ref.
[13]). Cosmology constrains such a neutrino to decay
much faster than the age of the Universe or to have a siz-
able cross section for annihilation into practically mass-
less particles. More importantly, considerations of
double-beta-decay limits imply that the component of the
electron-neutrino Majorana-type mass is less than a few
eV’s [14], and so one has to conclude that this particle is
of Dirac type. However, recent detailed calculations
based on supernova dynamics have yielded a limit on the
mass of a Dirac neutrino of approximately 28 keV [15].
However, when the mixing is taken into account [16], it
can be shown that a 17-keV neutrino with 1% mixing
with the electron neutrino lies well inside the region ex-
cluded for Dirac neutrinos. Thus the supernova limit
confronts the positive results of recent 3-decay and IBEC
experiments. However, a few models [17], where a 17-
keV neutrino is a part of an almost degenerate pseudo-
Dirac pair of states, can accommodate all these results.

Motivated by the 17-keV controversy, we have written
a code for calculating the IBEC amplitude that is an ex-
tension of an earlier paper [18]. The code can be used to
calculate the IBEC spectrum from any atomic state. Our
calculations of IBEC spectra include all relativistic
effects as well as exact screening within the independent-
particle approximation (IPA) of the atom. We have per-
formed calculations of IBEC spectra for '>°I and '°*Pt, as
well as for '3Ho and compared them with the spectra ob-
tained in several versions of an extended Glauber-Martin
theory.

II. PRESENT STATUS OF IBEC THEORY

The first calculations of IBEC spectra are due to
Stueckelberg [19], Mgller [20], and Morrison and Shiff
[21], who developed a theory of IBEC spectra in allowed
transitions, completely neglecting the Coulomb field of
the nucleus. Glauber and Martin [22] and Martin and
Glauber [23] performed calculations for IBEC, taking
into account the atomic structure (nuclear Coulomb field,
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but taking screening effects only approximately) and rela-
tivistic effects in radiative capture of ls-state electrons.
They predicted appreciable contributions from initial p-
state electrons at lower photon energies; this was in-
volved with the resonance structure of the p —s atomic
transition.

Inteman [24] improved the calculations of Martin and
Clauber [23] to obtain a simple method for calculating
IBEC from ls states. Zon [25] performed relativistic cal-
culations for IBEC from L and M shells, whereas Zon
and Rapoport [26] included transitions of an arbitrary or-
der of forbiddance. A comprehensive review of older
theoretical and experimental IBEC investigations can be
found in the paper of Bambynek et al. [27].

De Rujula noted [1] that the IBEC spectrum can be ex-
ploited to search for the nonzero electron-neutrino mass.
His main observation was that low-energy IBEC is
predominantly p wave (E 1 process) and that it interferes
with E1 x-ray emissions following EC. He extended the
nonrelativistic theory of Glauber and Martin below the
x-ray region, because the interference turned out to be
constructive when the end point of the IBEC spectrum
lay below the energy of the characteristic x ray. More-
over, De Rujula made a further extension of the theory
near poles in the sense that only a dominant pole term in
the IBEC amplitude was evaluated directly, whereas the
rest was approximated. This served to insert the experi-
mental binding energies, widths, and intensities in a
dominant-pole term to include the fine structure and also
to make an explicit distinction between two time orders
of the process (Z<>Z —1 distinction). Further improve-
ments [28] consisted in applying the sum-rule technique
when calculating the effects of all poles from unfilled elec-
tron and continuum states, together with using more real-
istic atomic wave functions. Such models give a total
IBEC spectrum that agrees with the absolute experimen-
tal data only to within a factor of 1.5-2 (see Fig. 3 in
Ref. [28]). In addition, destructive interference can also
occur [28,3] between the contribution to the IBEC ampli-
tude from the dominant pole and contributions from all
other pole terms and continuum states. The size and
direction of interference effects depend on the photon en-
ergy, and in several atomic models, the case of ®*Ho re-
veals deep interference minima near the end points of 4p
and 5p states. However, such a strong destructive in-
terference is not confirmed by experimental data [3].

III. MODEL AND FORMALISM

The matrix elements for IBEC can be written in the
usual theory [27] as

M= ieGp
22
X [d*x d’ @ ,(x)T,@,(x)¥,(x)

6(Erunax —q—w)

X AHS, (x,y,1)y € e KYW (y) . (1

Here we have employed the units ¢ =#=1. The quanti-

ties I'y and A, are defined as I,=y,(1—-21,75),

A,=7v,1—7s), and the notation used is the same as in

Ref. [29]. The quantities ®; and @, are the nuclear wave
functions for the initial and final states, respectively. ¥,
and ¥, are the respective Dirac spinor wave functions for
a neutrino and a bound electron. The photon is charac-
terized by the momentum k and the polarization vector
€. EZ ., is the total energy available in the transition, and
g and o= |k| are the energies of the neutrino and photon.
S,(x,y,n) represents the Feynman propagator in the po-
tential V (r); =E, — o, and we consider that || <m. In
addition, S, is a solution of the inhomogeneous Dirac
equation

la-p+y°m +V(r—n]S,(x,y,7)=—7°8*(x—y) . ()

Our treatment of IBEC is based on an exact numerical
evaluation of the matrix element (1) within the
independent-particle approximation of the atom. It is
fully relativistic. In the calculations we use the spherical-
ly symmetric relativistic self-consistent (RSC) Dirac-
Slater potential V' (r) and the corresponding atomic wave
functions obtained using the Liberman code [30]. For the
nucleus we use a simple model of a uniformly charged
shell of radius R.

Our treatment of IBEC is limited to allowed transitions
[31] and does not make distinction between two time or-
ders of the process (Z<»Z —1 distinction). We discuss
this point in more detail in Sec. IV. The treatment fol-
lows the procedure of Pisk, Pasagi¢, and Logan [18],
which was originally developed for s-electron radiative
capture, but can be applied to a capture from an arbitrary
electron state. Following the procedure, instead of calcu-
lating the propagator S,(x,y,7) directly, we calculate the
function

F(x,m= [d% S,(x,y,m)y-€*e 9, (y) . 3)

In such a way, all intermediate states included in the
propagator S,(x,y,7) are taken into account. The func-
tion F(y,n) is a solution of the inhomogeneous Dirac
equation

la-p+Bm +V(r)—qn]F(x,m)=y-€*e **¥_(x), (4)

with the following boundary conditions:
fFT(x,'r])F(x,’r])d3x<oo, Inl<m , (5a)
lim F(x,m)=0, r=|x|. (5b)
r— 0

In terms of F(y,7n) and after the nuclear weak current
has been averaged over the nuclear volume, the matrix
element M, can be written as

M, = ie—(")(Ea w)B
fi 2\/2 max 4 "
3 F . 6
XfA d X\PV(X)A (x,n)\lla(x) (6)

The spherical symmetry of the potential allows us to
use the partial-wave expansion of the functions F(x,7)
and W,, the multipole expansions of the photon field, and
to perform the angular integration in Eq. (6) analytically.
In the partial-wave expansion of the function F(x,7), the
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radial component of the partial wave is denoted by
Fz,')»(r,n). F}:‘k(r,n) is a solution of an inhomogeneous
Dirac equation with an inhomogeneous term (driving
term) that is a product of the radial component of the
photon multipole (described by quantum numbers L,A)
and the radial components of the bound-electron wave
function ¥,. Near the origin, the solution of this equa-
tion satisfies the boundary condition of Eq. (5a) and
should be of the form

FZ,';L(r,n)=rB+lszri+a2{,\ry‘2 Y;r/, (N
J J
where y,=|x,| and B=y +L —A, y=|k|. The first term
in Eq. (7) is a particular solution of the inhomogeneous
radial equation near the origin. The second term in (7) is
a solution of the inhomogeneous radial equation near the
origin, which is regular for » =0. Since the potential is
nonsingular at the origin, we have chosen Y,=(9) for
k;>0and Y,=(}) for k, <0
At infinity, the solution should behave as [see Eq. (5b)]

Fz,lk(rm) — Fe ™™, A=(m?—9?)'"2. ®)

The solution can be found numerically. We apply the
method of Brown, Peierls, and Woodward [32], integrat-
ing the inhomogeneous and homogeneous differential
equations outward from the origin and inward from a dis-
tant point where it can be assumed that the inhomogene-
ous term vanishes. The constant "' is fixed, demanding
that these two solutions (inward and outward) should be
equal. This can be performed at an intermediate point.

Finally, radial integration has to be performed in (6).
Since our calculation of IBEC is limited to allowed tran-
sitions, it is appropriate, when performing radial integra-
tion, to keep only the lowest-order term in a series expan-
sion of the functions F(x,n) and V¥, over the nuclear ra-
dius R.

After performing radial integration, we square the am-
plitude and perform appropriate momentum and spin
summations. In such a way, the IBEC differential cross
section dW°/d w can be obtained as

dWiy  2aGE|B|?

do - o(Q —o—|B,])
X[(Q —w—|B,|)*~m?2]'72
1 1 L+I+L+A+1, «
X - - = — 1 1
2Ty Y L
9
where "' is a constant from Eq. (7). The summation in

Eq. (9) includes ;= —1,1 (allowed transitions) and all L
that, together with j, (total angular momentum of the
electron in the propagator) and j (total angular momen-
tum of the bound electron), satisfy the triangle rule.

The total probability for the nonradiative capture of an
electron from the state a within the same model is

2G3|B|?
b=y ——a(Q —|B,N(Q—|B,|?~m2]'242 .

(10)

Here A, is the coefficient of the leading term in the series
expansion of the bound-electron wave function around
the origin. Bound-electron wave functions are normal-
ized to unity.

More details on the formalism as well as on the
methods of solving differential equations can be found in
Ref. [18]. The only difference is that in the present paper
we employ a finite nucleus instead of a point nucleus.
This implies the nonsingular behavior of electron wave
functions near the origin. More details on the methods
and techniques employed can also be found in Refs.
[32,33] where other atomic processes (Rayleigh scatter-
ing, Compton scattering) were treated within the same
model and using similar methods.

Our computer code calculates the IBEC spectrum nor-
malized to EC. It uses as input the numerically given
atomic IPA potential and electron wave functions. We
have used the Coulomb potential and the relativistic hy-
drogen model of the atom when making comparisons
with various versions of the Glauber-Martin theory, but
otherwise we have employed the relativistic self-
consistent potential and electron wave functions obtained
using the Liberman code.

IV. RESULTS AND DISCUSSION

In this section we present the results of the calculation
of IBEC spectra obtained using our code (exact IPA cal-
culation) and compare them with the results of various
versions of the Martin-Glauber theory and with experi-
ments.

The Martin-Glauber theory [22,23] takes into account
relativistic effects and the Coulomb field of the nucleus.
However, they limited their fully relativistic calculations
to ls-state capture only. For higher states, their calcula-
tion is nonrelativistic and the effect of the Coulomb field
is taken only to the lowest order in Za. Screening effects
are taken into account approximately, multiplying the
unscreened results for the IBEC amplitude by the ratio of
screened to unscreened initial-state wave functions, eval-
uated in the neighborhood of the origin. In this way,
only the modification of the initial electron wave func-
tion, caused by scattering, is taken into account. The
second effect of screening, the alteration in the structure
of the electron propagator, is expected to be small. It is
argued by Martin and Glauber [23] that this procedure to
take screening into account should be reasonable for pho-
ton energies above the characteristic x-ray region. The
accuracy of this simple approximation scheme was quan-
titatively established on the example of the 2p state of Fe.
Screening effects in nonrelativistic IBEC were discussed
by Iwinski, Kim, and Pratt [34].

De Rujula [1] extended the theory of Glauber and
Martin to the pole region in the sense that only a
dominant-pole term in the IBEC amplitude is evaluated
exactly, whereas the rest is approximated. This serves to
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insert the experimental binding energies and widths so
that the poles appear in their right place and with the
right intensity. This approach is correct only near the
poles.

In Figs. 1-6 the results of our exact IPA calculations
for 11 are compared with the results of the Martin-
Glauber theory calculated from the paper by Inteman
[24] and with the results of De Rujula [1]. Calculations
were performed using the RSC and Coulomb potentials
(to demonstrate the accuracy of simple Glauber-Martin
scheme for inclusion of screening). Calculations with the
Coulomb potential were performed using self-consistent
binding energies in the kinematic factor in (9) and (10).
All these spectra were normalized to the total EC.

The spectrum of the radiative '?°I 1s-electron capture,
normalized to the 1s nonradiative capture, is shown in
Fig. 1. The results of the exact IPA calculation per-
formed using the RSC potential are denoted by crosses
and those obtained using the Coulomb potential by cir-
cles. The results of the relativistic Martin-Glauber
theory, calculated from the paper by Inteman [24], are
also shown (solid lines). Good agreement between the re-
sults obtained using the Coulomb potential (exact IPA
Coulomb calculation and Martin-Glauber calculation)
and the self-consistent potential shows that the alteration
in the structure of the propagator, caused by screening, is
negligible. The modification of the wave function of the
initial electron cancels out because of the normalization
to nonradiative capture, which is dominated by the cap-
ture from the 1s state.

For higher shells, relativistic calculations were per-
formed by Zon [25] (for L and M shells) and by Pisk,
Posagi¢, and Logan [18] (2s subshell). Zon reported the
construction of a computer program that permits numer-
ical evaluation of the amplitude for the radiative capture
from L and M shells with all Coulomb and relativistic
effects included. The spectra of '*Er were analyzed. The
results obtained were compared with Glauber-Martin
nonrelativistic calculations where only terms through
first order in Za were retained.

For the 2s-state capture, the results obtained by Zon

3.0
2.5

2.0

125
|

53!
05 Qec = 150.6 keV

(do/dw)g/doec (107°m™)

0.0 8
80 100 120

60
w (keV)

FIG. 1. K-shell IBEC spectra for '>’I. Comparison between
the relativistic Glauber-Martin theory calculated from Ref. [24]
(solid line), exact IPA calculation with the RSC potential ( X),
and exact IPA calculation with the Coulomb potential (O).

show a sharp resonance that is associated with a forbid-
den 2s-1s atomic transition and therefore modifies the re-
sult of Glauber and Martin only in the binding-energy re-
gion. Elsewhere, the results of Zon and Glauber and
Martin are indistinguishable. Contrary to the results of
Zon, Pisk, Pasagi¢, and Logan [18] calculated a
modification of the results of Glauber and Martin not
only in the resonance region, but also for higher photon
energies where their values are always smaller. It should
also be noted that the shape of their 2s radiative-capture
spectrum near the resonance is different from that of
Zon; namely, the spectrum of Pisk, Pasagi¢, and Logan
exhibits a pronounced minima for energies slightly above
the resonance.

We have performed calculations for L and M states of
1251 using both the Coulomb and RSC potentials. For the
2s state, the shape of the spectrum and the values are
very similar to those obtained by Pisk, PaSagic¢, and Lo-
gan. To demonstrate the accuracy of the simple
Glauber-Martin scheme (to include the screening), we
have applied this scheme to our results obtained using the
Coulomb potential. In calculations with the Coulomb
potential, binding energies obtained with the RSC poten-
tial have been used to keep the same kinematical condi-
tions. The results of the calculation of the 2s and 3s
IBEC spectra (normalized to the total EC) are compared
with the nonrelativistic Glauber-Martin theory calculat-
ed from the paper of Intemann, as shown in Figs. 2 and 3.
These results show that Coulomb and relativistic effects
significantly modify the results of the Glauber-Martin
theory for higher s states not only in the resonant region,
but also at higher energies. In the low-energy region
(below the indicated pole), the 2s IBEC exact IPA results
and Glauber-Martin results approach each other. For 3s
IBEC, such agreement in this energy region is not to be
expected since other resonances occur there. It is also
evident that the Glauber-Martin scheme to include the
screening is very accurate in the whole energy region ex-
cept near the resonances.
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FIG. 2. IBEC spectra for radiative capture from the 2s state
of 1251, Comparison between the nonrelativistic Martin-Glauber
theory calculated from Ref. [24] (long-dashed line), exact IPA
calculation with the RSC potential (solid line), and exact IPA
calculation with the Coulomb potential (short-dashed line) after
multiplication by the screening factor.
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FIG. 3. IBEC spectra for radiative capture from the 3s state
of '2°I. Comparison between the nonrelativistic Martin-Glauber
theory calculated from Ref. [24] (long-dashed line), exact IPA
calculation with the RSC potential (solid line), and exact IPA
_calculation with the Coulomb potential after multiplication by
the screening factor (short-dashed line).

The results of the calculation of the radiative capture
from the 2p and 3p states of '?°I (normalized to the total
EC) are shown in Figs. 4-7. The contributions from p, ,,
and p,,, states are added up. Exact IPA results are com-
pared with the nonrelativistic calculations of De Rujula
and Glauber and Martin. As already stated, the results
of De Rujula give correct values in the pole region. As
can be seen from Figs. 4 and 5, the results of our calcula-
tion using the RSC potential and the results of De
Rujula’s simple formula agree very well near the pole.
Although the resonant widths in our model are zero, this
does not alter the results in the region of interest. In this
region (which is usually, at least, a few hundred eV far
from the pole), the real part of the propagator denomina-
tor is much larger than the imaginary one. The position
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FIG. 4. IBEC spectra for radiative capture from the 2p state
of 12°I. Comparison between the nonrelativistic Martin-Glauber
theory calculated from Ref. [24] (solid line), extended Glauber-
Martin theory of De Rujula [pole approximation given by Eqgs.
(10.5a) and (10.5b) in Ref. [1]] (long-dashed line), exact IPA cal-
culation with the RSC (Z — 1) potential ( X ), and exact IPA cal-
culation with the Coulomb (Z —1) potential after multiplica-
tion by the screening factor (short-dashed line). Contributions
from 2p, , and 2p;,, are added up.
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FIG. 5. IBEC spectra for radiative capture from the 3p state
of '2°I. Comparison between the nonrelativistic Martin-Glauber
theory calculated from Ref. [24] (solid line), exact IPA calcula-
tion with the RSC (Z —1) potential ( X ), and exact IPA calcu-
lation with the Coulomb (Z —1) potential after multiplication
by the screening factor (dashed line). Contributions from 3p, ,,
and 3p;,, are added up.

of the poles is determined by RSC eigenvalues which are
in fair agreement with experimental binding energies.
Other calculations (exact IPA calculation with the
Coulomb potential and the Glauber-Martin calculation)
incorrectly reproduce the position of the resonances also
owing to the use of the unscreened and/or nonrelativistic
propagator.

For higher energies, the results of De Rujula deviate
from exact IPA calculations with the RSC potential. In
this region, the Martin-Glauber theory is more appropri-
ate, as can be seen from Figs. 6 and 7. Very good agree-
ment is obtained between the exact IPA calculation using
the RSC potential and the results using the Coulomb po-
tential where the Glauber-Martin scheme to include
screening is applied.

The case of >Pt, which has a Qg value that falls 20
keV below the 2p — 1s resonance point, is very suitable
for a test of the theory for higher shells. Although the
capture is first-forbidden nonunique, the spectrum has
the shape of allowed transitions since QpcR <<Za [27].
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FIG. 6. Same as Fig. 4, but with the high-energy region of
the spectrum.
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FIG. 7. Same as Fig. 5, but with the high-energy region of
the spectrum.

In the paper of Riisager et al. [28], IBEC spectra were
calculated in two versions of the extended Glauber-
Martin theory. The extension consisted in applying the
sum-rule technique to calculate the effects of all poles
from unfilled electron and continuum states, together
with the using of the more realistic atomic wave func-
tions. The results of the calculation were compared with
experimental data. The comparison showed that all main
features of the spectra were in agreement with the results
of the calculation, although the absolute intensities
agreed only within a factor or 1.5-2. It was found that
the simple hydrogenic model hit right on the experimen-
tal points, and in their opinion this performance of the
simple model seemed to be fortuitous.

Partly motivated by this discrepancy, we have used our
code to calculate the IBEC spectrum for !*3Pt. The re-
sults of exact IPA calculations are shown in Figs. 8-10.
The model used in this paper does not make an explicit
distinction between two time orders of the process. To
estimate the uncertainty caused by that, we have per-
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FIG. 8. Total IBEC spectrum of '*Pt. Comparison between
exact IPA calculation with the RSC potential ( X), exact IPA
calculation with the Coulomb potential after multiplication by
the screening factor (dashed line), and the simple hydrogenic
model of Ref. [1] (®). This figure corresponds to Fig. 3 of Ref.
[28].
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FIG. 9. IBEC spectra for radiative capture from the 2p state
of '%3Pt, otherwise as in Fig. 8. This figure corresponds to Fig. 4
of Ref. [28].

formed the calculations in both the *3Ir (Z —1) and '**Pt
(Z) RSC potentials and found that the difference is negli-
gible. In all figures where the process is dominated by
pole terms, we show only the results performed in the
Z —1 potential. (This corresponds to the time order of
the process where the electron capture precedes the radi-
ative transition.) Figures 8-10 also show the results of
exact IPA calculations with the unscreened Coulomb
(Z —1) potential multiplied by a screening factor, and
the results of the simple hydrogenic model [1] (which hit
right on the experimental points of Ref. [28]) are also
shown.

As can be seen from Figs. 8—10, although the model
used consistently takes into account all screening and rel-
ativistic effects on the single-particle-approximation level,
it cannot explain the factor of 1.5-2 discrepancy between
theory and experiment. Namely, exact IPA results ob-
tained with the RSC potential are approximately the
same as those obtained using model II from Ref. [28] and
are consistently smaller by this factor than the experi-

7!Pt|93
10 =% Qe = 56.6 keV

FIG. 10. IBEC spectra from higher states of '*>Pt obtained in
exact IPA with the RSC (Z —1) potential: 3p IBEC spectra
(X)), 4p spectra (+), 2s +3s +4s spectra (O ), 3d spectra (®),
and 4d spectra (l). The solid line represents the total contribu-
tion from these states. The results of De Rujula’s pole approxi-
mation used for the calculation of 3p +4p spectrum are indicat-
ed by dashed line.
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mental values. The results obtained using the Coulomb
unscreened potential are even smaller, which is consistent
with the behavior of the spectrum below the p poles, as
seen from Figs. 4 and 5.

Of all the isotopes which decay by electron capture,
163Ho is perhaps the best suited for use in a light-neutrino
mass experiment. '*Ho has the lowest Qgc (=~2.8 keV)
value known; the neutrino is emitted with low energy,
and a neutrino mass of a few tens eV might have a pro-
nounced effect on the decay properties. K and L captures
are energetically forbidden, and therefore capture occurs
from M and higher shells. In the case of radiative elec-
tron capture, only N and higher shells contribute to the
experimentally interesting region—the high-energy end
of the photon spectrum. It is to be expected that the
shape of the spectrum in this region might be rather sen-
sitive to the model used. Uncertainties in the shape of
the spectrum can make the interpretation of experimental
data difficult.

In their work, Riisager et al. [28] calculated the IBEC
spectrum of '*Ho using the same model as for '*>Pt and
predicted the occurrence of an interference minimum
near the end point, which reduced the expected intensity
and also complicated the shape of the spectrum.
Springer, Bennett, and Baisden [3] measured the IBEC
spectrum of ' Ho, compared the data with the IBEC
model similar to that of Riisager et al., and found that in-
terference suppressions were smaller than predicted. In
their opinion, this discrepancy indicated that the atomic
models used in their calculations were inadequate. They
reported an upper limit of 225 eV for the mass of the
electron neutrino and concluded that improvements of
this result were severely limited by uncertainties in atom-
ic interference effects.

Using the code, we have performed calculations of the
IBEC spectrum for '®*Ho with the RSC potential for
18Dy, The results are shown in Figs. 11—14 for the re-
gion of the spectrum above 1.8 keV, which is the most
sensitive region to the neutrino mass.

In Fig. 11 we present the results of these calculations

FIG. 11. 5p radiative capture of '*Ho obtained in the exact
IPA model with the RSC (Z —1) potential (solid line). Qpc=35
keV is assumed. Contributions from the states 5p,,, (X) and
5p3,» (O) are shown separately. Interference minima are shift-
ed much more than expected from the corresponding eigenvalue
shift.

163
g7HO

Qec = 5 keV

1.8 2.0 2.2 2.4 .0 3.2 3.4 3.6

2.6 2.8 3
w (keV)
FIG. 12. IBEC spectra of '*Ho from the states with the most
dominant contributions obtained in the exact IPA with the RSC
(Z —1) potential: 4p IBEC spectra (long-dashed line), 5p spec-
tra (solid line), and 4d spectra (short-dashed line). Qpc=>5 keV
is assumed.

for the capture from 5p states. Contributions from 5p,
and 5p;,, are shown separately. Here we used the value
Qrc =5 keV, as in Ref. [28], to shift the end point of the
spectrum out of the region of interference minima. It
should be noted that, while the energy difference between
5p,,, and 5p;,, eigenvalues is only a few eV, the minima
of the 5p,,, and 5p;,, spectra are shifted by approxi-
mately 300 eV. The combined contribution shows less
pronounced suppression than those obtained by Riisager
et al. The IBEC spectra from other subshells show simi-
lar behavior, and those with largest contributions are
presented in Fig. 12. Again, the value Qgc =35 keV was
used. Contributions from the same subshells with the
value Qg-=2.82 keV are shown in Fig. 13, and the total
IBEC spectrum is presented in Fig. 14. All Ho spectra
are normalized to total EC.

Comparing exact IPA results obtained using the RSC
potential with those of Riisager et al., we have found that
our calculation gives a much simpler structure of the to-
tal IBEC spectrum, although interference minima are
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FIG. 13. Same as Fig. 12, except that Qgc =2.82 keV is used.
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FIG 14. Total IBEC spectrum of '**Ho calculated in the ex-
act IPA model using the RSC potential.

present near the end of the spectrum. In addition, the in-
tensity of the spectrum is higher near the kinematical
end, which might be promising in neutrino mass experi-
ments. We believe that our results might explain the
discrepancy found in the experiment performed by
Springer, Bennett, and Baisden [3].

V. CONCLUSIONS

Calculations of the IBEC spectra presented here have
been compared with the spectra obtained in the Martin-
Glauber theory as well as in several extended versions.
Although our results for 1s IBEC are in excellent agree-
ment with previous calculations, higher s IBEC spectra
show disagreement with Zon’s results, not only near the
resonance, but also for higher photon energies, including
the interference dip slightly above the resonance. Bind-
ing energies, obtained using the RSC-potential method,
differ from the experimental ones by at most a few per-
cent, and so the code works fairly well near the isolated
pole. In addition, the contribution from all other poles,
contrary to De Rujula’s extended versions, has been cal-
culated consistently. The code calculations confirm the
validity of the inclusion of the screening in the manner of
Martin and Glauber, showing disagreement only in the
vicinity of x-ray resonances. Comparing our results with
experimental data for ! Pt, we can see that the disagree-
ment in absolute intensities is similar to that obtained
with model II of Riisager et al. The code has been ap-
plied to '®*Ho, which owing to its low Q value, is a candi-
date for neutrino mass measurements via IBEC. Primari-
ly, because of fine-structure effects, our results show
much smaller destructive interference minima near the
end point, hence making the slope less complicated than
stated before.
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