PHYSICAL REVIEW C

VOLUME 47, NUMBER 1

JANUARY 1993

Nilsson-based truncation of the nuclear shell model
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A method for truncating the nuclear shell model in terms of Nilsson orbits is developed and tested in
the context of a simple model that admits coexistence between deformed and spherical configurations.
The method reproduces the exact-diagonalization spectra of both the spherical and deformed
configurations if angular momentum projection is carried out prior to diagonalization. Implementation
of this method in m-scheme shell-model codes is discussed.
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The nuclear shell model has evolved to the stage where
it can be used for systematic studies of nuclear properties
[1]. Its practical application is limited, however, to re-
gions of nuclei in which the shell-model dimensions are
small enough to be manageable. Typically, this means
light nuclei or nuclei relatively near closed shells. In oth-
er regions, including those in which collectivity arises in
its many manifestations, shell-model techniques are not
directly applicable without the introduction of severe
truncations. In spherical nuclei, truncations can be im-
plemented via weak-coupling considerations. In de-
formed nuclei, truncations based on weak coupling are in
general not appropriate. To produce a deformed correla-
tion structure from a spherical shell-model basis, one
must mix a large number of neutron and proton
configurations.

In recent years, several methods for truncating the
shell model in deformed (and other collective) nuclei have
been developed. One example is the interacting boson
model (IBM) [2], in which the shell-model Hamiltonian is
approximately diagonalized in a truncated weak-coupling
basis of selected neutron and proton configurations via a
bosonization assumption. Despite the enormous phe-
nomenological success of the IBM, a detailed microscop-
ic derivation for deformed nuclei has not yet been ob-
tained. Two other methods that have received much at-
tention in recent years are the fermion dynamical symme-
try model (FDSM) [3] and the pseudo-SU(3) scheme [4].
Both are purely fermionic approaches that make use of
symmetry considerations to define a collective truncated
basis. Since the single-particle splittings between active
orbitals do not respect the symmetries used in defining ei-
ther the FDSM basis or the pseudo-SU(3) basis, their de-
tailed application may require considerable mixing of the
fundamental configurations.
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In this Brief Report, we consider an alternative fer-
mionic method that truncates the shell model in well-
deformed nuclei through the use of the Nilsson scheme
[5]. Since Nilsson-model wave functions explicitly in-
clude the splittings between active single-particle orbitals,
such a method may permit the description of deformed
nuclear states with relatively little configuration mixing.

Nilsson wave functions are characterized by good K
values (but not good J) and thus are most naturally treat-
ed in the m scheme. In earlier efforts [6] to describe de-
formed light nuclei in terms of Nilsson orbits, the
analysis was carried out by first coupling to states of good
angular momentum and isospin and then using J7-
scheme methods. Because of recent advances in shell-
model technology, this is no longer necessary. Several
shell-model codes now exist [7] that work directly in the
m scheme, and they can be readily adapted to our pur-
poses. As a reminder, the m scheme is particularly well
suited for programming purposes since the presence or
absence of a particle in a given single-particle state may
be described by a 1 or a O and represented directly in
binary language.

The Nilsson model gives single-nucleon wave functions
in an axially symmetric deformed potential. The starting
point of our proposed method is to generate an optimum
set of Nilsson levels. The deformation parameter 3 may
be chosen either from a Hartree-Fock or a Hartree-
Fock-Bogolyubov calculation [5] for the nucleus (or
band) of interest. If we denote the creation operators for
the deformed single-particle orbitals by b' and those for
the spherical orbitals by a*, there exists a unitary trans-
formation connecting these two single-particle bases:

bi=3 cxam-x- (1)
J

The basic idea is to work in a basis in which the
valence particles are distributed over the deformed orbit-
als,

bk b, -+ bk 0) . )
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By inserting (1) into (2), the deformed basis states can be
transformed into a sum over spherical states. Care must
be taken to end up with patterns in standard order, but
this amounts to an overall sign depending on the number
of permutations required.

We gain nothing, however, by simply transforming
from one single-particle basis to another. If all deformed
orbits are included, the deformed-space diagonalization
will yield identical results to those obtained in the spheri-
cal basis. The essence of our method is to impose trunca-
tions based on Nilsson energetics. It is our hope that this
will permit us to incorporate the strong configuration
mixing induced by the neutron-proton interaction in a
small (and tractable) model space.

Once we carry out a truncation in terms of deformed
single-particle states, it is imperative that we incorporate
angular momentum projection. The Hamiltonian acting
in a truncated deformed basis will in general not separate
states of different J values. States of good angular
momentum can be retrieved by introducing the standard
projection operator [5]

PI=TI 77+ D/[JT+D)=J'J'+1)], (3
J'#J

which is already incorporated in the m-scheme shell-
model code OXBASH [7]. In principle, angular momen-
tum projection can be implemented either before or after
diagonalization of the truncated Hamiltonian matrix. As
we will see in the calculations to follow, it is usually
necessary to carry out the projection prior to diagonaliza-
tion, particularly if pairing is important. Isospin projec-
tion, if necessary, can be implemented in a similar way.

To test the utility of our proposed method, we have ap-
plied it to a simple shell-model problem involving four
identical nucleons occupying p;,,, ds,,, and s,,, orbits
and interacting via a sum of a pairing and a quadrupole
force. We have in mind a scenario common to many nu-
clei near closed shells in which quadrupole correlations
pull down deformed core-excited states into the energy
region of the dominant spherical closed-shell states.
With this in mind, we assume that the p;,, level is 10
MeV below the other two (which are assumed to be de-
generate). We furthermore assume a pairing force
strength of G =1 MeV and quadrupole strength of k=1
MeV.

Exact solutions for this model can be readily obtained
by direct diagonalization of the Hamiltonian matrix. The
resulting spectrum is shown in Fig. 1 (labeled EXACT).
Indeed the calculation produces a typical coexistence pat-
tern. The 0; ground state is primarily a filled p; ,2 orbit.
The 05, 27, and 4, states to a good approximation form
a rotational band:

[E(4])—E(0;)]/[E (2] )—E(0)]=3.32

This rotational band arises by exciting two particles from
the p;,, orbit into the ds,, and s, /, orbits, where they are
correlated strongly by the quadrupole force. The occupa-

TABLE 1. Orbit occupation numbers for the exact eigen-
states of the shell-model Hamiltonian described in the text.

Occupation numbers

State P32 dsp S1/2
o 3.189 0.556 0.255
0 2.755 0.812 0.433
2f 1.995 1.280 0.725
25 1.989 1.441 0.570
4f 1.989 1.785 0.226

tion numbers for the lowest states are illustrated in Table
I. Note that pairing induces some mixing between the
spherical and deformed OV states, as reflected in the 2p-
2h (two-particle—two-hole) admixture in the ground state
and the Op-Oh admixture in the 0; state.

Next we turn to a discussion of how we implement
Nilsson-based truncations in obtaining approximate solu-
tions for this model. A deformed basis corresponding to
the active levels of this model involves 12 single-particle
states, for which the deformed creation operators are

10.36 — 4+ 10.32 — 4+
10 — 9.92 — 4+ 10.01 — 4+ -
9.43 — 2+
8.90 — 0+
E 8.10 — 2+
(MeV) 7.66 — 2+
6.13 — 2+
5 — 5.18 — 2+ |
478 — 2+
443 — 2+
3.81 — 2+
50 — o+ 1.52 — o+
117 —or 0 RAR - gu— 0
0+ _
-3.01 — o+
419 — o+ AL 0" 495 — o+
5 |
EXACT NLEV=6 NLEV=8  NLEV=8
DAP DAP DBP

11

FIG. 1. Calculated spectra for the shell-model calculations
described in the text. The spectrum labeled EXACT refers to
an exact diagonalization of the shell-model Hamiltonian. Sub-
sequent spectra give the results associated with Nilsson-based
truncations; they are labeled according to the number of de-
formed orbits included (NLEV) and whether diagonalization
was carried out after angular momentum projection (DAP) or
before angular momentum projection (DBP).
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bI,K=(1/2)7 =a;3/2,1/z ’
b;,x=~(1/2>‘ :a;rs/z,‘l/z ’
bi3r,K=(3/2)‘ :aljs/z,}/z ’
bZ,K=~(3/2)’ =a;3/2,—3/2 ’
b;,K=(1/2)+ —a a‘;rsn,l/z +Vi-a? asTl/Z,l/Z ’
bz,K=—(l/2)+ —a a;5/2,-1/2 +Vi-d? a;rl/z,‘l/z ’
(4)

b;‘1<=(3/2>+ =a; ’

, 5/2,3/2
beg,K=-(3/2)+ =ad5/z,—3/z ’
b;,K=(1/2)+ =Vi-d’ a;5/2,1/2 —aa;rl/z,l/z ’
b11L0,K'=—(1/2)Jr =Vi1-a a’;rs/z,-l/z _aa;l/z,ﬂ/z ’
b’1r1,1<=(5/2)+ =a;3/z,5/2 ’

bTZ,K =—(5/2)" _a‘js/z,‘S/z :

Because of the simplicity of the model, the only mixing
that arises in a deformed basis is between the two K = %‘L
states (denoted by subscripts 5 and 9) and the two related
K= —%*L states (6 and 10). This mixing is represented by
a single parameter a.

To determine the optimum Nilsson basis, we carry out
a variational calculation appropriate to the 2p-2h de-
formed band. Namely we consider as a trial state

|[®)=bTblbIn]l0) (5)

and determine a so as to minimize the expectation value
of the Hamiltonian. This is equivalent to a (prolate) de-
formed Hartree-Fock treatment of the 2p-2h
configuration. The minimum energy occurs for a=0. 84.

We then carried out several sets of calculations trun-
cated according to this deformed basis. The simplest
reasonable truncation would be to include only the four
levels of the p;,, orbit (levels 1-4) and the lowest
K=%1% levels (5 and 6). Including just these six levels
and implementing angular momentum projection prior to
diagonalization in the truncated basis yields the spectrum
labeled NLEV=6 DAP in the figure. Already we see a
reasonable reproduction of the lowest states of the sys-
tem. The deformed band, which at the level of single-
particle energies lies 20 MeV above the ground band, is
brought down dramatically by the deformed correlations;
its band head lies 5.51 MeV above the ground state, in
fairly good agreement with the exact-diagonalization ex-
citation energy of 5.36 MeV. Furthermore, this extreme-
ly simple calculation gives a qualitative reproduction of
the spectrum of states in the deformed band. It should be
noted that in this calculation, the 0%, 2%, and 4" dimen-
sions are 3, 2, and 2, respectively, significantly smaller
than the corresponding dimensions (7, 12, and 8) of the
full calculation.

Adding one more (time-reversed) pair of Nilsson levels
(7 and 8) leads to the results labeled NLEV=8 DAP in

the figure. Now the agreement is in fact quantitative,
with the exception of the second 27 state. Clearly, trun-
cation of the full space in terms of a fairly small number
of deformed Nilsson orbits (appropriately chosen) is able
to describe the complicated coexistence dynamics of this
system quite accurately.

Finally, in the last spectrum shown in the figure (la-
beled NLEV=8 DBP), we present results obtained with
the same eight Nilsson levels (1-8) but with angular
momentum projection carried out after a diagonalization
in the intrinsic basis. These results are in rather poor
agreement with the exact results; in particular, the two
bands lie much too close in energy. And the reason for
this is quite easy to understand. The spherical p},(0)
configuration can only have a pairing interaction with the
0% member of the deformed 2p-2h band. But the intrin-
sic 2p-2h K =07 state contains all allowed even angular
momenta. Thus, treating pairing in the intrinsic frame
prior to diagonalization leads to a strongly reduced pair-
ing effect on the ground state. And this is why the
ground-state energy is so poorly reproduced. The mes-
sage is clear; angular momentum projection must be car-
ried out prior to diagonalization when pairing is impor-
tant.

In Table II, we show the overlaps between states ob-
tained at the various levels of approximation and those of
the exact calculation. The same conclusions that
emerged from the comparison of spectra show up here as
well. In particular, the NLEV =38 calculation with pro-
jection before diagonalization gives excellent quantitative
reproduction of the exact results.

At first glance, these results seem very promising.
They suggest that it is possible to quantitatively repro-
duce the dynamics of strong deformation in the shell
model in a relatively small basis built up in terms of ap-
propriate deformed Nilsson (HF) single-particle states.
Such a treatment not only reduces the size of the basis
but also gives a clear picture of the dominant physics un-
derlying the low-lying states. However, there are two
caveats that should be noted: (i) Even though the de-
formed basis is amenable to drastic truncation, it is still
necessary to calculate all of the Hamiltonian matrix ele-
ments in the large spherical basis. Thus, an important is-
sue still to be addressed before applying these methods to
more realistic situations is how large a valence space can
be handled with this method before the problem becomes
CPU-time prohibitive. (ii) While the method we have dis-
cussed is able to describe a single deformed configuration
and also its interplay with a spherical configuration cor-
responding to closed shells, it cannot be used with similar
confidence in a scenario involving two collective

TABLE II. Overlap of approximate eigenstates obtained in
truncated calculations with those resulting from exact diagonal-
ization of the shell-model Hamiltonian described in the text.

Overlaps
Calculation o 05 2 25 47
NLEV=6 (1-6) 0.996 0.991 0.894 0.970
NLEV=8 (1-8) 0.999 0.998 0.944 0.821 0.997
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configurations with very different deformations (e.g., one
prolate and one oblate). There, one would most likely
need to include two sets of Nilsson levels, and appropri-
ately orthogonalize the resulting states.

There is one final point to note. The test model that we
have used builds collective rotations from a quadrupole
interaction between like nucleons. In real nuclei, defor-
mation arises predominantly through the quadrupole
component of the neutron-proton interaction [8]. The
same methods that we have discussed here should also be

applicable in such cases.
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