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Intermittent behavior of nuclear multifragments
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The observed intermittent behavior in nuclear fragment distributions for 'U at 0.96A GeV, Kr at
1.52A GeV, and ' 'Xe at 1.22A GeV may be due to the mixing of fragments produced under different in-

itial conditions. Intermittent effects are significantly reduced by selecting a sample under the same initial
conditions. Except the cumulants of order two, all other moments are consistent with zero within their
statistical errors.

PACS number(s): 25.75.+ r, 24.60.Lz

Recently the concept of intermittency [1] correspond-
ing to the existence of large nonstatistical fluctuations,
which possess self-similarity at all scales, has been quite
popular in particle and nuclear collisions [2]. In this
technique the data are analyzed in terms of normalized
scale factorial moments (SFM) as a function of decreasing
rapidity bins. This procedure allows us to test the statist-
ical significance of the observed density Auctuations in or-
der to find whether they are simply statistical, or they
have dynamical origin leading to an intermittency pat-
tern in multiparticle production. In the former case the
SFM's are predicted to saturate with decreasing bin
width, whereas in the case of intermittency the moments
continue to increase according to a power law with de-
creasing bin width, down to the experimental resolution.

It was recently shown that nuclear fragmentation [3,4]
processes, in which several smaller fragments each more
massive than a particles are produced in a decay of a sin-
gle highly excited nuclear system, show signs of intermit-
tent behavior. It was further shown that the percolation
model [5], when applied to multifragmentation, also gives
similar intermittency behavior [3,4].

In hadronic and nuclear collisions, it has been found
that the observed increase in factorial moments is due to
the short-range correlations [6] and therefore the intro-
duction of a power law behavior may not be essential in
such collisions. In hadronic as well as in nuclear col-
lisions when ordinary factorial moments are decomposed
into cumulant moments, the former are seen to be dom-
inated by the cumulants of order two [7] and all other
moments are consistent with zero within their statistical-
uncertainties. This may be a reasonable explanation for
the presence of intermittency in hadronic and nuclear
collisions; one is thus interested to search for the possible
trivial origins of the intermittent behavior of fragment
yields in nuclear multifragmentation process and this is
the subject of the present paper.

We have recently shown that the charge distribution in
nuclear fragments for nonfissile events of U at 0.962
GeV [4], of "Kr at 1.522 GeV [8], and of ' 'Xe at 1.222
GeV [9] in nuclear emulsion is fitted with a power law.
The method of SFM was used to study fluctuations in the
nuclear fragmentation and intermittent behavior was ob-
served in all three projectiles. The charges of the projec-
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FIG. 1. Relation between impact parameter 6/b, „and pro-
ton multiplicity (N~) as obtained from geometrical prescription
of Ref. [12]: (a) U at 0.963 CxeV and (b) Kr at 1.52A GeV.

tile fragments were estimated by a combination of
different methods, such as —measurements of gap densi-
ty, grain density, relative track width, etc. and 6-ray
counting. For charges Z ~ 6 the resolution of these es-
timations was le and for Z )6 it was 2e (for details of
charge measurement see Refs. [8] and [10]). In these ex-
periments, we collected the data event by event basis with
fragmentations corresponding to many different impact
parameters [4,8 —10]. The impact parameter that charac-
terizes the initial state is not a directly measurable quan-
tity, but proton multiplicity in the final state is strongly
correlated with the impact parameter. For the hardness
of the collision, we used the release of Z =1 projectile
fragment X . By assuming the geometrical prescription
of Ref. [11], in Figs. 1(a) and 1(b) are shown for ~ U
[4,10] and Kr [8] beams a monotonic relationship be-
tween the proton multiplicity and impact parameter
through [b(N~)lb, „]= f iv dptt, where dp~ is the

P P P

normalized probability distribution for the measured pro-
ton multiplicity and b,„ is the maximum impact param-
eter for proton detection. The results shown for U and

Kr beams in Fig. 1 are associated to a wide range of ex-
citation energies of the fragmenting transient system.
Hence they give rise to large Auctuations of the initial
conditions for the nuclear disassembly reaction. For the
intermittency calculation [4,8], we used practically all
events and when taken together they correspond to
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difFerent excitation energies and this may have caused
[12] the presence of intermittency in multifragmentation
process. Now if we look at Figs. 1(a) and 1(b) it appears
quite resonable to distinguish between "central, " "mid-
central, " and "peripheral" collisions. But we may cau-
tion here that the relative scale between impact parame-
ter and proton multiplicity must not be overinterpreted,
since considerable fluctuations of proton multiplicity
must be expected even for collisions of a well defined im-
pact parameter.

In order to separate the events produced possibly un-
der the same excitation conditions, let us consider only
peripheral events. We used only those events which have
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FIG. 2. Variation of 1n(Fe )""as a function of —In5s for the
events with (a) N~ ~30 for ' U, (b) N~ &12 for Kr, and (c)
N~ ~ 18 for ' 'Xe. Values of q are depicted in Fig. 3(c) for the
' 'Xe data and are also true for the U and Kr data samples.
The solid lines in these figures are the least-squares fits to the
data points.

Kr (Z=36), and N ~18 [=(54/92)X30] for ' 'Xe
(Z =54) beams. We plot the variations of in(F )""as a
function of —In6s [4,9] for U, Kr, and ' 'Xe beams,
respectively, where SFM Fq of order q are calculated by

M
n)= g n (n —(). . . (n —e+())M

where

(Nf)=( g n
)

for events with mean fragment multiplicity (Nf ) in the
fragment charge interval As, which is divided into M bins
of size 6s =As/M. The number of fragments in the mth
bin (m =1,2, 3, . . . , M) is n . For nonflat fragment mul-
tiplicity distributions varying within a Anite bin of width
5s introduces an extra M-dependent correction factor R
[13],which is given by

M
R = g M~( n )~/(Nf )J . (2)

m =1

The values of the slopes a of fitted straight
lines for different orders of q for U, Kr, and ' 'Xe
as shown in Fig. 2(a), 2(b), and 2(c), respectively, up
to q =6 are: a =0.0046+0.0019, —0.0131+0.0009,
—0.0038+0.0008; a3 =0.0004+0.0009, —0.0093
+0.0007, —0.0017+0.0009; a4 =0.0026+0.0010,
—0.0037+0.0006, 0.0026+0.0010; a5 =0.0067+0.011,
0.0056+0.0017, 0.0088+0.0012; +6=0.0111+0.0011,
0.0202+0. 0040, 0.0181+0.0014. These (a~) values are
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FIG. 3. Variation of cumulant moments E, q =2, 3, 4, and 5 with 1/5s for (a) ' U at 0.96+ GeV (b) Kr at 1.523 GeV, and (c)
' 'Xe at 1.222 GeV obtained from factorial moments. The solid curve in all parts represents the best fitted values of ~ according to
Eq. (5) with experimental data. K~ =0 line is shown by solid lines.
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much smaller than for the whole sample [4,8]. We notice
that some values of the slopes are even negative and the
pattern resembling intermittency practically disappears
in almost all the beams excepting for q =5 and 6, and
that may be due to mixing of some of the events at higher
excitation energy (midcentral events) with peripheral
events. Now if we select only central events with 1V + 35
for U and ' 'Xe and N ~25 for Kr, the slopes of the
fitted straight lines up to q =6 are: a2 =0.0025+0.0001,
0.0009+0.0001, 0.0012+0.0001; a& =0.0039+0.0002,
0.0014+0.0001, 0.0019+0.0002; o.4 =0.0052+0.0002,
0.0019+0.0001, 0.0025+0.0003; aq =0.0065+0.0003,
0.0025+0.0001, 0.0031+0.0003; a6 =0.0079+0.0004,
0.0030+0.0002, 0.0039+0.0005. These values just like
peripheral events are also much smaller in comparison
with the values of the whole sample [4,8] for their respec-
tive beams. There is still a slight mixture of the sample in
each beam with different excitation energies as indicated
earlier. It shows that N cuts do not absolutely eliminate
central events from peripheral events and even a few per-
centage of mismatched events in the sample would not
take away completely the intermittent signal.

If intermittency is due to two-fragment correlation in
nuclear fragments then one may apply the technique of
cumulant moment where the largest parts of the factoria1
moments of all orders come from the two-fragment corre-
lation. The true correlation of any specific order is re-
vealed only when contributions from lower orders are
subtracted out of it. Thus to obtain the true contribu-
tions of higher order correlations (q )2), it is advisable to
express the factorial moments [7] in terms of factorial cu-
mulants,

Here y is a parameter related to the c.m. energy of the
system, and according to the one-dimensional statistical
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proximately valid in this case.
The cumulant moments thus obtained will be vanishing

in the absence of any true dynamical correlations. We
have thus computed the values of cumulant moments of
lowest orders (i.e., q =2, 3,4, 5) on the nuclear fragment
data for U, Kr, and ' 'Xe beams and they are shown
in Figs. 3(a), 3(b), and 3(c), respectively. Each event of
the data sets used for calculating the K moments has at
least 25 projectile fragments for U, and at least 10 frag-
ments for Kr as well as ' 'Xe (as are used in Refs.
[4],[8], and [9], respectively). In each beam K2 values of
second order cumulants are significantly different from
zero and with decreasing 5s, these values undergo a satu-
ration following an initial rise. The small variations from
zero in the values of cumulant moments for q =3 and
q =4 may be due to the approximation involved in calcu-
lating the cumulant moments using Eq. (4). For q =5,
the values of K are always zero for all the beams used
here.

We have also parametrized the experimental data in
terms of the algebraic expression

K2 =2yg [(5s/g) —I+e '~~]/5s

F2 —K2+1,F) =K~+3K2+1»

F~=Kq+4Kq+3(K2) +6K2+1,

F5 =K~+ 5K~+ 10K'+ 10K~K +215(K )2+ 10K2+ 1 .

Here,

(3)
P..O

O. O

K~(5y ) = q &i» Jq
M (5y )1 n; '

(p )2

is the cumulant of qth order, and
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etc. are the two and three particle correlation functions.
Here, p1(y1), p2(y2, y2), and pq(y1, y2, y&) are one, two,
and three particle densities, respectively. In the above
expressions of F4 and F5, the bar
averaging is done in the following way:
K2K 3

= 1 /M Q,K2K~, and so on.
Cumulants are obtained from the corrected factorial

moments Fq (5s)=F (5s)/R (5s). The relation between

F~ (5s) and the cumulants K (5s ) is not exactly governed
by the relation like Eq. (3). Such equations are only ap-
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FIG. 4. Variation of cumulant moments, K, q =2, 3, 4, and
5 with 1/5s for 'U at 0.962 GeV only for events with N~ ~ 30,
obtained from factorial moments. K =0 line is shown by solid
lines for q =3, 4, and 5.
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model of Ref. [8], g indicates how far the system is from
the critical point. In all cases the fitting process
yield reasonably low p values. The values of the param-
eter y, the strength of the correlation length g and y /
d.o.f. are for beams: U: y =0.029, /=2. 58, g /
d. o.f. =1.26; Kr: y=0.038, /=6. 47, y /d. o.f.
=0.71 ' 'Xe: y=0. 036, /=6. 83, y /d. o.f. =0.66.
These values are significantly different than those ob-
tained from a similar analysis done for shower particles
in heavy ion collisions [7]. When the same analysis is
performed for events with specific excitation energies
which correspond either to peripheral or central col-
lisions, i.e., with a cut on the proton number, we found
that the general observation of nonzero cumulants of or-
der 2 (X2)0), and vanishing cumulants of higher order
(K =0 for q =3,4, 5), holds true for all three data sets.
As an example, the schematic representation of the varia-
tion of E moments with 1/6s is shown in Fig. 4 only for
the U induced reactions having X ~ 30. Comparative-

ly larger statistical errors in this diagram are due to parti-
tioning of the sample size into a smaller subset.

We conclude that the observation of intermittency in
nuclear fragmenting events is due to the presence of
events produced with different impact parameters and
consequently with different excitation energies. In mul-
tifragmentation process, there is two-fragment correla-
tion and correlations higher than two do not exist beyond
the statistical uncertainties. The strength of two-
fragment correlation length as seen from the values of the
fitted parameter g' is different than in hadronic matter.
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