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First-principles calculation of the cross sections for nuclear excitation
by electron capture of channeled nuclei
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The time-dependent fields experienced by a nucleus as it passes through a crystal can cause transitions
to excited nuclear states. The transition rate is especially large when the speed of the nucleus satisfies a
resonance condition. Previous estimates of the nuclear excitation rates have been based on symmetry ar-
guments and experimental data for related processes. We present here a calculation of the nuclear exci-
tation rate which does not rely on these simplifying approximations. Vsing nonrelativistic quantum
mechanics, the excitation cross sections of highly stripped nuclei channeled along the Si(110) crystal
axis have been calculated. The results are smaller than those given by previous estimates by several or-
ders of magnitude. We note that there are similarly large discrepancies between different theoretical and
experimental results for other phenomena involving coupled electronic and nuclear transitions. The
reason for these disagreements is not clear.

PACS number(s): 23.20.Lv, 23.20.Nx, 32.90.+a

I. INTRODUCTION

As early as 1976, Goldanskii and Namiot [1] suggested
the possibility of observing inverse internal conversion of
the 26-min 73-eV isomeric state of U in a laser-
generated plasma environment, and they estimated the
excitation probability for this nuclear level. Recently, the
inverse process of internal conversion has attracted atten-
tion, and it was suggested as a useful technique for pump-
ing the population of specific nuclear levels, which is im-
portant for the development of gamma-ray lasers. In
1989, Cue, Poizat, and Remillieux [2,3] suggested that
the same process, which they called nuclear excitation by
(target) electron capture (NEEC), is observable when a
highly stripped ion is channeled in a single crystal. They
estimated the NEEC cross sections of several nuclei. Fol-
lowing that, Kimball, Bittle, and Cu [4] obtained similar
results by estimating the NEEC cross sections of the
same nuclei by using the experimental nuclear data, rath-
er than the atomic data used by Cue, Poizat, and Remil-
lieux.

We present here a more theoretical calculation of
several NEEC cross sections. Following Refs. [2—4], we
consider the following situations: The bare nuclei (ions)
channel through single crystals, and the target electrons
in the channel are captured into the EC-shell atomic orbit-
al of an incident nucleus. To conserve energy, the nu-
cleus is simultaneously excited. Although we consider
the same model, our results are not in good agreement
with the estimates obtained in Refs. [2—4]. We have in-
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corporated approximations in our calculations which
could introduce some error, but it seems to us unlikely
that these could be responsible for the large discrepancies
between our results and the earlier estimates. These ap-
proximation include using nonrelativistic wave functions
for the electrons, assuming a point nucleus, and ignoring
various many-particle effects. We will first present our
results in Secs. II and III in enough detail so that the
reader can see what has been done. The concluding sec-
tion will discuss the serious discrepancy between the re-
sults and will relate this discrepancy to a similar unsatis-
factory situation for the case of nuclear excitation for
bound-bound electron transitions (NEET's).

II. FORMALISM

A. Initial wave function of the nucleus-electron system

The initial state of the nucleus-electron system in the
NEEC process consists of a ground-state nucleus and a
free (target) electron, whose wave function is

PIM 0

where PtM and g are the spin wave functions of the nu-
cleus and electron and e' ' describes a free electron whose
momentum is haik. We assume the highly stripped ion
(nucleus) moves along the central z-axis of a crystal chan-
nel. The coordinate system is chosen to move with the
nucleus, with the origin at the nucleus. Energy is con-
served in NEEC, and so only electrons with a suitable ve-
locity with respect to the nucleus can excite the nucleus.
We expand e' ' in spherical harmonics:
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e'"'= exp[ikr cos(8)]

i'&4~(21+1)jt(kr) YIO(r),
1=0

(2)

where r and r are radial and angular coordinates of the
electron and jI(kr) and Y&o(r) are Bessel and spherical-
harmonic functions.

The free-electron wave function is distorted by the
Coulomb field of the nucleus. The electron's distorted ra-
dial wave function is obtained by replacing jt(kr) in (2) by
exp(i cr& )Ft(kr)/(kr). Here Ft(kr) is a Coulomb distorted
wave function and o t =arg[I (1+1+ii})]is the Coulomb
phase shift, with i} z, /(iii k), Ze is the charge of the nu-
cleus, and m is the electron mass. Thus the initial wave
function of the nucleus-electron system is

i'&4m(21+1)Yto(r) exp(io&)Ft(kr)/(kr)
1=0

i'&4m(21+1)(10 ,'m j—m) YtJ exp(iot)FI(kr)/(kr)
1=0j= I+1/2

oo j+I
i &4m(21+ 1)( IO —,'m 1jm ) (jmIm&l JM )4((jl, I)JM) exp(i crt )F&(kr)/(kr),

I =0 j=1+1/2 J=
lj —Il

(3)

where YI is a total-spin wave function of the electron,
@((lj,I)JM ) is a channel total-spin wave function of the
initial state of the spin-I ground-state nucleus coupled to
the angular momentum j of the initial electron which
gives the total spin J and projection I, and

(j,m, jzm21 jm ) are Clebsch-Gorden coefficients.

B. Final wave function of the nucleus-electron system

is related to the 2 -multipole field at the origin produced
by the electron.

The interaction Hamiltonian from a nuclear magnetic
moment PI with the magnetic field produced by the elec-
tron at the origin (the position of nucleus) is

Jy'Mi ~= .B' "+—.BPI' PI

where

In the NEEC process, the final wave function of the
nucleus-electron system is

-~Mi~ 2Pa 3(r S)B r —S
p 3

p
2 (9)

4 =R (r)4((lj,I )JM }, (4)

C. Interaction Hamiltonian of the nucleus-electron system

Noting that NEEC is a direct interaction process (vir-
tual photon process) [2] and assuming a nonrelativistic,
nonscreening point-nucleus model, the interaction Hamil-
tonian for an electric 2 -pole transition is [5]

~' "'=yL(&) y(e)

—= g ( —1)"yL„(&)yL, (e),

where R(r) is a radial wave function of a bound electron
state and 4((lj,I)JM) is the channel wave function of
final state with total spin J and projection M. (For nota-
tional convenience, we will consistently apply the tilde to
final-state wave functions and quantum numbers. )

is the magnetic dipole field produced by the electron [S is
the electron-spin operator, and du~=eh'/(2mc) is the
Bohr magneton] and

2Pa-BI=
T

is the magnetic field produced by the orbital motion of
the electron with orbital angular momentum I. We note
that because we accept the point-nucleus model, the nor-
mal delta-function term does not appear in Eq. (9) [6]. It
is easy to verify [7] that

3(r S)
V Vr

= —&8ir( Y~S)i,
V8~ g ( 1 ——@2'+vl 1v ) Yz„+ (r )S

where

yL„(N) = ge, r, Yz„(r, ) (6)

4me 1
y'p(') 2L+1 .L+i Y'p(') (7)

is the nuclear electric 2 -pole transition operator (t
indexes the protons in one nucleus) and

D. NKKC cross section of electric 2 -pole transition

Staring from the golden rule, the NEEC transition
probability is

T=, 1&BOIH...I~ ) I'p, (12)

where H;„, contains a summation over all multipole or-
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ders of electric and magnetic transition.
For an electric 2 -pole transition operator &' "', the

NEEC probability is

(EL) 1 1 T(EL)
nc 2(2I+ 1)

(14)

7 E"'=
l ( pl~'E 'l y ) l' (13)

For a nonpolarized incident nucleus and target electron,
the NEEC cross section for the electric 2 -pole transition
1s

where n is the density of the target electrons, and ~ is the
velocity of the electron (with respect to nucleus).

Substituting Eqs. (1), (4), and (5) into Eqs. (13) and (14)
and using conservation of angular momentum, (14) can
be written as

(R (r)4((lj,I )JM ) lyL, (N).yI. (e)lnc. 2(2I +1) I A'

I
2

X pi v'4m(21+ 1)(10, m
l jm—)(jmImrl JM )N((lj, I)JM ) exp(io I )Fi(kr)l(kr) 5JJ .

ljJ

(15)

Because the symbols of the interference terms between difFerent partial waves may be positive or negative, which cancel
each other, we ignore these interference terms for summation over l. Now Eq. (15) becomes

2
o.

~
'= g g (10,'mljm) —(jmlmrlJM)

mm, . M Ij&

2X(21+1) (R(r)4((lj, I)JM)lyL(N) yI (e)l@{(lj,I)JM)Fi(kr)l(kr)) 6JJ

where

2

g &1o—,'ml jm &'&jmImI
I
JM ) (21 + l)IH'"'I',

2 2I+1 n~fi
mmI M Ij

(16)

(10LOllO)

X W(IjIj;JL)W(ljlj; ,L)(I lylL(N) —lIl)JR(r)FI(kr)/(kr )dr .

H' "'= (R(r)@((lj,I)—JM)lyL (N) yI (e)l@((lj,I)JM)FI(kr)l(kr) )
1/2

I+I+2I+1/2+L+ 1 477(2j+ 1)(2j + 1)(21+ 1 )

2L +1

(17)

In (17) the W's are Wigner 6j coefficients and (IfllyL(N)llI, ) is the reduced matrix element of the electric 2 -pole
transition operator of the nucleus. The Wigner-Echart theorem and the explicit expression for the reduced matrix ele-
ments of tensor products [8] were combined with Eqs. (5) and (7) to obtain Eq. (17). Substituting Eq. (17) into (16) and
noting that

(10—,'mljm ) (jmIm~l JM) = 2J+1
mmIM

we have

(18)

(EL)
J &Illy, (N)llI )

Ij

2fR(r)Fi(kr)l(kr )dr (19)

(EL) ~ (EL)

J
(20)

For fixed I and (1,j), the NEEC cross section of the
electric 2 -pole transition is obtained from a sum over all
available J,

E. Momentum distribution of the target electrons

In Sec. IV we considered a single target electron. In
fact, there are many electrons in the path of the channel-
ing nucleus which can play the role of the target electron.
The electrons have a distribution of momenta. We take
the Thomas-Fermi approximation to deal with these
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effects [4]. That is, the target electrons are assumed to
form a Fermi sphere of a low-temperature electron gas
whose density n is the same as the density of the electrons
in the channel. In momentum space this Fermi sphere is
centered at po=mvo (with respect to the incident nu-

cleus), where —
Uo is the velocity of the incident nucleus.

Let f (p) be the probability of finding an electron in a
state with momentum p (with respect to the incident nu-
cleus) and f (p) V/h be the probability density in
momentum space (h is Planck's constant and V is a unit
volume in the coordinate space):

for Ip pal pF—
0 for Ip —p, I

)pF,
(p)= ' (21)

T(EL) ~ @ (EL) @ p

where pF is the Fermi momentum, which can be deter-
mined by the standard formula

PF=3~ A n .

Here the electron density n has been replaced by n, which
is the average density along the path of the channeling
nucleus. For the real crystal, we can calculate n [9]. For
example, along the Si(110) direction the calculated re-
sult is n =4.347 X 10 ' (fm ).

The total NEEC transition probability is obtained by
summing over all the target electrons. This gives an in-
tegral of the NEEC probability in momentum space,
which is limited by the energy-conservation condition.
The modified NEEC probability of the electric 2 -pole
transition becomes

p /(2m) is the electron's kinetic energy, u is its binding
energy in a captured orbital, and U is the nuclear excita-
tion energy. The energy-conservation condition is
satisfied when the magnitude of the electron's momentum
is pz (that is, a NEEC resonance occurs when Ipo I =pz ),
defined by

2
PE =U —u .
2m

(25)

Substituting Eq. (24) into (23) and noting that
(O'I&' 'I%'(p) ) depends only on the magnitude of p, the
modified NEEC probability of the electric 2 -pole transi-
tion is

T( ) —
I ( qpI~( )I qI( ) ) I2

J(mo) 42~37T p
2 VPF (EL)T

4~pA p
(26)

2 V(EL) PF (EL)
mo

4m PEA P
(27)

In the first step of (26), because pz ))pF, we replaced the
intersection of the Fermi sphere with the surface of
IpI =pz by the intersections of the Fermi sphere with the
plane Pz=PF (with pz along the direction of po).

Finally, the modified NEEC cross section of the elec-
tric 2 -pole transition is

X 5(E E)d-p (23) F. NEEC cross section for the magnetic dipole transition

where

2

5(E —E)=5 +u —U = 5(IpI —p~),
2P1 pE

(24)

The basic theory for magnetic multipole transitions is
similar to that for electric multipole transitions. Starting
from Eq. (12) and using Eqs. (8)—(11), the modified
NEEC cross section for the magnetic dipole transition is

I V 2 V 2mpF V plpF V 4~
Ill4''p~A'p 4ir'p~iii'p 2(2I + 1)n ~A

X g g (2J+1)(2j+1)(2I+1)[W(IjIj;Jl)] (2p~)
J lj

X 5 ( —1)' '—'-Jv'l(1+1)(21+1)(2j+1)W(jllj;'1)—
2

l —,
' j

+3&5&(21+1)(2j+1)(1020I10) 1 —,
' j

2 1 1

X fRf(r)F&(kr)/(kr )dr
(28)
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FIG. 1. Momentum-space diagram illustrating the dynamics
of NEEC. The nucleus can be excited if it is struck with an
electron whose momentum lies on the surface of the energy-
conserving sphere of radius pF. The Fermi sphere is displaced
from the origin by a momentum p0, which represents the
motion of the nucleus with respect to the electron gas. When

p0 =pE, a resonance NEEC process occurs.

where

a b c
d e f
g h i

is the 9j symbol [7] and &IllplllI & is the reduced matrix
element of the nuclear magnetic moment.

III. CALCULATIONS AND RESULTS

R(r)= 1 T/0

&~a' (30)

where a =ac/Z, and ao=A' /(me ) is the atomic Bohr
radius. The nuclear reduced matrix elements &Ill)Lt~lII &

and &IllyL(N)III & are evaluated by using two methods.
In the first method, they are deduced from the measured
partial radiative width 1/,. [11]. In the second method,
they are deduced from the %'eisskopf estimates of the re-
duced transition probabilities, which are related to the re-
duced matrix elements by the formulas [8)

and

Il/,'"=
2I+ 1

I &IllyL, (N) III & I' (31)

g (EL) 1 3 R (inc fm)
4~ I. +3 (33)

and

&(M&)
fi 4

'2

( in p&), (34)

&I; "=
2I+1 l&IIIPIIII &I'-

The Weisskopf estimates of these reduced transition
probabilities are [8]

r 2

Using the formulas (27) and (28) deduced above, we
calculated the NEEC cross sections of 67 Ho, 7O Yb,
75 Re, 75 Re, and 78 Pt. In these calculations the initial
states of these nuclei are ground states and the final states
are first excited states. The nuclear properties (J"of the
ground and excited states, excitation energy U, and par-
tial radiative width I I, ) are obtained from standard
references [10] and are listed in Table I. The resonance
energies of the incident nuclei are also given in Table I.
They are determined by

(U —u) .M
Pl

The resonance widths have been described in Ref. [4].
The final state of the electron is a 1Si&2 state with its
wave function

where the nuclear radius R =ro A ' and ro =1.20 fm.
In principle, the NEEC cross sections are sums over all

available multiple orders of the electric and magnetic
transition operators which conserve parity. In practice,
the transition probabilities rapidly decreased with in-
creasing order, and so we need to consider the lowest
nonzero terms. On the other hand, the parities of the
final nucleus-electron system and initial nucleus in our
calculations are fixed and the available l values of the ini-
tial electron wave functions are all of odd or even I for
parity conservation. This means that the available mul-
tipole orders I. of transitions are a11 of odd or even. The
above considerations make it possible that we only need
to calculate the NEEC cross sections for electric quadru-
pole and magnetic dipole transitions in our calculations.
The results were obtained for the five nuclei listed in

TABLE I. J; and Jf of initial and final states of nuclei, nuclear excitation energies U, resonance energies 8, electronic ionization
energies u, nuclear partial radiative width rf;, and NEEC cross sections o.

1 and o2 (corresponding nuclear reduced matrix elements
deduced from I I; and Weisskopf estimates, respectively) are listed for nuclei channeled along the Si& 110& lattice. Earlier estimates
of Ref. [4] (o*)are also shown.

Nucleus

165Ho
67

70

185R
75

187Re
75

78
195pt

7
2

5—
2

5+
2

5+
2

9—
2

7
2

7+
2

7+
2

3
2

0.0947

0.0786

0.125

0.134

0.0989

54.2

12.6

76.5

92.7

14.7

0.0611

0.0666

0.0765

0.0765

0.0827

29.9

14.3

64.5

58.9

3.90

Jf U (MeV) @ (MeV/u ) u (MeV) I f; (peV)
Type of

transition

E2
M2
E2
M1
E2
M1
E2
M1
E2
M1

0.48E—3
0.25E—3
0. 16E—2
0.44E —3
0.42E—3
0.30E—3
0.26E—3
0.21E—3
0.21E—3
0.48E—4

0.39E—8
0. 14E—2
0. 11E—7
0.31E—2
0.70E—8
0. 19E—2
0.67E—8
0. 18E—2
0. 19E—7
0.25E—2

2.8

20.6

3.1

2.6

5.1

a. , (mb) a2 (mb) o* (mb)
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Table I. These are compared with estimated values from
Ref. [4] in the last column of Table I.

IV. CONCLUSIONS AND DISCUSSION

As Table I shows, our calculated NEEC rates for 67 Ho

7() Yb 75 Re, 75 Re, and 78 Pt channeled along the
Si(110) direction are all several orders of magnitude
smaller than earlier estimates [4]. There are no experi-
mental NEEC results.

Our calculations are based on some approximations
which may have affected the results. In particular, we
applied nonrelativistic quantum mechanics even though
characteristic velocities needed for NEEC in the nuclei
we studied vary from 0.22c to 0.47c. We also ignored
inner-shell screening and the nonzero radius of the nu-
clei. The nuclear size is important because it will change
the Coulomb field of the nucleus and affect the wave
functions of the electrons. In addition, the electron will
be able to penetrate the nuclear charge and current distri-
butions, and this will change the transition matrix ele-
ments. However, it seems unlikely that any of these
corrections would change our results by the several or-
ders of magnitude needed to achieve agreement with the
earlier estimates. Thus the real magnitude of the NEEC

process is very much in doubt and in need of experimen-
tal verification.

Discrepancies of the same order of magnitude exist for
the case of "nuclear excitation by an electron transition, "
called NEET. In this process the nucleus is excited when
an outer bound-state electron makes a transition to a K-
shell hole. For this process we are aware of four different
calculations: early perturbation estimates by Morita [12],
a more careful calculation based on perturbation theory
and the golden rule by Ho, Zhang, and Yuan [5], a
@ED-based approach by Pisk, Kaliman, and Logan [13],
and an extension of this latter work by Ljubicic, Kekez,
and Logan [14]. These calculations di6'er by orders of
magnitude. There are also five reported experiments
[15—19]. Three of these experiments [17—19] measure
the 1.26-keV excitation probability for ' Os, but the ex-
periments also differ by orders of magnitude. For ' Os,
the calculation which agrees best with experiment de-
pends on which experiment one believes. Clearly, our
quantitative understanding of combined electronic-
nuclear transitions leaves much to be desired.

We are pleased to acknowledge the useful comments of
Frank Hagelberg, Nelson Cue, and Yu-Kun Ho.
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