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Nuclear density of states for moving fused compound systems
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The single-particle distribution function of moving fused compounds, with velocities of the order of a
few tenths of the velocity of light, are calculated using the discrete spectrum of single-particle states of
deformed nuclei. The polarization of single-particle mornenta in the direction of Aight is clearly brought
out. Results are presented for Ca, Ni, 'As, and Zr. For small temperatures when the internal exci-
tations are small, the nuclear level density varies as E{E —M )' where E is the total energy of the
moving nuclei, and, as excitation increases, the internal degrees of freedom dominate and the level densi-

ty p-e, where S is the entropy of the system, varies exponentially. The level densities thus calculated
are used to evaluate light charged-particle emission from hot fused compounds in motion.

PACS number{s): 21.10.Ma, 21.10.Dr, 21.10.—k

Recent experiments in heavy-ion collisions in which
fused compounds are moving with nearly a few tenths of
the velocity of light yield interesting data on the nuclear
level density based on the evaporated particle spectra. In
Ref. [1], the spectra of the emitted particle are fitted by
assuming a moving source (or sources) and a Maxwellian
distribution function. In view of these developments it
becomes necessary to theoretically investigate the phase
space available for moving hot nuclei.

The statistical theory employed here is the same as the
one used in our earlier calculations [2], except for the
modification necessitated due to the translational motion
of the system, where we have included only deformation
and rotational degrees of freedom in the superAuid nuclei
[3]. The partition function in the present calculation has
two parts:

The Lagrangian multipliers a and P conserve the average
particle number and energy of the system. In view of Eq.
(3), another Lagrangian multiplier v for total momentum
conservation has to be introduced and it could be easily
recognized as the collective translational velocity of the
nucleus [4]. With these modifications, the statistical
theory is made suitable to study hot nuclei in motion.

A moving fused compound with internal degrees of
freedom cannot be treated as a rigid body in motion. The
nucleonic motion with Fermi energy EF-40 MeV and
kF-1.36 fm ' inside the nucleus at rest should have net
momenta P=0. The total momentum is composed of an
equal number of nucleons moving with +p, and —p;, so
that.

g n; p; =0—,
—

where

Zint Ztrans

Z;„,= Q [1+exp(p —e; )P],

Ek=v gp (3)

where v is the velocity of the moving frame and p; are
the single-particle momenta of the nucleons.

The grand partition function is given by

Z = g exp[ —P(E;+Ek )+aN; ], (4)

where E, is the internal total energy

E, —gn, e, ,
J

with X; the number of fermions given by

Z„,„,= exp( Et,P), —

where p is the chemical potential, P (=1/T) is the in-
verse of the temperature, and

where + indicate the direction of single-particle momen-
ta, i.e., parallel or antiparallel to the direction of Right of
the nucleus and n;—+ are the corresponding occupation
probabilities.

In the moving frame these occupational probabilities
may be written after applying the necessary transforma-
tion for single-particle energy e as [5]

n, = [1+exp[(Ee, —p, .P)/M p]P]—(8)

where p; is the single-particle momentum of the ith nu-

cleon, E and P are the total energy and momentum of the
nucleus, M is the rest mass of the nucleus of mass number
3, and p is the chemical potential fixed by number con-
servation. The term p, P is the term due to translational
momentum P. If p, =p„and P is along the z direction,
the occupational probability is given by

n, =[1+ex. p[(Ee, —p„P)/M —p]P]
The single-particle distribution function in the Fermi

gas model is given by [5]

2V /(2~)
g(pz) 3

d pi

X [ 1+ exp[(Ee p, P ) /M —p] /T ]—
(10)
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where V is the volume in the moving frame.
In the limit E-P or E/P —1, i.e., in the infinite

momentum frame,

g(x)= 2 V/(2~)
fi

M Tx in[1+ exp[(p —Mx/2)/T]]
(p, ) ' = [(v+ —,

' )mivh']'i (17)

where y= 1/(1 —v )'
For simplicity let us use a single-particle spectrum gen-

erated by a deformed oscillator potential of the Nilsson
type [7]. We may then write [8]

where we have assumed

p, =xP . (12)

where v is the oscillator quantum number corresponding
to the z direction and takes values 0, I, . . .N, N is the to-
tal oscillator quantum number:

N=v+A, , (18)
The parameter x which varies from 0 to 1 is the momen-
tum fraction of the nucleons. The number conservation
equation,

fg(x)dx = A, (13)

A, being the oscillator quantum number corresponding to
the perpendicular direction.

If the relative velocity v is along the z direction then

v.p, =+v(p, ) .
fixes p in Eq. (11). When T~O,

M xg(x)=
3 (p —Mx/2)[2V/(2~) ] .

Hence

p=(3m fi A/V)'

(14)
The total energy of nuclear system is given by

E=y gn, +e, +—van, p,
—

and the total momentum is given by

(20)

n; (e, )=(1+ expII3[y(e, —v p )
—IM]]) (16)

The nucleon distribution function is shown in Fig. 1 in
the limit E-P (infinite momentum frame) as a function
of x, the momentum fraction of the nucleons. This corre-
sponds to the totally aligned motion of nucleons in the
direction of Aight such that momentum p, of the nu-
cleons is given by p, =xP, where P is the total momentum
of the nucleus.

In general, we can treat the relative velocity v (in units
of c) of the moving frame as a Lagrangian multiplier and
write [6]

P= gn, p,
+— (21)

The second term in the energy equation is the contribu-
tion of translational motion of the whole nucleus.

Since the total number of particles A is fixed,

n+.
1 (22)

The above equation determines p for a given v and T.
The statistical nuclear density of states in the station-

ary frame, i.e., v =0, which has been investigated in Refs.
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FIG. 1. The distribution function g (x) vs the scaling parame-
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is shown in Fig. 2. At high temperatures, the internal
contribution pt, which follows the relation pt cc exp(2aT),
increases exponentially with T and therefore the net nu-
clear level density also shows exponential behavior. This
is shown in Fig. 3.

In Ref. [1], the emission probabilities are calculated by
fitting the data using a Maxwell-Boltzmann distribution
in the moving frames of the emitting systems. Here we
calculate the emission probability using quantal Fermi-
Dirac statistics, to calculate the phase space available for
the light charged-particle emission.

The emission probability is written as [10]

C&, =Cp (U)E, Tt, (30)

where p, the level density [Eq. (29)], is a function of the
effective excitation energy U and the average velocity of
the fused compound system [6]. U =E*—S, E„w—here
E*=E(T) E(0),—S, is the ejectile separation energy,
and E, is the ejectile energy. TI is the transmission prob-
ability. For neutron emission T& =1 and for charged par-
ticles Tt ( 1 [11].

In Fig. 4, the emission probabilities in the reaction
' N+ Fe~ 'As are plotted against the ejectile energies

for different light charged particles. All the plots are nor-
malized to 100. The peaks are shifted towards higher en-
ergies as the ejectile mass increases. This shows that at
lower energies the proton emission is more probable.

In conclusion, we state that a method of evaluating nu-
clear level densities in heavy-ion reactions, when the
fused compound is highly excited and moves with veloci-
ties greater than the average nucleonic velocities, is
presented. Its application is illustrated in the reaction

Fe(' N,x)B. The effect of translational motion on nu-
clear level density at a given temperature is illustrated in
the Fermi gas model as well as in the discrete single-
particle model. An extension of this method to rotating
nuclei in motion is underway.
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