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Energy-dependent global Dirac optical model potentials are found by fitting proton elastic scattering
data in the energy range 20-1040 MeV for '°C, %0, “Ca, *°Zr, and 2°Pb. Three different energy- and
atomic-mass-number-dependent global Dirac optical potentials are also obtained. A number of charac-
teristic features of the potentials are discussed. In addition, the mean free path, the effective mass m.J,
the Dirac mass M *, and the relativistic energy shift E * are calculated.

PACS number(s): 24.10.Ht, 25.40.Cm

I. INTRODUCTION

For several years Dirac phenomenology has been used
to determine global nucleon-nucleus optical potentials
which span energies from 20 to 1040 MeV [1-3]. This
phenomenology, which uses the Dirac equation to de-
scribe the dynamics of the nucleon, naturally admits the
major characteristics of the nonrelativistic nuclear opti-
cal potential, namely, its central and spin-orbit terms. It
easily accommodates the underlying nucleon and meson
degrees of freedom which form the basis of descriptions
of the nucleon-nucleon force at distances relevant to most
nuclear phenomena. Moreover, the incorporation of rela-
tivistic dynamics is certainly warranted at medium ener-
gies. Recent work by Cohen, Furnstahl, and Griegel pro-
vides interesting evidence that the large scalar and vector
fields of Dirac phenomenology may be related to quark
degrees of freedom of the nucleon [4]. This work may
lead to links between successful nuclear phenomenology
employing large and canceling Lorentz scalar and vector
fields and QCD.

The global potentials described in this paper give need-
ed input for the analysis of a large number of nuclear re-
actions and provide a testing ground for more fundamen-
tal treatments of the nuclear optical model. To the best
of our knowledge, the quality of the fits that we achieve
and the energy and target mass range considered provide
the most complete global optical model potential current-
ly available. Results for heavy spin-zero targets and pro-
ton energies from 20 to 1040 MeV were presented in
Refs. [1-3]. This paper is a continuation of that work in
which the analysis is extended to light targets. In partic-
ular, we present energy-dependent but A-independent
global potentials which reproduce proton scattering ob-
servables for proton energies from 20 to 1040 MeV for
the following targets: 2C, '°0, *°Ca, °°Zr, and 2°*Pb. In
addition, we have found energy- and A4-dependent global
optical potentials for this energy region obtained by
fitting proton elastic scattering observables from 10 spin-
zero targets including those mentioned above.

In Sec. II the form of the global optical potential is
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presented. In Sec. III the data sets used in the analysis
and their treatment are delineated. Section IV gives the
results from the A-independent and A-dependent analy-
ses. Section V gives a brief summary.

II. THE GLOBAL RELATIVISTIC OPTICAL
MODEL POTENTIALS

This work uses the scalar-vector (SV) model of Dirac
phenomenology, which has been successful in producing
excellent agreement with elastic proton-nucleus scatter-
ing observables; see, for example, Refs. [1-3]. The gen-
eral form of the scalar or vector optical model potentials
is written

U(r,E, A)=VVYE, A f"(r,E, A)+VSE, A)fS(r,E, A)
+iWNE, A)g"(r,E, A)
+iWS(E, A)gS(r,E, A) , (1

where the superscripts ¥ and S refer to volume or surface
peaked terms. Because we consider only proton data we
did not include a term dependent on isospin. The global
extraction of the isovector potential will be the subject of
future work. Previously [3], no surface peaked term was
present in the real part of the potential and the
geometries were taken to be symmetrized Woods-Saxon
(SWS) shapes

[r—R(E, 4)]

v V—
/" and g a(E, A)

1+exp

—[r+R(E, A)]

X a(E, A)

1+exp

} (2)

with the surface peaked geometries given by

S, — S i_ V,
g (rE,A)=a (E,A)dR (r,E, A) . (3)

In this paper, we use a geometry that is similar to the
SWS that we call the COSH form, in which the
geometries are written
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{cosh[R (E, A)/a(E, A)]—1}

fV and gV_

~ {cosh[R (E, A)/a(E, A)]+cosh[r/a(E, A)]—2} ’
s_ {cosh[R(E, A)/a(E, A)]—1}{cosh[r/a(E, A)]—1}

This form has several useful features when considering
A-dependent fits. For example, for all 4, fV(r =0)=1,
fYr=R)=0.5, fS(r=0)=0, and f5(r =R)=0.25. The
SWS and COSH form factors have very similar shapes;
however, the behavior of the COSH form at the origin
and at » =R is advantageous when using global potentials
which are functions of target mass number as well as pro-
jectile energy. We found that the COSH form gave
slightly better fits to the data than the SWS form.

The optical potential consists of scalar and vector
terms each having real and imaginary parts. Each of the
eight strengths, for example VY(E, 4) in Eq. (1), is
parametrized in terms of the proton c.m. energy E and
A, the atomic mass number of the target. In this work
we do not include any theoretical constraints on the pa-
rameters although we have done so in the past (see for ex-
ample Ref. [1]). Instead we use, as we did in Ref. [3], po-
lynomials of the form

4 3
VUE, A)=vy+ 3 0, x"+ 3 v, 14y "+vgxy

m=1 n=1
+ogx?y +voxp?, (6)

where x =1000/E, y = A /(A +20). The same form is
used for the rest of the potentials VS(E, 4), WY(E, A),
and WS(E, A). The scalar and vector potentials and their
real and imaginary parts all have different geometry pa-
rameters. The form of the E and 4 dependence is given
by

4 3
rot 2 raxTt 3 1,4y trgxy

m=1 n=1

R=Al/3

+rox’y +rxy? |, )
4 3
a=ag+ 3 a,x"+ 3 a, .y "+tagxy
m=1 n=1
+agx?y +axy? . (8)

This potential model has a maximum of 264 parameters
although we have not used all of them. The generality of
the parametrization allows us to accommodate both light
and heavy targets and to extend the analysis to include
energies between 65 and 20 MeV. We find that in order
to obtain acceptable agreement with experiment more pa-
rameters are required than in our previous E- and A-
dependent global analysis, which included only heavy tar-
gets and energies from 65 to 1040 MeV [3]. In the actual
fitting procedure the geometrical parameters for the po-
tentials are taken to be the same for surface and volume
forms, reducing the number of parameters varied to 176.
In order to allow tests of the sensitivity of the reaction
under consideration to the input optical model potentials,
two other global potentials were also found. In the first

{cosh[R (E, A)/a(E, A)]+cosh[r/a(E, A)]—2}?

[
of these optical potentials the real surface peaked terms
are set to zero reducing the number of parameters to 154;
a further reduction to 106 terms is made by removing the
A dependence in the imaginary surface potentials and by
setting the cross terms in Egs. (6)—(8) to zero. The com-
plete global data set consists of 8741 points, and in view
of the structure in the observables that are fit, the number
of parameters is not excessive.

Although recoil effects are presumably small for heavy
targets this may not be the case for lighter targets. In
analyses using the Schrodinger equation the potentials
are multiplied by the reduced mass. In the relativistic
case there is no unambiguous procedure. As in Ref. [3],
we employ the recoil correction given by Cooper and Jen-
nings [5]. This amounts to introducing Cooper-Jennings
recoil factors in both scalar and vector potentials. The
two factors R; and R, multiply the Lorentz scalar and
vector optical potentials, respectively. For the scalar po-
tential the Cooper-Jennings factor is

R, =(target mass)/V’s , ©

where V's is the total c.m. energy of p-A system. The
corresponding Cooper-Jennings factor for the vector po-
tential is

R, =(total c.m. energy of target)/V's . (10)

These factors multiply the scalar U, and vector U,+V,
potentials in the Dirac equation,

{a-p+Blm +U(r)]+[Uy(r)+V, (r)]}W(r)=EW¥(r) .
(11)

The Coulomb potentials ¥V, is determined from the
empirical charge distribution.

For heavy targets these factors are close to unity but
for light targets they could have an effect. For example
R, is 0.87 for 800 MeV p + !2C scattering. However, we
have found that the global potentials obtained without
the Cooper-Jennings recoil factors are quite similar to
those obtained when the factors are used. This is under-
standable since they constitute an additional E and A4
dependence in the potential strengths which is subsumed
in the search. If we turn the recoil factors off and mini-
mize again we find little difference in the resulting y? per
degree of freedom. For the individual potential strengths
the maximum difference at any energy is at most 10%
and less than 1% change in the geometry parameters.

III. DATA ANALYSIS

The references for the data used in this analysis are
given in Table I. As in Ref. [3], we restrict the data sets
to observables at angles less than 90° in the c.m. or angles
corresponding to momentum transfer less than 3 fm™!,



TABLE 1. Listed are the experimental data sets used in the global searches. In addition the predicted
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reaction cross sections for each of the fits are also given.

o z(mb)
EDAD-fit

Target T, (MeV) EDAI-fit fit 1 fit 2 fit 3 Reference
2c 29.00 420.2 435.5 433.1 422.7 (6]
30.30 415.9 429.0 425.6 414.2 (7]

49.00 358.8 363.0 348.4 327.7 (6]

49.48 357.4 361.8 347.0 326.1 (8]

61.40 323.3 335.6 317.0 294.8 (9]

65.00 313.5 329.0 309.7 287.4 [10]

122.00 202.2 269.0 254.4 230.5 [11]

160.00 177.8 252.3 246.4 215.2 (11

200.00 177.6 243.0 243.9 205.0 [11-13]

300.00 201.1 233.0 235.4 194.9 [14]

398.00 215.8 227.4 218.6 199.1 [15]

494.00 227.2 223.7 203.0 211.6 [16]

797.50 238.4 235.3 209.9 250.0 [17,18]

1040.00 198.6 259.4 243.8 2322 (19,20]

150 23.40 600.1 538.9 549.0 591.9 [21]
24.20 592.9 533.0 542.4 582.7 [22,23]

24.50 590.2 530.8 540.0 579.4 [21]

27.30 566.8 512.7 519.6 550.6 [21]

27.60 564.4 510.9 517.6 547.8 [22,23]

30.10 545.5 497.0 501.8 525.4 [21]

30.40 543.3 495.4 500.0 522.9 [22,23]

34.10 517.6 477.0 479.1 494.1 [21]

34.20 517.0 476.6 478.6 4934 [22,23]

36.80 500.1 465.0 465.4 475.6 [21]

37.10 498.2 463.7 464.0 473.7 [22,23]

39.70 482.4 453.1 451.9 457.8 [21]

40.00 480.6 452.0 450.6 456.0 [22,23]

43.10 462.9 440.5 437.5 439.2 [21]

46.10 446.9 430.5 426.0 424.8 [21]

65.00 367.1 383.0 372.3 364.3 [10,24]

100.60 288.3 333.7 321.5 320.5 [25]

135.00 260.8 309.9 301.9 305.3 [26]

179.90 252.8 295.1 292.6 293.6 [27]

317.50 260.4 283.3 275.3 268.0 [28]

498.00 277.4 282.0 250.0 269.1 [29,30]

650.00 296.1 294.2 257.8 296.9 [29,30]

800.00 304.7 316.3 289.6 323.0 [31,32]

1040.00 284.2 351.9 339.1 323.6 [33]

Mg 65.00 498.5 489.8 489.8 [24]
255 65.00 550.1 538.8 543.3 [24]
“Ca 21.00 894.0 891.4 883.4 893.5 [34,35]
23.50 883.7 885.4 878.2 882.7 [36]

25.00 875.9 878.7 871.7 874.3 [36)

26.30 868.0 871.5 864.4 866.0 [36,37]

27.50 860.4 864.0 857.0 857.7 [36]

30.00 844.0 848.1 840.8 840.1 [36,37]

35.00 814.0 818.3 810.9 807.8 [36,38]

40.00 788.2 791.1 783.5 780.0 [36,39]

45.00 766.1 766.2 758.6 756.1 (36,38]
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TABLE 1. (Continued).

ORr (mb)
EDAD-fit
Target T, (MeV) EDAI-fit fit 1 fit 2 fit 3 Reference
48.00 754.4 752.5 745.0 743.4 [36,40]
65.00 705.3 690.3 685.3 690.9 [41]
80.00 676.4 652.0 651.2 661.9 [42,43]
100.00 647.0 616.9 622.8 636.0 [25]
135.00 607.0 581.5 598.7 606.5 [43]
160.00 584.6 567.6 590.8 591.7 [42,43]
181.30 569.2 560.0 586.4 581.9 [43]
200.00 558.5 555.2 583.3 575.1 [13]
318.00 531.5 539.4 461.3 559.4 [44]
362.00 531.6 536.0 552.0 561.4 [45]
400.00 534.3 534.3 545.1 565.0 [46]
497.50 550.4 538.4 537.9 580.0 [47-49]
613.00 580.4 560.0 555.3 603.4 [33]
650.00 590.4 570.0 565.9 611.2 [29]
797.50 622.1 613.9 615.3 636.5 [50-52]
1044.00 639.6 662.0 647.3 634.5 [20,53]
“Ca 65.00 788.2 791.4 793.4 [41]
497.50 607.2 602.3 646.1 [47]
797.50 686.9 681.6 708.3 [50]
1044.00 736.0 707.9 715.5 [53]
5Fe 65.00 868.1 877.9 878.0 [24]
ONi 65.00 909.3 921.1 921.1 [24]
07Zr 22.50 1348.9 1285.9 1300.4 1309.3 [54]
40.00 1348.5 1315.2 1334.5 1336.1 [36,39]
61.40 1230.6 1223.6 1233.5 1244.7 [9]
65.00 1212.4 1208.8 1216.9 1229.3 [41]
80.00 1147.5 1154.8 1156.5 1171.4 [42,43]
135.00 1017.2 1043.0 1042.0 1031.7 [43]
160.00 985.5 1019.0 1021.1 993.2 [42,43]
182.00 963.9 1004.5 1009.2 967.9 [43]
500.00 943.0 930.0 923.4 955.2 [47]
800.00 1022.4 1033.4 1039.2 1067.7 [55]
208pp 21.00 1474.6 1451.0 1478.3 1521.6 [56]
24.10 1645.1 1623.9 1647.8 1687.0 [56]
26.30 1737.8 1718.7 1738.1 1774.3 [56]
30.50 1869.7 1855.7 1866.6 1899.9 [56]
35.00 1962.3 1950.1 1956.7 1985.5 [56]
40.00 2031.3 2020.3 2022.1 2046.6 [56]
65.00 2077.2 2079.6 2063.0 2084.1 [41]
80.00 2022.6 2039.7 2009.5 2034.2 [42,43]
121.20 1866.6 1924.8 1873.5 1895.4 [43]
160.00 1782.4 1859.8 1087.2 1809.0 [42,43]
182.40 1755.4 1837.0 1786.5 1775.8 [42,43]
200.00 1740.5 1822.6 1774.0 1754.8 [46]
400.00 1682.1 1719.1 1684.8 1694.5 [46]
497.50 1703.2 1711.3 1685.9 1703.2 [47-49]
797.50 1805.0 1872.6 1897.0 1803.4 [51,52,57]
1040.00 1909.8 1918.9 1958.1 2169.4 [19,20]
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whichever is smaller. This is done because nonlocalities
in the optical model potential are presumably important
at large angles. Systematic errors are approximated by
adding 3% of the cross section in quadrature to the quot-
ed experimental error. For the spin observables 4, and
Q, 0.02 is added in quadrature to the quoted errors. In
order to give each data set roughly equal standing in the
fitting procedure we divided the y? for each observable in
a data set by the number of data points in that data set.
The function minimized is given by
NS
2 2 2 2 (s
X =23 [)(g(])+XAy(])+XQ(])] , (12)
j=1
where N, is the total number of data sets in the search.
The individual y?’s for each data set are given by

N . .

2:L 4 FNaexpt(l)—Ucalc(l)

=y 2 Ve : (13a)
Na, (4, (D—4, (i))]?

2 1 J Yexpt Ycale

X4, N, z A4, (D) l ’ (130)

and

N , )2

ZZL i Qexpt(l)_Qcalc(l)

Xo NQ i§1 AQ(i) (13¢)

Here N, is the number of cross section points in data set
J, similarly for N, and N,. The normalization of the
b

cross section data Fy is searched on. The expression for
Fyis

NU
P
1=

1
FN—‘ N

S ([T eapD?/[Aa(D]?)

i=1

{Ucalc(i)o'expt(i)/[AO'(i)]z}

IV. RESULTS OF THE ANALYSES

The goal of the A-independent analysis was to provide
high-quality energy-dependent optical potentials for each
of the following targets: '°C, 190, “°Ca, *°Zr, and 2°*Pb.
These fits are called the E-dependent— A-independent
(EDAI) fits. From the general form of the model given in
Eq. (1) one has a total of eight potentials which are func-
tions only of energy and radius in this case. No cross
terms are included; in addition no surface peaked terms
are included in the real potentials and the shape parame-
ters R and a are taken to be the same in the surface
peaked imaginary potentials as in the volume imaginary
potentials. Thus, the total number of parameters varied
in each fit is 70. The number of data points for every tar-
get is well over 1000.

The EDALI fits obtained are of high quality over the
range of data included in the fit. The agreement with ex-
periment for heavy targets is comparable to or better
than those shown in Ref. [3]. A comparison of the global
results with single energy fits using the standard 12 pa-
rameter SV model of Dirac phenomenology [58-63],

shows that the calculated observables are in very good
agreement over the g2 range covered in the global work.
The results for the global fits for each target are even
more impressive when one notes that the total y? per de-
gree of freedom given by

N,
— 1 : N2 N2 .
Yo ™ NN EI[NU(J)XU(J)+NAy<J)XAy(1)
+No(x;(DN] s (15)

is less than 3.9, a value for y?>/N which would indicate
that an acceptable fit had been achieved in an analysis of
data at only a single energy. In Eq. (15), N is the total
number of data points in the search and N, is the number
of searched parameters.

The expansion coefficients, v,, r,, and a,, determined
from the fits for each target are tabulated in Ref. [64].
The EDAI potentials are included in the computer pro-
gram GLOBAL [65] which produces the scalar and vector
potentials, as well as the Schrodinger equivalent (SE) po-
tentials obtained from them [58-61]. The EDAI poten-
tials interpolate well in energy, and if the results are
needed for a nearby target, i.e., °C or **Ca, an 4!/3 scal-
ing of the geometry parameters gives reasonable results.
However, as with all global potentials, extrapolation in
energy should be avoided.

The full E- and A-dependent analysis presented a con-
siderable challenge because of the inclusion of light target
data as well as the extension to low energies. Almost all
global treatments, regardless of energy range, are restrict-
ed to heavy targets. No previous global optical potential
covers such a large energy and target mass range. In
spite of the good fits obtained in this work we continue to
search for better parametrization and improved fitting
procedures.

In this work we present three different E- and A-
dependent global potentials, termed EDAD fits 1, 2, and
3. This allows the user to test the sensitivity of the com-
putation to the input optical model potentials. All three
give high-quality agreement with the available data. The
number of parameters and the form of the potential
changes from fit to fit. In the first, EDAD fit 1, the cross
terms in Eqs. (6)-(8) are absent; there is no surface
peaked term in the real potentials and no 4 dependence
in the imaginary surface peaked terms. In this case 106
parameters are varied and the resulting y? divided by the
number of degrees of freedom is 6.0. As was the case for
the first fit, the next two fits start from random parame-
ters. The inclusion of the cross terms and 4 dependence
in the imaginary surface peaked terms increases the num-
ber of parameters to 154 and the resulting x? per degree
of freedom is 5.1. The final fit presented here, EDAD fit
3, contained 176 parameters and achieved a y? per degree
of freedom of 4.6. The EDAD fit 3 exhibits some lack of
systematics for the imaginary scalar and vector potentials
due to the presence of the surface peaking in the real po-
tentials. These defects, which are only apparent for 2*Pb
at energies above 500 MeV, lead us to suggest that this fit
only be used for testing sensitivity to the optical model.
In fact, as the EDAI fits produce, not unexpectedly,
slightly better quality fits to experiment we suggest that
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these fits be used when comparing with microscopic mod-
els. The expansion coefficients for all of the EDAD fits
are given in Ref. [64].

The interpolation in properties of the EDAD fits are
reasonable; predicted observables for the heavy targets
are of the same quality as those given in Ref. [3] and are
generally almost as good as the results obtained from the
EDALI fits for the five spin-zero targets included in the
EDALI investigation. As our previous global potentials
did not include light targets, we show in Figs. 1 and 2

5
105 prrrr

do/dQ (mb/sr)

PRSI RSP

PN A T B
0 10 =20 30 40 50 60

6c.m (deg)

1.0 LB R I

05

(b)

10 Lol
o 10

1.0 BRI

05

-0.5
Fo(c)
P Y P N I S B S
0 10 20 30 40 50 60
8c.m (deg)

FIG. 1. The observables predicted for 179 MeV protons
elastically scattered from 28Si using EDAD fit 1 (solid line),
EDAD fit 2 (dashed line) and EDAD fit 3 (dash-dot line) poten-
tials. The data are from Ref. [66].

typical examples of the quality of the predictions when E-
and A-interpolation is required. If the optical potential
needed corresponds to one of the targets used in the A-
independent fits then our recommendation is to use the
EDAI potentials as the fits are somewhat better and then
use the EDAD fits to check for optical model sensitivity.
In the event that a substantial interpolation in A4 is re-
quired we urge caution. It is always prudent to try to
check with existing data if at all possible. In addition, as
discussed in Ref. [3], the model is not suitable for strong-

5

10 | e
_ 104 ]
@
~ 103
L0
B 102
c
<5 1ol
NP
S 10

10~1

102

-1.0 PR EEVE R B
0 10 20 30

6c.m (deg)

FIG. 2. The observables predicted for 494 MeV protons
elastically scattered from '*C using EDAD fit 1 (solid line),
EDAD fit 2 (dashed line) and EDAD fit 3 (dash-dot line) poten-
tials. The data are from Ref. [16].
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FIG. 3. The calculated reaction cross sections predicted by
the EDAI global potentials (dashed line) and the EDAD fit 3

(dotted line). T, is the proton kinetic energy. The data are
from Ref. [67].

ly deformed targets. The program GLOBAL [65] generates
the scalar and vector Dirac potentials as well as the
Schrodinger equivalent (SE) potentials obtained from
them for any of the fits discussed in Ref. [3] and in this
paper.

Table I gives the predicted reaction cross sections for
the EDAI and EDAD optical models. The agreement is
generally within the experimental error where measured
reaction cross sections exist. We show the predicted re-
action cross sections along with the experimental data in
Fig. 3. It is obvious that there is a great need for im-
proved measurements of the reaction cross sections for a
wide range of targets and energies. The total neutron
cross section are predicted from the EDAI and EDAD
potentials with the Coulomb potential set to zero. No
Coulomb energy shift is made. The results are shown in
Fig. 4, and as would be expected, the agreement with the
empirical values worsens as the neutron excess increases.
Encouraged by these results and by the recent work of
Kozack and Madland [71,72] and Varner et al. [73] we

120

A | R RERAPOAN

%0 50 100 500
T, (MeV)

FIG. 4. The calculated total neutron cross sections predicted
from the EDAI global potentials (dashed line) and the EDAD
fit 3 (dotted line). T, is the neutron kinetic energy. The data
are from Refs. [68-70].

have started a program to determine the global Dirac op-
tical model isovector and isoscalar potentials for heavy
targets.

The real parts of the EDAI and EDAD scalar and vec-
tor optical potentials exhibit very systematic behavior
with energy for all targets. As expected, the imaginary
parts of the scalar and vector potentials are somewhat
less systematic due to the presence of the surface peaking
term. Comparison of the potentials for the light targets,
12C and %0, with those for the heavier targets shows the
increased importance of the surface terms for the former.
For example, except for the case of 2°®Pb, the imaginary
scalar and vector potentials exhibit considerable surface
peaking at low energies which persists up to 100 MeV.
At energies below 60 MeV the interior of the imaginary
potentials is not well determined due to the competition
between surface and volume terms. Figure 5 shows the
potentials for 2°°Pb obtained from the EDAI fit, similar
behavior is obtained for the 4-dependent global fits. Fig-
ures showing the EDAI potentials as well as examples of
the EDAD fit 3 potentials are given in Ref. [64]. It is ap-
parent from Fig. 5 that the potential shapes are charac-
terized by a volume form and that the effect of surface
peaking is small although still present at the lowest ener-

400_ﬁ.-.|-vv-‘--rv'r"~rrv.v‘
T ISt~ (a) ]
200 [ . Vector  —I
—~
S5 0
=
N— -
2 _200f 4
r Scalar 1
B -
S PN N R .
0 2 4 6 8 10
R (fm)
100 L I B T L B
I (b) ]
R AR E A Scalar
—
>
O
=
~—
o}
—100 L | | N .
0 2 4 6 8 10
R (fm)

FIG. 5. The real scalar and vector optical potentials calculat-
ed for ***Pb using the EDAI global potentials evaluated at T,
equal 20 MeV (thick solid line), 100 MeV (dashed line), 200
MeV (dot-dashed line), 500 MeV (dotted line), and 800 MeV
(thin solid line) are shown in (a), the corresponding imaginary
parts are shown in (b).
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gies. This is in agreement with the E- and A4-dependent
analysis given in Ref. [3]. The corresponding SE poten-
tials are shown in Fig. 6. One feature of the SE spin-orbit
potential is noteworthy; we find that the magnitude of the
maximum value of these potentials to exhibit consider-
able A dependence. For example, the values for 2C are
roughly a factor of 3 larger then those for 2Pb. We also
note that the imaginary part of the spin-orbit potential is
not well determined in the interior at energies below 60
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FIG. 6. The SE real central potential calculated from poten-
tials in Fig. 5 are shown in (a). The SE imaginary potentials cal-
culated from the potentials in Fig. 5 are shown in (b). The real
and imaginary SE spin-orbit potentials calculated from the po-
tentials in Fig. 5 are shown in (c).

MeV. The central SE potential exhibits many of the
characteristics of microscopic nonrelativistic or relativis-
tic potentials, such as the “wine-bottle”” shape of the real
central SE potential, its change from an attractive poten-
tial to a repulsive one in the transition energy region
around 300 MeV, and the surface peaking of the imagi-
nary potentials at low energies [74—77]. For example, the
relativistic Dirac-Bruekner calculations of ter Haar and
Malfliet [77] produce a real central SE potential for nor-
mal nuclear matter density which passes through zero
around 300 MeV. The volume integral of the real central
SE potential for 2°Pb is zero at 315 MeV, in remarkable
agreement with their results. In addition, the values of
the SE central real and imaginary potentials at the origin
agree quite well with the Dirac-Brueckner calculations.
Figures of the SE potentials for all of the EDALI fits as
well as examples of the EDAD fit 3 potentials are given
in Ref. [64].

As discussed in Ref. [3] the global optical potentials
obtained in that work were in reasonable agreement with
the relativistic impulse approximation (RIA) calculations
of Refs. [78] and [79] at energies above 300 MeV, see
Figs. 9 and 10 of Ref. [3]. Here we also compare our re-
sults with the case 2 relativistic impulse approximation
(IA2) potentials of Ottenstein, Wallace, and Tjon [80].
The classic example is *“°Ca at 500 MeV and in Fig. 7 we
show the scalar and vector potentials and the SE central
and spin-orbit potentials obtained from them for the RIA
[78], the IA2 [80] and the EDALI global fit for *°Ca at 500
MeV. The IA2 scalar and vector potentials are smaller
than either the RIA and EDAI global potentials, which
agree quite well with each other. This may not be
surprising as the IA2 potential contains an explicit o-L
term absent from the RIA and the phenomenological po-
tentials. The RIA and IA2 potentials both contain tensor
terms which arise from the strong and electromagnetic
interactions, while the phenomenology contains only sca-
lar and vector potentials; we find that the inclusion of the
tensor anomalous moment term does not significantly
alter the parameters. We do not attribute the difference
between the scalar and vector IA2 and EDALI global po-
tentials to the analytic form of the global potentials
which exhibit little structure in the nuclear interior. We
observe a similar discrepancy with the IA2 results when
the global optical model is constrained by relativistic
Hartree potentials as was done in Ref. [81]. In these fits
the geometry of the real optical potentials is held fixed
throughout the search. As described in Ref. [81], the real
optical potentials are calculated using relativistic Hartree
mean-field densities equal to those used in the IA2 optical
model calculations of Ref. [80]; and the imaginary scalar
and vector potentials had SWS form factors. Rather, we
feel that the differences may be due to the additional
terms in the IA2 potential. That this is plausible may be
seen from a comparison of the SE IA2 potentials, which
contain all of the terms [80], with the RIA and global po-
tentials. Figures 7(b) and 7(c) show that the SE potentials
are similar except for the behavior of the spin-orbit po-
tentials inside 2 fm. One cause of this difference is that
the global potentials have zero derivatives at the origin
while the IA2 and RIA do not. The more important
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FIG. 7. (a) shows the scalar and vector optical model poten-
tials for 500 MeV protons scattered elastically from “°Ca calcu-
lated using the EDAI global fit (solid line), the RIA [78] (dashed
line), the IA2 [80] (dotted line), and the potentials of Ref. [81]
(dot-dashed line). In order of decreasing values of the potential
strengths at the origin, the first four curves show the real vector
potentials, the next four the imaginary scalar potentials, the
next four the imaginary vector potentials and the final four the
real scalar potentials. (b) and (c) show the corresponding SE po-
tentials calculated from the scalar and vector potentials shown
in (a).

cause is the structure in the scalar and vector potentials
produced by the relativistic mean-field densities. The real
spin-orbit SE potential obtained using the constrained po-
tentials of Ref. [80] shows similar behavior to real spin-
orbit IA2 and RIA potentials inside 2 fm, while the imag-
inary spin-orbit potential resembles the global potential.
Because the IA2 potentials are the most complete micro-
scopic relativistic optical potentials available we plan to
construct a global potential based on them. We will then
be able to investigate the optical potentials determined
from using the IA2 potentials as a constraint in a similar
manner to that done in Ref. [81].

It has been observed that the moments of the optical
potential are generally well determined [3]. In Ref. [3]
we showed a number of the moments of the scalar and
vector potentials as well as the SE potentials obtained
from them. The global fits presented here exhibit essen-
tially the same dependence so we do not show them
again. We do note the following features of the real sca-
lar and vector potentials. The volume integrals of the
real scalar and vector potentials divided by the target
mass number, J, /4 and J;/ A, show little 4 dependence.
The energy dependence of J,/ A and J;/ A4 is similar for
all targets, the decrease in the volume integrals with in-
creasing energy is essentially as shown in Fig. 29 of Ref.
[3]. The corresponding rms radii divided by 4!/* have
little energy dependence, especially for the heavy targets
as is shown in Figs. 8 and 9. Above 200 MeV the values
are essentially constant. The EDAD fits show even
smaller energy dependence than the EDALI fits due to the
additional constraint of the 4 dependence. Table II gives
the average values for the rms radii from the EDAI fits
for each of the targets along with the standard deviation.
As we found in the early work using Dirac phenomenolo-
gy, we find that the ratio J, /J; has a simple linear energy
dependence, and at low energy approaches the value 0.8,
expected from the Walecka model [58,82]. Turning to
the imaginary scalar and vector potentials we find, as ex-
pected, that the moments of the imaginary scalar and
vector potentials exhibit more dependence on target mass
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FIG. 8. The real and imaginary rms radii divided by 4'”* of
the vector EDAI global potentials. T, is the proton kinetic en-
ergy. The targets are '2C (thick solid line, the top line), '®O
(dashed line), “°Ca (dotted line), °Zr (dot-dashed line), and ***Pb
(thin solid line, the bottom line).
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the scalar EDAI global potentials. T, is the proton kinetic en-
ergy. The targets are '2C (thick solid line, the top line), *O
(dashed line), “°Ca (dotted line), *°°Zr (dot-dashed line), and 2**Pb
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and energy, but are generally systematic. For example, as
shown in Figs. 8 and 9, the rms radii divided by 4 173 ex-
hibit considerable energy dependence below 80 MeV due
to the competition between surface and volume absorp-
tion, but are relatively energy independent at higher ener-
gies. It is well known that the real potentials are better
determined than the imaginary potentials, especially at
low energies.

Next we discuss moments of the real and imaginary SE
central and spin-orbit potentials. As discussed above, the
energy at which the real SE J / 4 for 2°Pb passes through
zero is in remarkable agreement with the relativistic
Dirac-Brueckner calculations of Ref. [77]. We find that
the energy at which the real SE J/ A4 is zero is A depen-
dent, for example it is zero at 315 MeV for 2°Pb and at
650 MeV for >C. The value of the energy at which the
real part of J/ A is zero exhibits saturation with increas-
ing A, so that the energy at which J/ 4 is zero for 2%®Pb
is a reasonable approximation to the corresponding value

TABLE II. The average values of the rms radii of scalar and
vector optical potentials divided by 4'/? from the EDAI global
fit. The imaginary values are calculated from the results above
100 MeV.

Target real (fm) imag. (fm)

2c scalar 1.2276+0.0629 1.1660+0.0851
vector 1.1893+0.0723 1.1467+0.0515

%0 scalar 1.1711£0.0391 1.0651+0.0584
vector 1.1424+0.0471 1.0832+0.0631

40Ca scalar 1.0950+0.0313 1.0094+0.0184
vector 1.0826+0.0383 1.0236+0.0256

Nzr scalar 0.9966+0.0118 0.9637+0.0205
vector 0.9886+0.0129 0.9759+0.0154

208pp scalar 0.956910.0057 0.9485+0.0085
vector 0.9485+0.0031 0.9570+0.0108

in nuclear matter. The volume integrals of the SE spin-
orbit potentials, K / 473, indicate that the real part dom-
inates the imaginary spin orbit. The imaginary spin-orbit
volume integral is small at low energies and takes on its
maximum value around 200 MeV for all targets. Howev-
er, the imaginary part, which cannot be eliminated in a
relativistic model, is critical to the fit, even at low ener-
gies. The real SE spin-orbit rms radii divided by 4!/° are
remarkably independent of energy and 4 from 20 to 1000
MeV. The same is true of the real central rms radii divid-
ed by 4!73 up to the transition energy; beyond that it ex-
hibits large energy dependence as J / 4 changes sign. The
imaginary SE spin-orbit rms radius divided by 4!/? has
very little dependence on the energy and A beyond 80
MeV. The values at lower energies reflect the underlying
competition between surface and volume absorption in
the scalar and vector imaginary potentials and thus ex-
hibit considerable energy dependence. The behavior of
the various moments of the scalar and vector potentials,
and the SE potentials obtained from them, is given in
Ref. [64].

In addition to the moments of the global potentials dis-
cussed above, it is possible to extract other quantities
which provide a useful source of comparison with relativ-
istic and nonrelativistic treatments of the nuclear optical
potential. Some of these will be the subject of a separate
paper. Here we discuss the mean free path A, the usual
nonrelativistic effective mass my, the Dirac mass

*=m +S(r,E, A), where m is the nucleon mass, and
the effective energy shift, E*=E —V (r,E, A), where E is
the projectile energy.

Starting with the work of Bethe [83] in 1940 there has
been considerable interest in the determination of the
mean free path of a proton or neutron in the nuclear
medium. This quantity is also of interest in both relativ-
istic and nonrelativistic nuclear many-body theory. Re-
cent work in the area of nuclear transparency has in-
creased the need for a reliable empirical determination of
the mean free path [84]. As discussed by Negele and Ya-
zaki [85] the appropriate nonrelativistic expression for
the energy dispersion for finite nuclei described by a local
energy-dependent optical model potential is

_k?
TP—E+Uopt(r,E) , (16)
where k is complex. The mean free path is defined as
1
= . 17
A 2Imk an

In this case the real and imaginary SE potentials deter-
mined from the global fits can be used in Eq. (16). Note
that the mean free path is a function of both energy and
the radius, and that the value of A is quite sensitive to the
choice of the radius.

Alternatively, we can use the relativistic expression
given by Cheon [86], where the global scalar and vector
potentials are used in the dispersion relations given by

E={[m+S(r,E)*+k?}'*+V(rE) . (18)

Again, the mean free path is given by Eq. (17). In calcu-
lating the mean free path we use the EDAI optical poten-
tials for 2°®Pb with the radius taken to be 0, 5, and 6 fm.
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We calculate k using either Eq. (16) or (18), and the
values for A for both cases are shown in Fig. 10. There is
little difference between the results obtained for » =0 and
5 fm as the potentials for 2%Pb are quite flat in this re-
gion. The matter density at 5 fm, calculated from the
electron scattering charge distribution, is 0.16 fm 3 cor-
responding to that of normal nuclear matter, while that
at 6 fm is more characteristic of the nuclear surface. It is
clear that there is considerable difference between the cal-
culations with »r=5 and 6 fm. While proton elastic
scattering data does not determine the interior of the op-
tical potential, the wine-bottle shape of the real SE poten-
tial, required by the data, indicates that they are reliable
outside » 24 fm. Thus, we feel justified in using our re-
sults to give a measure of the empirical mean free path in
the nuclear medium and to give good estimates of its
value in nuclear matter. If comparison is to be made be-
tween optical model results and other types of determina-
tions of the mean free path, especially those for nuclear
matter, the radius should be chosen to correspond to nu-
clear matter density.

The standard approach for determining an empirical
mean path has been to use measured reaction cross sec-
tions for many targets at a spread of energies. Using a
simple model first introduced in 1940 by Bethe [83] an
approximation to the mean free path is found, see Ren-
berg et al. [87]. In the work of Nadasen et al. [43] the
reaction cross section was calculated from an optical
model analysis of proton elastic scattering data in the
range 80-180 MeV. However, the calculation for the
mean free path was subject to uncertainties in the optical
model potentials. We agree with the observation of
Meyer and Schwandt [88] that the empirical mean free
path can only be determined from optical model poten-
tials that are well determined. Our results differ from
those of Nadasen et al. particularly with respect to the
energy dependence of the mean free path. It is our con-
tention that reliable empirical values of the mean free
path may be obtained from the global optical model po-
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FIG. 10. The mean free path calculated using Egs. (16)
(dashed line) and (18) (solid line) vs the proton kinetic energy.
The EDALI optical potentials for 2%®Pb are evaluated at r =0, 5,
and 6 fm, the resulting A values increase as the value of 7 in-
creases. T, is the proton kinetic energy.

tentials described herein. The potentials reported in this
work are free from serious ambiguities due to the exten-
sive energy region considered and the large data set in-
cluded in the fits. There remains, however, the question
of the choice of the value of the optical model radius at
which A is evaluated. In a separate paper we discuss this
question and compare the mean free path obtained from
the global potentials with those obtained from recent
measurements of the total neutron-nucleus cross sections
[68-70,89].

There are a plethora of effective masses discussed in
the literature. The paper by Jaminon and Mahaux has
provided a welcome discussion of the various definitions
of the quantities in current use [90]. In this paper we
consider the two quantities defined above, M* and E*,
commonly used in relativistic nuclear physics, and the
nonrelativistic-type effective mass m given in Ref. [90],

dVv, (E,r)

1—
dE

my=m (19)

In Eq. (19), V,(E,r) is the real part of the SE potential as
defined in Ref. [58] which differs slightly from that used
by Jaminon and Mahaux. Here we use the full SE poten-
tial obtained from the reduction of the Dirac equation to
second order form. And, as in the calculation for A
above, we use the EDALI fit for 2°®Pb calculated at r =0,
5, and 6 fm. For comparison with microscopic relativis-
tic nuclear matter calculations, such as those of ter Haar
and Malfliet, it is appropriate to evaluate the global po-
tentials at the radius corresponding to nuclear matter
density.

In Figs. 11 and 12 we show the energy dependence of
M* and E* calculated using the EDALI fit for the heavi-
est target, 2®Pb. The energy dependence of both quanti-
ties is expected as the scalar and vector potentials both
decrease in magnitude with increasing energy. At low
energies the value of M * /m calculated at 5 fm is in good
agreement with the calculations of ter Haar and Malfliet
[77]. In Fig. 13 the ratio mJ /m is given as a function of

1.0 L L B B I

T T
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0 200 400 600 800
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FIG. 11. The ratio of the Dirac mass to the proton mass cal-
culated using the EDAI global scalar potential for 2*Pb evalu-
ated at » =0 fm (dotted line), r =5 fm (dashed line), and r =6
fm (solid line). T, is the proton kinetic energy.



308 E. D. COOPER, S. HAMA, B. C. CLARK, AND R. L. MERCER 47

1~0’lv!llvvlllrvrv‘lvlrrlvv||
— -]
0.8 -_ /".‘,".,_'1.’. ~~~~~ __
s
L2 d
/.
= 0.6 —
\ - <
* L
s3]
04 =
0'2....I,J.‘I....I....I....'
0 200 400 600 800 1000

T, (MeV)

FIG. 12. The ratio of the relativistic energy shift E* to the
total energy of the proton in the center of momentum frame cal-
culated using the EDAI global vector potential for 2*®Pb evalu-
ated at » =0 fm (dotted line), » =5 fm (dashed line), and » =6
fm (solid line). T, is the proton kinetic energy.

energy and the low-energy values for the calculation at 5
fm are in good agreement with the results in Ref. [77].
Additional comparisons of the global potentials and non-
relativistic and relativistic microscopic calculations will
be the subject of a subsequent paper. The results to date
indicate the value of these global potentials as a testing
ground for such calculations.

V. SUMMARY

In summary, we have presented the most recent results
of the program to obtain global optical model potentials
for a wide range of uses. We find that the potentials are
systematic and that the scalar and vector potentials as
well as the Schrodinger equivalent potentials obtained
from them exhibit many of the characteristics of relativis-
tic and nonrelativistic microscopic optical potentials.
The energy and A4 dependence of the various moments of
the scalar and vector potentials as well as the SE poten-
tials are investigated and shown to be remarkably sys-
tematic. This fact confirms their suitability as the empiri-
cal optical potentials for use in checking microscopic cal-
culations.

We further suggest that these global potentials, when
used in the energy momentum dispersion relation, pro-
vide reliable empirical values for the mean free path of a
nucleon in the nuclear medium. In addition, they pro-
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FIG. 13. The ratio of the effective mass defined by Eq. (19) to
the proton mass calculated using the EDAI global SE central
potential for ®®Pb evaluated at »r =0 fm (dotted line), » =5 fm
(dashed line), and » =6 fm (solid line). T, is the proton kinetic
energy.

vide reliable empirical values for quantities of interest in
nuclear many-body physics, such as the relativistic
effective mass M * and the corresponding effective energy
shift E* as well as the usual effective mass m .

We continue to improve both the data base and the op-
tical model and as the improved results become available
they will be provided to the nuclear community. The
Addendum to this paper [64] provides tables of the opti-
cal model expansion coefficients, figures showing the glo-
bal optical model potentials at a number of energies,
figures of some of the characteristic features of these po-
tentials, and examples of the quality of the predictions of
elastic proton scattering observables obtained from them.
The current potentials are available from the authors in
convenient form from the program GLOBAL [65].
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