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Response of nonrelativistic confined systems
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We study the nonrelativistic response of a "diquark" bound by confining forces, for which perturba-
tion theory in the interaction fails. As nonperturbative alternatives we consider the Gersch-Rodriguez-
Smith (GRS) theory and a summation method. We show that, contrary to the case of singular repulsive
forces, the GRS theory can generally be applied to confined systems. When expressed in the GRS-West
kinematic variable y, the response has a standard asymptotic limit and calculable dominant corrections
of orders 1/q, 1/q . That theory therefore clearly demonstrates how constituents, confined before and
after the absorption of the transferred momentum and energy, behave as asymptotically free particles.
We compare the GRS results with those of a summation method for harmonic and square-well
confinement and also discuss the convergence of the GRS series for the response in powers of 1/q.

PACS number(s): 12.38.Lg, 12.40.Qq

I. INTRODUCTION

Consider inclusive scattering on a target of mass MT
with confined constituents. We focus on the response or
structure function S(q, co) and in particular on its
limit, when for fixed Bjorken scaling variable
x = (q —co ) /2MTto, the momentum-energy transfer
q, co —+ ~. The description of the response in that limit
requires a relativistic theory and one finds for instance in
the parton model that the above limit is that of free con-
stituents.

There remains the intriguing question how exactly a
system, composed of confined constituents which can
only distribute the transferred energy to internal excita-
tions and target recoil but not to dissociation, responds
asymptotically as if the constituents were free. It is then
tempting to exploit the simplicity of nonrelativistic (NR)
dynamics, in the hope that it may illuminate some
features of this, intrinsically relativistic problem.

A second incentive to use NR dynamics comes from
the relative ease to describe, for systems bound by regular
forces, the approach of the response to its asymptotic
limit. The situation is different if those forces, either
repulsive or attractive, are singular. In particular, per-
turbation theory in the interaction fails and nonperturba-
tive approaches have to be invoked. We already know
that for systems governed by forces which contain a
strong short-range repulsion the asymptotic limit of the
response exists, but differs from the same for quasifree
constituents [1]. In contradistinction, surprisingly little
has been done in the case of singular attractive, i.e.,
confining forces, and those are the main topic of this arti-
cle.

An example of such a NR approach is a recent study
by Greenberg of the response of a "diquark" bound by a
harmonic oscillator potential [2]. He found that, in ac-
cordance with the naive parton model, the asymptotic
response qS(q, x ) in the limit q —+ 00, at fixed NR Bjork-

en scaling variable x =q /2Mco vanishes unless x, which
is the "quark" momentum fraction in the infinite momen-
tum frame, equals the "quark"-target mass ratio m;/M.
We shaH revisit Greenberg's example in the following.

We start in Sec. II by scanning NR descriptions on
their ability to handle singular forces. Those theories
routinely employ, instead of the energy transfer co, a
second kinematic variable y which differs from the above
NR Bjorken variable. Then using the theory of Gersch,
Rodriguez, and Smith (GRS) [3] we illustrate and em-
phasize essential differences in the treatment of singular
repulsive and attractive forces producing confinement.
We show that the GRS theory can handle the latter
category and we compute the response of "diquarks"
confined by a harmonic oscillator and by an infinitely
deep well. In Sec. III we generalize a nonperturbative
summation technique used by Greenberg [2], compute
with it the same examples and compare the results. In
addition, we calculate the response for general forces in a
quasiclassical method and show that the outcome of the
summation method is just the GRS theory to order q
Convergence conditions for the GRS series are discussed
in Sec. IV. In Sec. V we compare the response, once ex-
pressed in terms of the GRS-West variable [4] and then
using the NR Bjorken scaling variable, and discuss the
difference in content.

II. THE GRS SERIES FOR SINGULAR FORCES

We limit ourselves in the foHowing to "diquark" tar-
gets with constituents of equal mass m. In the target rest
system its response per particle, including recoil, is

S(q, co)= —,'+~90„(q)~ 5(co—
q /4m —E„o),

where Vo„(q)=(o~e'"' +e ' '
~n ) and E„o are, re-

spectively, inelastic form factors and excitation energies.
A formal summation over n in (1) leads to
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S(q, cv)= Im g (C&o~exp( —iq r, )G(co)exp(iq r )~40),
2K

(2)

with particle and relative coordinates related by r, 2 =+r/2. The response above contains

G(co) =(co+Eo —K —V i g) (3)

the Green's function of the system in terms of the kinetic energy of the "quarks" E, the binding energy Eo, and the
confining interaction V. Regarding the sums in (2) we recall that the coherent contributions with i' decrease with in-
creasing q much faster than do incoherent terms with i =j and the latter will henceforth be disregarded [4].

For nonsingular regular forces one frequently expands the full Green s function (3) in a Born series in V, thereby us-
ing the free Green s function Go=(co+Eo —K) . The first term of that expansion is obtained by replacing G~Go in

Eq. (3) and describes a "quark, "bound before and free after the transfer of (q, co).
An alternative approach is due to Gersch, Rodriguez, and Smith (GRS), who showed that the incoherent part of the

reduced response P(q, y ) —= (q/m )S(q, cv) for a two-particle target interacting through local forces can be written as [3]

P(q,y)= f ds e '«'f d rNo(r —sq)T exp i f [K+ V(r crq—) Eo—]do@o.(r) . (4)

Here

y= ——+
2 q

is the nonrelativistic GRS-West variable [3,4], while T in Eq. (4) is an operator prescribing o ordering. Expanding the
exponential in Eq. (4) one obtains

p(q, y ) =Fo(y )+(m Iq )F, (y)+(m Iq) F2(y)+ (6)

The first term of the GRS expansion is the asymptotic limit of the reduced response in terms of the single particle
momentum distribution n(p)

Fo(y) = f ds e '~' f d'r4o(r —sq)@o(r)=2'f n(p)p dp .
27T lyl

For use below we recall that in the derivation of (7a) one passes the step

Fo(y)= —f n(p)6 cv+ — d p=2m. f n(p)p dp,(p+q)'
m 2m 2m

(7a)

(7b)

where the above 6 function describes energy conservation
of a "quark" which before and after the absorption of
(q, co) has the energy of a free, on-shell particle.

For both attractive and repulsive singular interactions,
a Born perturbation theory in V fails. We thus turn to
the GRS series (6), first for singular repulsive forces. As
an example we choose an overall, weak binding potential
V(r) with a strong, short-range repulsion, which for fixed
b=ri (z=q), is shown in Fig. 1 as function of z. For ar-
guments of the wave functions z —s and z on diff'erent

sides of the hard core, the cr integrand in (4) intersects
the hard core region and the corresponding integral
diverges. Consequently, for singular repulsion there is no
meaning to the GRS expansion (6). This does not rule
out other nonperturbative approaches, notably those
where a finite V,s replaces the singular V [5]. One can in
fact show that an asymptotic limit for the response Fo(y)
exists, but is not given by Eq. (7) [1]. Consequently, a
system governed by forces containing a hard core repul-
sion is not asymptotically free.

Also for singular attractive, i.e., confining interactions
(Fig. 2) the Born series does not exist and we now investi-

v(b, z)

FIG. 1. Cut of a weakly binding potential V(b, z ) with strong
short-range repulsion as a function of z for fixed b.
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FIG. 2. Same as Fig. 1 for a confining V(b, z ).

gate whether for those the GRS expression is applicable.
Consider first the wave function arguments z —s and z in
(4) for which z, (z —s, z (zz, i.e., which lie between the
classical turning points z&, z2. Then, although the depth
Vo as well as the ground state energy Eo tend to —~, the
diff'erence V(r —o.q) —Eo remains finite and so is the r in-

tegral in (4). One reaches the same conclusion if one of
the two arguments above lies outside that region. There
V(r oq) Eo—~ E—o is unbo—unded, but one of the wave
functions @o(r—sq} or 4o(r} tends to 0. Since the r in-

tegral is finite, the same is the case with all coeScients
F„(y) in the GRS series (6). This holds in particular for
the asymptotic limit Fo(y) which, contrary to the case of
singular repulsive forces [I], retains the form (7) in terms
of the single constituent momentum distribution [6].

The outcome above is surprising since one expects
singular attractive and repulsive forces to show similar
exceptional behavior (see Sec. V). We conclude the fol-
lowing.

(i) In contradiction to the case of repulsive forces, for
certain classes of singular attractive potentials the GRS
expansion (6} for the response exists and the coefficient

FIG. 3. Harmonic confining potential energy Ep, V is defined
as the Vp ~—~ limit of V(x) =m copx '/4+ Vp for
~x) &2()VO)/mego)' and V=O for (x(~2{(VO(/mcoo}' and

Ep = Vp+ cop/2. Vp drops out of the expressions (8).

functions are finite.
(ii) The result for the asymptotic limit of the response

Fo(y}, Eq. (7), is the one for free on-shell partons, as if the
infinite potential and binding energy compensate one
another.

(iii) When for progressively decreasing q, increasing
distances are probed, the corrections F„, n ~ 1 grow in
importance. One may then expect that qualitatively
different behavior sets in only if qX= 1, i.e., if the relevant
distances in the inclusive scattering become of the order
of a typical length A, of V. We shall show in Sec. IV that
for those values of qA, the GRS no more converges.

A. The GRS expansion for selected examples

We now explicitly demonstrate the applicability of the
GRS series for confining potentials on examples of one-
dimensional, two-particle targets, thereby confirming the
above heuristic reasoning. The general expressions for
the first coefficients are [3],or can be transformed to,

Fo(y)= f" ds e ' 'f" dx @0(x —s)4o(x)=n(y), (8a)

F, (y)= ' f" ds e ' 'f" dx 4o(x —s)@ (0x)f 'do [V(x —o ) —V(x)],
2~ oo oo 0

(8b)

l ~ QO 1 $ '2
Fz(y)= f ds e '«'f dx @o(x —s)C&o(x)—f do [V(x —o ) —V(x)]

2~ oo oo 2 0

—[%0'(x —s)@o(x)—@0(x —s)NO'(x)] f do [V(x —o. ) —V(x)] (8c)

with No =d @0/dx . We now apply the above to harmonic confinement of the relative motion (Fig. 3). Denoting by
P=(mero/2)'/ the relevant inverse length parameter, one finds the following finite expressions for the first three
coefficient functions (the two lowest order terms had been worked out before [7])
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1Fo(y)= exp( —y /P ),v'

(m/q)F, (y) =— 1 Fo(y)
2+
3P2

(9)

(m /q)'F&(y) = ——1

6 q

2

1 —9 +8 —— Fo(y) .
4X'

O' P' 3 P'

Next we consider the more intricate case of an infinitely deep square well V(x) = Vo8(a —lxl ), with Vo —+ —~. Details
are presented in Appendix A and we present here only the results. With y(ay) = (m/2) —(ay )

2
m.a cos(ay )

(10a)
2 y(ay )

(m /q)Fi(y) = [ay —y(ay )tan(ay)]F0(y),
2

gQ

( / )2F (
)=~'y(ay)

1 2( )+4aytan(ay) —1

4(qa) y(ay )

4 2 2

Fo(y) .
y'(ay)

(10b)

(10c)

Note the periodic vanishing of Fo(y), F, (y) for ay„=nm. /2, n ~2, and for the same y„ the unboundedness of the ratio
Fi(y)/Fo(y) [but not of F, (y) itself]. Those characteristics of the special properties of the square-well potential.

III. NONPERTURBATIVE SUMMATION METHOD

A. Development

The nonperturbative expression (1) for the (reduced) response is in general quite impractical, since for regular interac-
tions spectra are predominantly in the continuum. It is indeed the simplicity of spectra and wave functions of some
confining forces which enables use of what shall be referred to as the summation method. The basic assumption to be
made in (1) after use of (5) is

p(q, y)= &l&0.(q)l'& + —E.o ~ I&0.(q)l'~(n~v(q, y)),2m. m 4m "o 2m

with JV(n)=ldE„O/dnl ' the level density. It prescribes the replacement n~v(q, y) everywhere and subsequent re-
placement of the sum over discrete n in (1) an integral. We shall now apply (11) to the cases studied above.

For the harmonic confinement

v(q, y)=(q /2P )(1+2y/q),
JV(n) =coo

which leads to

B. Results for selected examples

(12)

P(q, y ) = 1 ——+
~

——+6(q ) exp — H(q, y)
1 y P 3y 1 3 q

v' p' q 2q' p' 3 2p'

h ( q, y ) = —2y /q + ( 1+2y /q )ln( 1+2y /q ) .

For fixed y, Eq. (13) allows a large q expansion

P(q, y ) = [F,(y)+(m /q )F, (y)+(m /q ) F2(y)+6(q 3)],

(13)

(14)

with F,(y) coinciding with the GRS coefficients in Eq. (9).
A number of remarks are in order. First, after adjusting constants due to different definitions of p, Fqs. (13) and (14)

do not agree with the corresponding result which can be derived from Eq. (14), Ref. [2]. The difFerence is due to disre-
gard there of all but the first two factors in Stirling's formula n!=e "n "(2irn )'~ [1—

,', n+6(n —)].Since from (12)
&n =(q/P)Q —,[1+2y/q), even in the calculation of the asymptotic limit, Fo(y) should one include the correction
(2n.n )' . It incidentally renders Fo ~P ', the natural length scale for the harmonic oscillator, and not Fo ~coo ' as in
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Ref. [2]. The same also affects the dominant coefficients Fi,F2.. Once the corrections are applied, the lowest three
coefficients agree with GRS.

It is of course gratifying to see the correspondence of those results to 8(q ) by two methods, as different as the ex-
plicit summation in Eq. (11) and the expression (4). In fact, the agreement should not be taken lightly. On the one
hand, it brings to the fore the question of convergence of the GRS series (see Sec. IV) and, on the other hand, the re-
placement in Eq. (9) of a discrete sum over delta functions by an integral. For regular forces with an overwhelmingly
continuous spectrum, the above replacement seems justified, but this is not obvious for confining potentials with purely
discrete spectra.

Next we turn to the case of a "diquark" confined by an infinitely deep, one-dimensional square well. Equation (11)
yields for that case

2

l&~+. '(q)l'~ n ———v(q, y) + l&~„'(q)l'&(n —v(q, y))
27r v(q, y) „~i

where y(z) =(m. /4) —z and

m'v(q, y)=(aq/2)[1+4y/q+(m/aq) ]' =(aq/2)[1+2y/q+2y(ay)/a q +8(q )] (15b)

where P~
—„(q) are the inelastic density form factors, linking the ground state to the excited even and odd parity states

a '~ cos[xm(n —
—,')/a], respectively, a '~ sin[xnan/a], for n ~1. Proceeding as in Sec. IIIA one finds after some

algebra

2 cos[aq /2 harv(q, y')—] cos[aq /2+ harv(q, y ) ]
4 [aq/2 mv(q, y)—] ~ /4 —[aq/2+xv(q, y )] —m /4

(16)

Substituting (16) into (15a) and using (15b), one obtains

N(q y)= [1—2y/q+8(q '))[Dl(q y)+D2(q y)] (17a)

cos(ay) 2y
1 ( )

tan(ay) +8( z)
y(ay ) q 2ay

cos[a(q+y+8(q '))]
D2@y =

~ /4 —a (q+y+8(q '))

(17b)

(17c)

+ D2(q, y) .

One then shows that Fo, (y) =Fo i(y) as in Eqs. (10), but
for n 2, F„(y)WF„(y). This is not surprising since the
Euler interpolation formula, the first term of which gives
the replacement of the sum in (11) by a,n integral, is only
valid for analytic functions. Moreover, for a square well
the density of levels JV(n) grows linearly with n, casting
doubt on the appropriate use of the summation method.

C. The quasiclassical response for general V

We prove in Appendix B the following quasiclassical
result for the reduced response

P(q, y ) = [Fo(y)+ (m /q )Fi (y)+ 8(q ') ] . (19)

It shows that the application of (11) generally leads to the
first two terms in the GRS series in the form Eqs. (8a)
and (8b). Clearly the above holds only if the quasiclassi-
cal method is at all applicable. This is for instance not
the case for the square well treated in the previous sec-

Clearly for fixed, y, D, (q, y) permits a large q expansion
but D2(q, y) ~ cos(aq)/q does not, thus

P(q, y)=[Fo(y)+(m/q)F, (y)+8(q ')]

tion. When nevertheless worked out for the case, a non-
analytic term like D2 in (17c) appears also in this treat-
ment.

The above result brings to mind Rosenfelder's treat-
ment of the response using %'igner distribution functions
[8]. It has been observed before that the approximation
which Rosenfelder suggested, and which uses another as-
pect of the semiclassical approach [9], also produces Fo
and the correct dominant correction F, (y), but not
higher order coefficients.

IV. CONVERGENCE OF SERIES
EXPANSIONS FOR THK RESPONSE

Little is known on the convergence of various series ex-
pansions for the response. We mention a proof that the
reduced response, when expressed in an alternative
"plane wave" kinematic variable yo instead of y, Eq. (5),
converges to the plane wave impulse limit P

' (q,yo)
[and in fact to the asymptotic limit Fo(yo), Eq. (7)] pro-
vided the interaction has finite norm ~~V~( [10]. This
sufficient condition does not distinguish between attrac-
tive and repulsive forces and excludes singular V of either
type.

In view of the above stands the remarkable observation
above that for classes of confining forces, the exponent in
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the GRS expression (4) for the response exists. Again
this is a necessary but not a sufhcient condition for the
convergence of the 1/q expansion (6). No doubt that for
each system there are additional conditions which depend
on dimensionless quantities. Those can be constructed
from the external momenta y, q and lengths A, in the in-
teraction V.

In fact the two examples treated are illuminating.
First, for both one observes that P„(q,y)—:(m /q)"F„(y) is
independent of m. It has been remarked before, that al-
though naturally appearing in the GRS theory [3], the ra-
tio m/q cannot be an expansion parameter [11]: As the
above results (9) and (10) show, the explicit mass of the
constituents appears to cancel out in P(q, y), but it may
well be implicit in length parameters like A, =(mcop)
for the harmonic oscillator.

We now focus on F„F2 in Eqs. (9) and (10) which
dominate the approach to the asymptotic limit I'o for
nonvanishing, not too large y. We concentrate on y =0
for which F&(0)=0 and the convergence is fastest. For
the two examples considered, one has

—(P /6q ), for HO,
(m/q) Fz(0)/Fp(0)= '

z( z
) 6 z z

q a,
(20)

V. RESPONSE OF CONFINED SYSTEMS
IN TERMS OF THE BJORKEN VARIABLE

Until here we studied the reduced response expressed
in terms of the NR GRS-West variable (5). In his treat-
ment of NR harmonic confinement Greenberg used in-
stead a NR Bjorken scaling variable

x =q /4m'

with

y =(q/4)(x ' —2)

(21)

(21')

giving the relation to the GRS-West variable. One then
shows that for harmonic confinement the summation
method produces for large q

' —z]'
P(q, x ) =(q/m )S(q, co) =z(x, q )e (22)

with z a regular function of 1/q. The corresponding re-
duced response, when expressed as a function of x, has a
vanishing asymptotic limit, unless x =

—,
' [2]. The latter is,

for the equal mass case, the momentum fraction of the
"quarks" in the Galilean-boosted, infinite momentum
frame. We not show that the same conditions vanishing
in fact holds for any interaction, regular or confining.

Using (21'), the asymptotic limit (7b) for q ~ oo can as
follows be expressed in x:

The right-hand side gives the size of corrections to the
latter, governed by qA, where HO and SQW indicate har-
monic oscillator and square well, respectively. The con-
dition qk&&1 coincides with the condition, already men-
tioned in the paragraph before Sec. II A. For small, finite

y one has to add y /q ((1.

qFp [y (q, co ) ]=qF(q, x )

=4f dpn(p)5 x ' —2—4p,

(23)

where n (p) drops out due to its normalization. Therefore
from (7b) which is the response for free, on-shell parti-
cles, one reaches the last identity, namely an asymptotic
response with zero support, except for x =

—,
' [4]. We now

ask whether the converse is also true. By way of example
we take a constituent which before absorption of q is o6'-

shell with energy e(p)=p /2m+V(p): qF(q, x) has for
q~ oo the same asymptotic limit 5(x —

—,'). One thus con-
cludes that the response in the x variable of the form (23)
is no evidence of asymptotically free, on-shell particles,
whereas this is the case for the same in they variable (7).

The poor content of the asymptotic limit of the
response in terms of the NR Bjorken variable (21) con-
trasts with the same in y, Eq. (7), which as function of y
enables the extraction of the momentum distribution of
the constituents and the study of the approach towards
that limit. In contradistinction, Eq. (22), expressed in the
NR Bjorken variable, does not permit a series expansion
in 1/q. Therefore, no matter what V is, the use of y is
preferable over the NR Bjorken variable x [4].

We close with a remark on the limited, singular sup-
port of the asymptotic limit of the reduced response in
the NR Bjorken variable. Clearly any p-dependent term
in the 5 argument in (23) which does not vanish for
asymptotic q produces a finite support. For instance, us-

ing relativistic kinematics (e~=+p +m ) in (7b) as well
as the relativistic Bjorken variable x„=(q —co )/(4m')
produces a proper x support. [4,12]

VI. SUMMARY

We discussed above the nonrelativistic response or
structure function of two-body systems of confined con-
stituents. Due to their singular nature, perturbation
theory in V fails and nonperturbative methods are called
for. We have investigated the GRS theory, which leads
to a formally exact series expansion for the reduced
response in powers of 1/q. We could demonstrate that,
contrary to the case of singular repulsive forces, for a sys-
tem with singular confining forces that theory may make
sense. As a consequence it permits, for fixed GRS-West
variable y, a power series expansion in 1/q. In particular
the asymptotic limit is shown to be the one for free, on-
shell constituents: For the smallest distances probed the
response is just not sensitive to confinement of finite
range. Higher order coe%cients, relevant for increasing
probed distances, correct the asymptotic limit as if the
basic forces were regular.

A second method utilizes the occasional simplicity of
spectra and wave functions of confined systems and cal-
culates the response in the form Eq. (1) by an explicit
summation over intermediate excited states. We then
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compared the outcome for the response in the two
methods for examples of targets with confined constitu-
ents. In addition we showed that, whenever applicable,
the semiclassical response agrees with the GRS series to
8(q ).

Next we tested the GRS series on its convergence in
particular for y =0. Convergence conditions require y to
be small compared to typical inverse lengths in V. Final-
ly we compared the above responses if the GRS-West ki-
nematic variable y is replaced by the nonrelativistic
Bjorken scaling variable x. The asymptotic limit vanishes
except for values of x, equal to the momentum fraction of
the constituents in the Galilean-boosted, infinite momen-
tum frame. No additional information is contained in
that limit, in contradistinction to the one in the GRS-
West variable which contains the single constituent
momentum distribution. For nonrelativistic dynamics
the above clearly favors the use of the GRS-West variable
over the NR Bjorken variable.

Our concluding remark regards a conjecture of Green-
berg, holding that a Gaussian decrease with q of P(q, x )

around x =
—,
' rejects the rapid vanishing of the '*quark-

quark" interaction for decreasing separation [2]. It is in-
structive to transcribe the above behavior, using y instead
of x. Thus P(q, x )~P(q,y ) ~ exp[ —(y/P) ], i.e., a
Gaussian in y. We now claim that such behavior need
not at all be related to interconstituent forces vanishing
with r: As an example we consider liquid He with
overall weak, attractive interatomic force with a very
strong, short-range repulsion. The resulting single parti-
cle momentum distribution close to T=O' is roughly
Gaussian [13] and so is the asymptotic response Fo(y) as
is also the case for harmonic confining forces [cf. Eq.
(Sa)].

The authors thank M. Kugler for enlightening remarks
on the subject matter.

APPENDIX A: TERMS IN THE GRS SERIES
FOR AN INFINITELY DEEP SQUARE WELL

The ground state wave function for a square well po-
tential V(x)= V08(a —

~x~ ) is

(1/&a )cos(kox), for ~x~ ~a,
@o(x)=

(ko/+ma~ Vo~)exp[ —Qm~ Vo~(~x~ —a)], for x
~
)a '

(A 1)

where ko =Qm (Eo—Vo) ~m. /2a for Vo~ —~. Substituting the above @0 in Eq. (8a) one finds in the limit Vo~ ao

2
era cos(ay )

(A2)2 y(ay )

where y(ay)=m. /4 —a y . All higher order coefficients contain the singular potential. Notice that in the limit
Vo~ —~, the integrands in Eqs. (Sb) and (Sc) vanish for ~s~ )2a, since the product of both wave functions decrease
there exponentially with

~ Vo ~. In general F„(y) draws only on that interval
~ n

F„(y)= f ds e '~'R„(s),
27T 2Q

(A3)

where R„(s) denote x integrals [cf. Eqs. (8b) and (Sc)]. Consider first the x integration in Eq. (Sb) over the interval
0 ~ s ~ 2a. For —a+s ~ x ~ a the difference V(x —o )

—V(x) =0 and the integral over the remaining x sections can be
written as

Ri(s)= f dx+ f dx C&o(x —s)40(x) f do[V(x .cr) —V(x)]-
co a 0

= Vo f @0(x—s)40(x)(x+a —s)dx+ Vo f @0(x —s)@0(x)(s+a —x)dx .
oo a

Integrating by parts, one finds that only the second integral contributes in the limit V0~ —~

(A4)

lim R &(s) =—
V —+ —oo0

k0S
sin(kos) .

ma
(A5)

Likewise for the second interval —2a s 0

k0s
lim R

&
(s)= sin(kos ) .

go~ oo ma

Substitution of Eqs. (A5) and (A6) into Eq. (A3) produces

(m /q )F&(y) = [ay —y(ay)tan(ay ) ]Fo(y} .1

qa

(A6)

(A7}
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In a similar way one computes the third GRS coefficient function F2(y), Eq. (8c). For 0 ~s ~ 2a only the interval x )a
contributes to R~(s) [cf. Eq (.A4)]

+ — 2 + 2

R2(s)= Vo f 4o(x —s)C&0(x) dx —Vo f [@Ii'(x —s)C&o(x) —4o(x —s)C&o'(x)] dx .
a a

(AS)

Since for x ~ a one has 4o (x) = —m Vo&bo(x), the first integral in Eq. (A8) proportional to Vo cancels against the last
term in the second integral. Consequently, only the first term in the second integral survives. Integration by parts gives

~3
2

lim Rz(s) = — sin(kos) .
p'0 —+ —oo 2' a

(A9)

As was the case for R, above [cf. Eqs. (A5) and (A6)], the region —2a ~ s ~ 0 produces (A9) but with the opposite sign.
Substituting R2(s) into Eq. (A3) yields

( / )2F (
)=~y(ay) 1 — 2( )+4aytan(ay) —1

3

(4qa ) V(ay )

Equations (A2), (A7), and (A10) are the results cited in Eq. (10).

2 2

F,(y) .
y'(ay )

(A10)

APPENDIX 8: THE QUASICLASSICAL RESPONSE

Neglecting wave functions of excited states in the classically forbidden region, we have inside the classical turning
points x &,x2

1/2

4„(x)=
vrp„(x)JV(n)

cos f d gp„(g)

(81)
q 2y 2(mEp y )

p„(x)=+m [F.„—V(x ) ]~—1+ +
q

2m V(x)
@( 3)

2
q

with JV as in Eq. (11) the density of states. In line with the summation method, we used above the 5 function in (1) and
the definition (5) of y. Aiming at a calculation to 8(q ), one finds for the reduced response (11)

2
2 2y "2 . qx 1 . q 2y 2~Eo 2y

P(q, y)= —1 — dx &bo(x)exp i —exp i 1+——+ (x —x, )
q && 2 2 2 q

2

+i f dgV(g)+i +c.c. +—8(q 2) .
q X& 4

(82)

where the density of states cancels. Consider first contributions which come from the second (c.c) term in the above
bracket. It is readily seen that those contribute to p terms proportional to the elastic form factor or its square. The
former decreases normally as 1/q and can be neglected in comparison with the first term in the brackets in (82) [14].
To the desired order

2

P(q, y ) = f fdx dx'C&o(x)@o(x') 1 — i (x —x—') Eo — +i f dgV(g)+0(q ) e'~'"
277 q q m q x'

Using —y /m =(1/m )(d /dx )e '~" and the Schrodinger equation, and integrating by parts, one finds

(83)

P(q, y)= f f dx dx'No(x)4o(x') 1+i f dg V(g) i (x —x') V—(x)+6(q ) e'~'
277 q x'

Writing s =x —x ' and replacing g~x —cr one shows that (84) is Eq. (19) with Fo, (y) as in Eqs. (8).

(84)
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