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A correlator of QCD interpolating fields for the nucleon is evaluated in nuclear matter by applying an
operator product expansion. All density dependence is incorporated into the composite operator matrix
elements (condensates) taken in the nuclear matter ground state. The in-medium condensates up to di-
mension five are estimated to first order in the nucleon density. The key phenomenological inputs used
in determining the quark and gluon condensates up to dimension four are the nucleon o. term, the
strangeness content of the nucleon, and quark and gluon distribution functions deduced from deep-
inelastic scattering experiments. Dimension-five quark and quark-gluon condensates, which give small
contributions to the correlator, are estimated by a variety of techniques. Contributions from dimension-
six four-quark condensates are also included in a factorized form.
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I. INTRODUCTION

A major goal of modern nuclear theory is to relate nu-
clear physics phenomenology to quantum chromodynam-
ics (QCD), the underlying theory of the strong interac-
tion. One promising approach applies QCD sum-rule
methods [1] at finite density. In a recent series of papers
[2—4], sum rules for nucleons in nuclear matter have been
developed, with an emphasis on testing the predictions of
relativistic nuclear phenomenology for nucleon self-
energies. In this paper we continue the development.

The QCD sum-rule approach was introduced by Shif-
man, Vainshtein, and Zakharov [1] to predict features of
low-energy hadronic physics in the absence of a full solu-
tion to QCD at large distances. The goal of the sum rules
is to calculate resonance properties (e.g., masses) in terms
of QCD Lagrangian parameters and vacuum matrix ele-
ments of composite quark and gluon operators (conden-
sates), which are used to parametrize nonperturbative
physics. Numerous applications of these sum rules in re-
cent years have been phenomenologically successful and
have provided insight into the nature of hadrons [5—9].

QCD sum rules for nucleons in nuclear matter focus on
a correlation function of interpolating fields, built from
quark fields, that have the quantum numbers of a nucleon
[see Eqs. (3.1) and (3.4)]. The analytic properties of this
correlator as a function of energy can be manifested by a
Lehmann representation; the nucleon self-energies
characterize the singularities associated with a quasinu-
cleon excitation. By introducing a simple ansatz for the
spectral density, guided by constraints from covariance
and from nuclear phenomenology, one obtains a repre-
sentation of the correlator throughout the complex ener-

gy plane. On the other hand, one can apply an operator
product expansion (OPE) to calculate the correlator in re-
gions of the energy plane far away from the quasinucleon
singularities. By using these two different representations
in appropriately weighted integrals, we obtain QCD sum
rules that relate the nucleon spectral properties (such as
the quasinucleon self-energies) to QCD Lagrangian pa-
rameters and finite-density condensates [4].

A truncated version of the finite-density nucleon sum
rules indicates that large and canceling Lorentz scalar
and vector self-energies arise naturally in finite-density
QCD due to changes in the quark condensate and the
quark density [2,4]. Such self-energies are consistent with
those predicted by relativistic nuclear phenomenology
[10—13]. In Ref. [4], these simple sum rules were extend-
ed by considering the contributions of higher-energy
states and higher-order terms in the OPE. In this paper
we expand on the discussion of the OPE given in Refs.
[2,4] and give details on the calculation of the nucleon
correlator at finite density. We adopt simplified rules for
this calculation, based on the usual treatment of vacuum
sum rules, in which all nonperturbative physics and den-
sity dependence resides in the in-medium condensates,
which have coefficient functions constructed in leading-
order perturbation theory. We estimate a number of con-
densates not considered in Ref. [3]. Some of these results
have already been used in Ref. [4]. Additional numerical
details of the sum rules will be reported in a future work
[14].

At zero density, the Lorentz invariance of the vacuum
implies that only matrix elements of scalar operators are
nonvanishing. At finite density, the ground state is no
longer Lorentz invariant; however, matrix elements in
this state do have well-defined Lorentz transformation
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properties. In medium there is an additional four-vector
u", the nuclear matter four-velocity, that must be
transformed when comparing observations in different
reference frames and must be included when building ten-
sors or identifying invariant functions. As a result, ex-
pectation values of local operators with any integer spin
can'be nonzero in the medium. Thus the medium implies
not only density dependence for condensates present in
the vacuum sum rules, but a large number of new terms
in the sum rules that are proportional to new conden-
sates. For the sum rules to be practical, we must find
phenomenological estimates for the condens ates that
make the largest numerical contributions. We consider
the contributions from dimension-four gluon condensates
and from quark and quark-gluon condensates up to di-
mension five; in addition, we include contributions from
the dimension-six four-quark condensates that arise at
tree level.

The in-medium condensates up to dimension five are
estimated to first order in the nucleon density p&. We ap-
proximate the ground-state expectation value of an
operator 0 as (0) =(0)„„+(0)zpz,where (0)„„
is the vacuum expectation value of the operator and
( 0 )& is the expectation value in a nucleon state (at rest).
Contributions of higher order in the nucleon density due
to the Fermi motion of the nucleons and interactions be-
tween nucleons are neglected, so the first-order density
expansion is only accurate at sufficiently low densities. In
the case of the quark condensate (qq ),model calcula-

~N

tions suggest that such higher-order contributions are
less than 20% the size of the linear contribution at nu-
clear matter saturation density [3]. However, the models
considered in Ref. [3] are not sophisticated enough to al-
low a definitive conclusion. We assume in the present
work that the first-order density expansion gives a
reasonable estimate of the in-medium condensates up to
saturation density. Such a treatment should be suitable
for estimating the sizes of the scalar and vector nucleon
self-energies; however, it is not sufficient for an analysis
of nuclear matter saturation, which depends on the inter-
play of the scalar and vector self-energies as a function of
density.

The dimension-three quark condensate ( qq ) is relat-
~N

ed to the nucleon cr term, and (q q ) is exactly propor-
~IV

tional to the nucleon density. The dimension-four quark
condensate (qiDoq ) is also exactly proportional to the

nucleon density; ( q iDoq ) depends on quark and anti-
~N

quark distribution functions measured in deep-inelastic
scattering [15]. The two dimension-four gluon conden-
sates, proportional to ( E —B ) and ( E +B ), are

estimated in terms of the o. term, the strangeness content
of the nucleon, and the gluon distribution function in the
nucleon. Dimension-five quark and quark-gluon conden-
sates, (qiDoiDoq ), (q iDoiDoq ), (g,qo" Qq )
and (g, q o".Qq ), are estimated in terms of quantities

such as quark and antiquark distribution functions and
the coefficient of the leading power correction to the
Czross —Llewellyn Smith sum rule.

Following standard practice in vacuum sum rules, we

estimate the dimension-six four-quark condensates using
the factorization, or ground-state saturation, approxima-
tion. Thus the in-medium four-quark condensates are es-
timated in terms of ( qq ), ( qq ) ( q q ), and

(q q) . It is not obvious that such a treatment of the

four-quark condensates is justified at finite density; a
sum-rule analysis of nucleon self-energies suggests that
the factorization approximation may strongly overesti-
mate the density dependence of the four-quark conden-
sates [4].

There have been several recent papers that discuss
similar or related topics. Drukarev and Levin [16,17]
have studied QCD sum rules for nucleons in nuclear
matter using an OPE and dispersion relations that differ
from those considered here and in Ref. [4]. They have fo-
cused on the properties of nuclear matter, such as the sat-
uration curve. We note that an accurate treatment of nu-
clear matter saturation requires detailed knowledge of the
density dependence of the condensates, particularly the
in-medium quark condensate (qq) . In Refs. [16,17],~N

(qq )z is estiinated using a simple nonrelativistic model
~N

of nuclear matter in which uncorrelated nucleons interact
via single massless pion exchange. It is not obvious that
this treatment of (qq ) is sufficiently realistic to allow a

~N

meaningful description of saturation. In Refs. [18,19] nu-
cleon sum rules were used to estimate the density depen-
dence of the neutron-proton mass difference, which might
account for the Nolen-Schiffer anomaly. Sum rules for
vector mesons in nuclear matter were discussed in Ref.
[15],which includes estimates of various condensates that
are also relevant for nucleon sum rules.

The outline of this paper is as follows. In Sec. II we re-
view the QCD vacuum condensates and establish nota-
tion. An OPE for the nucleon correlator in nuclear
matter is developed in Sec. III, and the in-medium con-
densates that appear are estimated in Sec. IV. Section V
is a summary. Some additional results and details are
given in the Appendixes.

II. QCD VACUUM CONDENSATES

~p —g Apt A
ab ab (2.1)

where t"—:A, "/2 are the SU(3) generators in the funda-

In this section we review the basic QCD field operators
and vacuum condensates in order to establish our nota-
tion and conventions. We start with the fields for the up,
down, and strange quarks, u, , d, , and s, , where we use
a, b, c, . . . = 1 —3 for quark color indices and
a, P, y, . . . =1—4 for Dirac indices. In this paper we are
mainly concerned with up and down quark degrees of
freedom. Due to isospin symmetry, we often do not dis-
tinguish between these two quark Aavors; we use q, to
refer to either an up or down quark field.

The gluon field is denoted 2 &, where we use
A, B,C, . . .= 1 —8 for gluon color indices and
X,p, v, . . . =0—3 for Lorentz indices. A matrix form of
the gluon field is obtained by multiplying the color com-
ponents of the gluon field by the generators of the SU(3)
Lie algebra:
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mental representation (k are the Gell-Mann matrices
[20]).They satisfy the following relations:

[r 3 rB) ~f ABcrc t (r A) 0 t (r ArB) i gAB (2.2)

G~—r"=D„A—, D~—„, (2.3)

where D„=B„ig,—A„ is the covariant derivative (g, is
the quark-gluon coupling constant). Useful identities
that follow from Eqs. (2.2) and (2.3) are

[D,D, ]
gs

(2.4)

where f" are totally antisymmetric structure constants
[20] and tr denotes a trace over quark color indices.

It is useful to introduce the gluon field tensor, which
can be defined as

(uu )„.,=(dd )„„=(qq)„„. (2.9)

The numerical value of (qq )„„canbe determined from
the Gell-Mann —Oakes —Renner relation,

(m„+m )(qq )„„=—I f [1+O(m )], (2.10)

where m and f are the pion mass and pion decay con-
stant, and m„and md are the up and down current quark
masses. Both sides of Eq. (2.10) are renormalization-
group invariant [21]; therefore, given the current quark
masses at a particular renormalization scale, one can
determine the quark condensate at that same scale. We
take I =138 MeV and f =93 MeV; using the standard
values of the light quark masses one obtains
m„+md = 14+4 MeV at a renormalization scale of
1 GeV [22]. Thus one has

and (qq )„„=—(0.225+0.025 GeV)' (2.11)

Ga g g a g g a+g f aacgagc
PV P V V P S P V

We also define the dual of the gluon field tensor,

G ~&~= & ~vxpvG a—
2 PV

(2.5)

(2.6)

at a renormalization scale of 1 GeV [22].
The gluon condensate was first estimated from an

analysis of leptonic decays of p and P mesons [23) and
from a sum-rule analysis of the charmonium spectrum
[1]. Its numerical value is taken to be [24]

(iB—
m~ )q =0, q(bi+mq )=0, (2.7)

where D =8„+ig—,A„These e.quations of motion will be
used in the subsequent discussion to simplify operator
matrix elements. In nucleon sum rules, the contributions
from finite up and down current quark masses are numer-
ically small; therefore, we neglect these contributions.

We now consider vacuum condensates, which are non-
vanishing expectation values of composite operators built
from the fundamental quark and gluon fields. The
Lorentz invariance of the vacuum state vac ) dictates
that only spin-0 operators can have nonvanishing vacuum
expectation values; the lowest-dimensional vacuum con-
densates are

(qq )„„, d =3,

(g,qo. Qq)„„, d =5,
(ql, qql zq )„„, d =6,
(g, fG )„„, d=6,

(2.8)

where d denotes the mass dimension of the condensate.
We take o „,=i [y„,y, ]/2—; we have also introduced
the notation (O)„„=(vac~O~vac), G—:G„,G ",o"0
—:o„„g"', and fG3=f~~ Gi"~G„G . Other c—onden-
sates, such as (qD q )„„,can be related to those listed in
Eq. (2.8) by using the field equations.

We first consider the quark condensate ( qq )„„.Due to
isospin syrnrnetry one has

The quark fields are coupled to the gluon field by re-
placing ordinary derivatives with covariant derivatives in
the free quark Lagrangians. Thus the quark fields q and q
(with current quark mass m~ ) satisfy the following equa-
tions of motion:

(
G =(0.33+0.04 GeV)

7T vac
(2.12)

(g, qcr Qq )„„=2(qD q )„„—= 2A,q(qq )„„, (2.13)

where we have used Eqs. (2.4) and (2.7) to obtain the first
equality. Thus A, parametrizes the average vacuum
gluon field strength and the average virtuality (momen-
tum squared) of the quarks in the QCD vacuum. The
standard QCD sum-rule estimate of this quantity is
A,~=0.4+0. 1 GeV [6,25]. Somewhat larger values have
been obtained from a lattice calculation (A, =0.55+0.05
GeV ) [26] and a QCD sum-rule analysis of the pion form
factor using nonlocal quark and gluon condensates
(A, =0.7+0. 1 GeV ) [27]. A much larger value for A,

q
is

obtained in a sum-rule analysis of the pion wave function
using nonlocal condensates [28]. The value suggested by
this analysis is A, =142 GeV, which agrees with the
value obtained with an instanton liquid model [29).

In QCD sum-rule applications, higher-dimensional
condensates are usually approximated in terms of ( qq )„„
and ((a, /m. )G )„„.For example, the four-quark con-
densates are frequently estimated in terms of ( qq )„„by
using the factorization, or vacuum-saturation, approxi-
mation. This approximation corresponds to inserting a
complete set of intermediate states in the rniddle of the
four-quark matrix element, but retaining only the dom-
inant vacuum intermediate state. An analogous approxi-
mation is commonly used in many-body physics [30].
The factorization approximation has been justified in

(Also see Ref. [24] for a discussion of lattice QCD extrac-
tions of the gluon condensate. ) Note that the product
( a, /rr )G is approximately renormalization-group invari-
ant; violations of renormalization-group invariance are of
higher order in a, [21].

The quark-gluon condensate (g, qo. Qq )„„ is ex-
pressed in terms of the quark condensate ( qq )„„:
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large-X, QCD [31]; in QCD with X,=3, it has been ar-
gued that the contribution to four-quark condensates
from single-pion intermediate states (the lowest excita-
tions of the vacuum) is small compared to that of the vac-
uum intermediate state [1]. Four-quark condensates in
vacuum are thus estimated as

( qI, qqI 2q )„„=—,', (qq )„„[Tr(I,)Tr(I'2)

—
—,'Tr(I il 2)], (2.14)

48

vac
(2.16)

where the instanton size cutoff is p, -(200 MeV) '. This
instanton-based estimate agrees well with the phenome-
nological estimate (g, fG )„„=0.06 GeV [32].

Thus there are a small number of condensates up to di-
mension six that could contribute to nucleon sum rules in
the vacuum. To generalize the sum rules to finite density,
the density dependence of these condensates must be es-
timated. In addition, there are a number of new conden-
sates that vanish in the vacuum, but are nonzero in nu-
clear matter.

III. NUCLEON CORRELATOR

In this section we review some basic features of the
operator product expansion (OPE), which is then used to
calculate the nucleon correlation function in nuclear
matter. We work to leading order in perturbation theory;
leading-logarithmic corrections can be included through
anomalous-dimension factors. Contributions proportion-
al to the up and down current quark masses are neglect-
ed, since they give numerically small contributions. In
the OPE for the nucleon correlator, we consider pure
gluon condensates up to dimension four and quark and
quark-gluon condensates up to dimension five. At dimen-
sion six, we consider only the four-quark condensates,
which give numerically important contributions to nu-
cleon sum rules in free space [5] and in nuclear matter
[4]. All other dimension-six and higher-dimensional con-
densates are neglected, since their contributions are ex-
pected to be small.

We calculate the nucleon correlator, which is the
Fourier transform of a time-ordered correlation function
of the nucleon interpolating field g (constructed from
quark fields) evaluated in the ground state of nuclear
matter ~eo):

(qI, A, qql'2A, q)„„=—
—,'(qq)„„Tr(I iI 2), (2.15)

where I
&

and I 2 are Dirac matrices, and Tr denotes a
trace over Dirac indices. A more detailed discussion of
the factorization approximation and the estimation of
four-quark condensates at finite density, including those
of mixed fiavor (not shown here), is in Appendix A. Note
that phenomenological studies [32,33] and instanton
liquid models [24] suggest strong deviations from the fac-
torized results in some cases.

The value of the three-gluon condensate has been es-
timated in terms of the two-gluon condensate using the
dilute instanton gas approximation [1]:

II(q)—= i Jd x e' "'(%0~ T[il(x)q(0)]~+0) . (3.1)

The nuclear matter ground state is characterized by the
rest-frame nucleon density p& and the four-velocity u".
We assume that the ground state is invariant under parity
and time reversal.

We consider nucleon interpolating fields that contain
no derivatives and couple to spin —,

' only. There are two
linearly independent fields with these characteristics.
One way to construct these independent fields is to con-
sider the proton to consist of an up quark coupled to an
up-down diquark, where the diquark is constructed so as
to have vanishing spin and isospin. The remaining struc-
ture of the fields is dictated by the constraint that the
proton interpolating field behave like a Dirac spinor un-
der parity. Such an interpolating field will then have the
same quantum numbers as the proton. Thus the two in-
dependent interpolating fields are taken to be

pi(x) =e,b, [u, (x)Cy5db(x) ]u, (x),
g2(x)=e, i„[u, (x)Cdi, (x)]y5u, (x),

(3.2)

(3.3)

where T denotes a transpose in Dirac space and C is the
charge conjugation matrix [20]. The analogous fields for
the neutron follow by interchanging the up and down
quark fields.

In lattice QCD calculations, the interpolating field g, is
usually used since this field has a nonrelativistic limit (ilz
vanishes in the nonrelativistic limit) and tends to mini-
mize statistical uncertainties. The choice of nucleon in-
terpolating field in QCD sum-rule applications is based
on different criteria: The goals are to minimize the cou-
pling of the interpolating field to the nucleon intermedi-
ate state relative to other (continuum) states, while
minimizing the contributions of higher-order terms in the
OPE [5]. (For a detailed discussion, see Ref. [34].) These
goals cannot be simultaneously realized; however, the op-
timal choice of interpolating field seems to be the one
made by Ioffe [5],

il(x) =e,b, [u, (x)Cy„ub(x) ]y,y"d, (x), (3.4)

which is proportional to q, —g2. We use this interpolat-
ing field in subsequent calculations.

Lorentz covariance, parity, and time reversal imply
that II(q) has the form [2,4]

II(q)=II, (q, q.u)+II (q, q u)/+II„(q2, q u)Q . (3.5)

II,(q, q u) = —,'Tr[II(q)], (3.6)

1II (q, q.u)=
q

—(q u)

X —Tr[QII(q)] — Tr[QII(q)], (3.7)
4

There are three distinct structures, scalar, g, and g, that
multiply three invariants functions of the two scalars q
and q.u. The invariant functions can be projected out by
taking traces of the correlator:
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II„(q,q u)= 1

q
—(q u)

2
q uX Tr[QII(q)] — Tr[QII(q)] . (3.8)

4 4

These projections require q
—(q u) %0, i.e.,

q"%const Xu". (This implies qAO in the nuclear matter
rest frame. ) If q

—(q.u) vanishes, then there are only
two independent invariant functions.

We use the operator product expansion to provide a
QCD expansion of the finite-density correlator. The OPE
is a useful tool for extracting phenomenological informa-
tion from renormalizable quantum field theories. The
central idea is that the time-ordered product of two local
(elementary or composite) operators at short distances
can be expanded in terms of a complete set of regular lo-
cal operators 0„(0) [35,36]:

x~0
T [ A (x)B (0) ] = g C„(x)0„(0). (3.9)

T [ A ( )Bx(0)] = Q C„(x,p)O„(O,p) . (3.10)

Both the coefficient functions and the operators contain,
in general, nonperturbative as well as perturbative contri-
butions. However, in practical applications of the OPE
(in particular, in the QCD sum-rule formalism) one usual-
ly applies a simplified version. Namely, the Wilson
coefficients are evaluated in perturbation theory, while
the nonperturbative effects are contained entirely in the
vacuum expectation values of composite operators, which
are assumed to contain no periurbative contributions.

This simplified version of the OPE is justified in part by
the phenomenological success of QCD sum rules. In Ref.
[37], the reason behind this success is attributed to the
following: There seems to be a range in p in which p is
large enough with respect to AQcD (the QCD scale pa-
rameter) so that nonperturbative corrections to the
coefficients are small and can be neglected, but small
enough so that the values of the condensates are quite in-
sensitive to variations in p. In other words, there seems
to be a "window" in QCD, where the simplified version
of the OPE applies. Perturbative corrections to the opera-
tors can be taken into account in the leading-logarithmic
approximation through anomalous-dimension factors [1].

In this paper we adopt the simplified version of the

The c-number coefficients C„ofthe expansion are called
Wilson coefficients. In this expansion the singularities at
short distances are factored out from the regular opera-
tors, and the terms in the expansion are organized in de-
creasing order of singularity. The OPE has only been
proven in perturbation theory; the validity of the OPE in
the presence of nonperturbative effects is not obvious.

There has been a series of papers discussing the nature
of the OPE beyond perturbation theory [37,38]. It was
shown that to unambiguously apply the OPE, one must
define the coefficient functions and composite operators
by introducing an auxiliary parameter, the normalization
point p:

x —+0

II;(q, q u)= g C„'(q,q u)(O„) (3.11)

where we have introduced the notation(0„)—:(Co~0„~+o). The C„'(q,q u) (i = [s,q, u ] )

are the Wilson coefficients, which depend on QCD La-
grangian parameters such as the quark masses and the
strong coupling constant. The Wilson coefficients in the
OPE only depend on q", and the ground-state expecta-
tion values of the operators are proportional to tensors
constructed from the nuclear matter four-velocity u ~, the
metric g", and the antisymmetric tensor e " . In Eq.
(3.11) we incorporate the contraction of q" (from the
OPE) and u" (from the ground-state expectation values of
the operators) into the definition of the Wilson
coefficients C„'(q, q.u). Thus the dependence on q u is
solely in the form of polynomial factors. We have
suppressed the dependence on the normalization point p.

The O„are local composite operators constructed from
quark and gluon fields; examples of such operators are qq
and (a, /m. )G . The ground-state expectation values of
these operators are the in-medium condensates. The
operators are defined so that the density dependence of
the correlator resides solely in the in-medium conden-
sates. Thus the only substantial difference from the vacu-
um calculations is that more composite operator matrix
elements are nonzero in nuclear rnatter. The operators
O„are ordered by mass dimension and the C„'(q,q.u)
for higher-dimensional operators fall off by correspond-
ing powers of Q—:—

q . Therefore, for sufficiently large
Q, the operators of lowest dimension dominate, and the
OPE can be truncated after a small number of lower-
dimensional operators.

Since the nucleon interpolating field is a color singlet,
the nucleon correlator is gauge invariant; therefore, one
can evaluate the correlator in any desired gauge. For
convenience, we use the fixed-point gauge, which was in-
troduced for use in electrodynamics in Refs. [39,40], and
reintroduced for use in QCD in Ref. [41]. Simple rules

iNote that in Ref. [17] the finite-density correlator is studied
using kinematics analogous to that of deep inelastic scattering
(i.e., q /q u is fixed and finite). This ensures that only the light
cone is probed, but does not imply a short-distance expansion.
Furthermore, the identification of quasinucleon intermediate
states is obscured.

OPE to expand the time-ordered product in Eq. (3.1) at
short distances. In the sum-rule applications of Ref. [4],
the correlator is studied in the limit that q0 becomes large
and imaginary, while ~q~ remains fixed (in the nuclear
matter rest frame). This limit takes q ~—~ with

~q /q u
~

~ oo, which satisfies the conditions discussed in
Ref. [36] for a short-distance expansion. ' We also apply
Borel transforms in qo (or, equivalently, in q ), which im-

plies that only terms in the expansion that are discontinu-
ous across the real qo axis contribute to the sum rules (for
example, polynomials are eliminated).

At finite density, the OPE for the invariant functions of
the nucleon correlator takes the general form
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have been formulated for the calculation of correlation
functions using the fixed-point gauge and background-
field techniques [42—44,9]. The fixed-point gauge condi-
tion is

S,„p(x,O) = & T [q, (x)q p(0) ] )

5,b [/] p+y, (x)gbp(0)
2m

' (x )

x„A"(x)=0 . (3.12)
lg~

2 F„"(0)t,b 2
[Acr""+o"'2t ] p+

327T x

(3.14)

In this gauge the gluon field A„can be expressed directly
in terms of the gluon field tensor 9„,[41—45,9],

1A (x)=f daax"Q„(ax)
=

—,'x "Q„„(0)+,'x x "(—D2Q„„) 0+ . (3.13)

which allows one to obtain manifestly gauge-invariant re-
sults in a relatively simple way.

In the background-field method, the presence of non-
perturbative quark and gluon condensates is
parametrized by Grassmann background quark fields, y~
and g~, and a classical background gluon field I'„. It is
most convenient to first calculate the correlator in coor-
dinate space and then transform to momentum space.
The coordinate-space quark propagator for massless
quarks in the presence of the background fields takes the
following form in the fixed-point gauge [9]:

where the first term is the free quark propagator, and the
second and third terms are the contributions due to the
background quark and gluon fields, respectively. The
gluonic contribution to Eq. (3.14) comes from a single
gluon insertion, retaining only the leading term in the
short-distance expansion of the gluon field [see Eq.
(3.13)]. Contributions from derivatives of the gluon field
tensor, which are less singular at x~0, and additional
gluon insertions are not included. These refinements are
not needed given the level of truncation in the OPE con-
sidered here.

The calculation of the nucleon correlator using
background-field techniques is similar to ordinary pertur-
bation theory. The time-ordered product in Eq. (3.1) is
evaluated using Wick's theorem, retaining only those
contributions in which the quark fields are fully contract-
ed. However, the background quark propagator [Eq.
(3.14)], rather than the free quark propagator, is used for
each contraction. Working to leading order in perturba-
tion theory, we obtain

11(q)= 2ie,b—,e, b,, f d, x e''t "Tr[S,",.(x,O)cy„Sbb (x, O)y C]y5y"S„(x,O)y'y5 .

We perform the integration over x using the formulas [44,9]

iq-x 4~ I
2

g
2

4 n24 2n 2—
e'q = ( )" ln( — )+P ( ) (n ~2)I(n —1)I(n)

(3.15)

(3.16)

(3.17)

and their derivatives with respect to qp. P (q ) is a poly-
nornial in q of degree m with divergent coefficients. The
precise forms of the polynomials are not important, since
they do not contribute to the Borel transformed sum
rules.

The leading perturbative contribution to the nucleon
correlator is obtained by using only the free part of the
propagator in Eq (3.15). .Higher-order contributions to
the correlator are conveniently calculated using the
background-field method. Products of Grassmann back-
ground quark fields and classical background gluon fields
obtained in Eq. (3.15) correspond to ground-state matrix
elements of the corresponding quark and gluon opera-
tors:

where the fields are evaluated at x =0 unless otherwise
noted. In Eq. (3.18) we have only shown those matrix
elements that are needed in order to carry out the OPE to
the level we are considering. Thus we evaluate the fields
in the higher-dimensional operators at the same point,
since nonlocalities would only introduce condensates that
are higher in dimension than those we wish to consider.
The operators on the right-hand side of Eq. (3.18) are im-
plicitly normal ordered with respect to the perturbative
vacuum at zero density, ' we can write these matrix ele-
ments in terms of scalar local condensates by projecting

(xg)~bp(0) =
& q (x)qbp(0) )

FAFB —
&

GA GB

x mbpF„. =&q.qbpG„. & „
XaaXbPXcyXdb & qaaqbPqcyqdb }p&

(3.18)

2Note that some calculations are simpler if one writes the
g1uonic contribution to the propagator as

Ws —A „1F„„(0)t,b x"[y"y5] p+ '

However, to keep our discussion succinct, we only explicitly
consider the form used in Eq. (3.14).
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out the Dirac, Lorentz, and color structure and perform-
ing a short-distance expansion if necessary. We discuss
this procedure in detail; it is through this discussion that
we introduce the relevant condensates for our sum-rule
calculations.

The Dirac and color structure of the matrix element

(q, (x)qb&(0) ) can be projected out to obtain
~N

(q, (x)qb~(0))~

6,b [(q(0)q(x)) 5 p+(q(0)yiq(x)), y'ii],

(3.19)

since nuclear matter is colorless and the ground state is
(assumed to be) invariant under parity and time reversal.
[Other matrix elements of the form (q(0)I q(x))z do

~N

not contribute due to parity and/or time reversal. ] We
evaluate Eq. (3.19) at short distances by expanding the
quark field q (x ) in a Taylor series:

q(x)=q(0)+x "(B„q), o+ —,'x"x'(B„Bq)„o+
(3.20)

However, since the nucleon correlator is gauge invariant,
the ordinary derivatives in Eq. (3.20) must ultimately be-
come covariant derivatives. In standard calculations,

gluon fields in higher-order terms of the OPE combine
with the ordinary derivatives in lower-order terms to
form covariant derivatives.

The situation is much more straightforward in the
fixed-point gauge, the ordinary derivatives can be re-
placed with covariant derivatives immediately. We follow
the discussion of Ref. [44]. Using the fixed-point gauge
condition in Eq. (3.12), and expanding the gluon field, one
obtains

x a.(0)+x~x "(a~.). ,
(3.21)

Since x is arbitrary, the individual terms of Eq. (3.21)
must vanish; using this fact, one can readily show

x "(D„q) o=x "(B„q)

x"x'(D„D„q) 0=x "x (B„Bq)„
(3.22)

and so on. Combining this result with Eq. (3.20) one
derives the following covariant Taylor expansion:

q (x)=q (0)+x"(D„q) o+ ,'x "x (D„—D,q)„0+
(3.23)

An analogous expansion of the gluon field tensor at short
distances [used in Eq. (3.13)] is proved to all orders using
mathematical induction in Ref. [45].Therefore, we obtain

6,
(q, (x)qb&(0)) = — [((qq) +x"(qD„q) +-,'-x"x (qD„D q) + . )5 &

+((qyiq) +x "(qy&D„q) + —,'x"x (qy&D„D q) + . )y p], (3.24)

CDq (x)= x ' . x "C (x),~n
D q qq

(3.25)

C
qr D

1

(x)= x ' . x "C (x) . (3.26)~n
D q qr„q

This implies that the momentum-space Wilson
coefficients are related by

CDq ,(q)= (
—&)"

~n n!
8

Bqp Bgp
C (q),

(3.27)

where all fields and field derivatives in the condensates
are evaluated at x =0.

It is useful to note one particular calculational con-
venience. Since the Dirac matrices involved in
calculating the Wilson coefficient of
(qD„D„q ) [(qy„D„. D„q ) ] are the same

as those involved in calculating the Wilson coefFicient of
(qq ) [(qy„q ) ], we conclude that the coordinate-

l'W i" )('X '

space coefficients are related as follows:

C
qr„D„

1

(q)= ( i)"—
~n n~

c}

Bq
C (q) .

(3.28)

We now proceed to evaluate the condensates appearing
in Eq. (3.24) in terms of expectation values of scalar
operators multiplied by quantities that contain the
Lorentz structure of the original condensates. In vacu-
um, these condensates can only be expressed in terms of
the metric tensor g" and the antisymmetric tensor e
thus condensates with an odd number of uncontracted
Lorentz indices must vanish in the vacuum. In-medium
condensates, however, can also be expressed in terms of
the nuclear matter four-velocity u", which leads to new
condensates and new Lorentz structures. The general
procedure for evaluating the condensates in Eq. (3.24) is
to write each as a sum of all possible Lorentz structures
with unknown coefficients. These coefficients, which will
turn out to be expectation values of scalar operators, can
then be determined by taking appropriate traces over the
Lorentz indices.

The condensates involving vector operators in Eq.
(3.24), (qy~q )~ and (qD„q ),must be proportional to
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(qy„q) =(qaq) u„,
(qD„q ) = (qu Dq ) u„.

(3.29)

(3.30)

The condensates (qy„D q) and (qD&D q) can be
~N p ~ p~

decomposed into terms proportional to u„u and g„,:

(qy„D q) =4(qdu Dq) (u„u, ——'g„)—
—,'(qBq) (u„u —g&„)

=—', (qNu Dq ) (u„u —
—,'g„,),

(qD D q) =—', (qu Du Dq) (u„u„——,'g„)—
—,'(qD q) (u„u —g„, )

=—', (qu Du Dq) (u„u, —
—,'g„)—

—,'(g, qo. Qq) (u„u —g„„) .

(3.31)

(3.32)

The second equality in Eq. (3.31) follows from Eq. (2.7); the second equality in Eq. (3.32) follows from Eq. (2.13). (The
current quark mass is neglected in both cases. ) The condensate (qy&D„D, q ) can be decomposed into terms propor-

IN
tional to u&u„u, u&g„, u„g&, and u g&„.

(qy&D„D„q ) =2(qdu. Du Dq ) [uzu„u ,'(—uz—g„+u„gz +u gz„)]——,'(qAD q ) (uzu„u —uzg„„)

—
—,'(qu D&q) (u&u„u, —u„gz, )

—
—,'(qQu Dq) (uzu„u, —u,g&„) . (3.33)

(A potential contribution proportional to u e z„,vanishes due to parity and time-reversal invariance. ) The condensate

in the fourth term of Eq. (3.33) can be reexpressed as (qBu Dq ) = —(qBu Dq ),which follows from translation

invariance (see Appendix B). Thus the condensates in the third and fourth terms of Eq. (3.33) are proportional to the
current quark mass by Eq. (2.7), and we neglect these terms. Therefore, one obtains

(qy~D„D q ) =2(qdu Du.Dq ) [u~u„u —
—,'(uzg„+u„gz +u„g~„)] ,'(g, qafo"—Q—q ) (u~u„u uzg„—),

(3.34)

where the second term follows from the relation ( qriD q ) = ,' (g, qN—o"Qq ) . Thus the expansion of
~N

(q, (0)q&&(x) ) up to dimension five includes quark condensates and quark-gluon condensates.
~N

Another source of quark-gluon condensates is from contributions of the form y~~qb&F„", in Eq. (3.15). The corre-
sponding matrix element can be decomposed as

(g,q, qbpG„) = —
I (g,qo" Qq ) [o„+i(u„y —u. y„)P] p+ (g, qNo" Qq ) [o 8+i (u„y —u, y„)] p

—4(qu Du Dq ) [o„,+2i (u„y uy„)k ] p—l, (3.35)

which is obtained by projecting out the color, Dirac, and Lorentz structures by taking appropriate traces. The appear-
ance of the condensate (qu Du Dq) can be understood from the identity (qD„D q) = —

—,(ig, qy„y Qz,q)~N

which we prove in Sec. IV. Many of the "condensates" encountered in the derivation of Eq. (3.35) vanish due to the as-
sumed parity and time-reversal invariance of the nuclear matter ground state.

We include contributions to the nucleon correlator from all dimension-four gluon condensates, which arise from fac-
tors of F,&F„,in Eq. (3.15). Note that this factor comes from single gluon insertions in two of the quark propagators.
In principle, one could also consider the case in which two gluon lines emanate from the same quark propagator; how-
ever, we neglect these contributions, since they vanish in the massless quark limit [42]. The matrix element
( G,&G„) can be written aspv p~

6-'~6p- =
96

' 6' g-pg~-
—g-g~p

—2 [(u G) +(u G) ] [g,„gz —g,gz„
7T'

~N

—2(g „uzu —g u~u„—gz„u„u, +gz u u„] ', (3.36)
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&g,'fG'&,
R-

M'&g'G'&
(3.37)

where M is a relevant mass scale for the nucleon correla-
tor. Taking M-1 GeV and neglecting the (small) density
dependence of the condensates, we obtain R —10%. The
contribution of the two-gluon condensate to the nucleon
sum rules is small, and the contribution from the three-
gluon condensate is evidently smaller still; therefore, we
neglect contributions from three-gluon condensates along

I

where (u.G)—:(u Gi" )(u„G"" ) [G„ is defined in Eq.
(2.6)]. In the nuclear matter rest frame, the two in-
medium gluon condensates ((a, /~)G & and

~N

((a, /~)[(u. G) +(u G) ] & are proportional to
~N

(E —8 & and (E +8 &, respectively, where E"
and B" are the color-electric and color-magnetic fields
(E'=E" E'and S'=S" S")

Contributions to the nucleon correlator from higher-
dimensional pure gluon condensates are expected to be
small compared to those from quark condensates of equal
dimension due to small numerical factors in the gluon
condensate Wilson coefficients; therefore, these conden-
sates can be neglected. One possible exception is the
dimension-six three-gluon condensate (g, fG &, since

~N

it has a nonvanishing vacuum value. It is a simple matter
to compare the contribution of this three-gluon conden-
sate to that of the two-gluon condensate (g, G &, since

~N

they are diagrammatically similar. Two-gluon contribu-
tions to Eq. (3.15) are those in which two of the three
background-field quark propagators are replaced with the
gluonic part of the propagator, while the third is replaced
with the free part of the propagator. The three-gluon
contribution simply uses the gluonic part of the propaga-
tor for each. Thus one expects the ratio R of the three-
gluon condensate contribution to the correlator to that of
the two-gluon condensate to be given roughly by

—&u. ud, &, &u, u, q&

( u~~ui pd~ydds & —( u~~ut p&p ( d~ydds &p

(3.38)

(3.39)

The two-quark matrix elements in Eqs. (3.38) and (3.39)
are then simplified using Eq. (3.19); thus the four-quark
condensates are approximated in terms of ( qq &

~N

( qq & ( qQq &, and ( qQq & with no new parameters.

Additional details of the factorization (or ground-state
saturation) approximation are discussed in Appendix A.

The three invariant structures of the nucleon correla-
tor can be projected out by using Eqs. (3.6)—(3.8). For
convenience we separate the correlators into pieces that
are even and odd in q u:

II,(q, q u)—= II, (q, (q u) )+q uII, (q, (q u) ), (3.40)

II~(q, q u)—:II (q, (q u) )+q uII (q, (q u)~), (3.41)

II„(q,q. u)=—II„(q,(q u) )+q uII„(q, (q u) ) . (3.42)

The results of our calculations are

with all other higher-dimensional pure gluon conden-
sates.

At dimension six we only consider the four-quark con-
densates. The leading-order four-quark condensate con-
tributions to the nucleon correlator arise at tree level;
thus they do not carry the suppression factors associated
with loops. Such contributions appear as terms propor-
tional to y,"~i,~,"yards and y,"~i",~,Pds in the evalua-
tion of Eq. (3.15) . The Lorentz, Dirac, and color struc-
ture of these matrix elements can be projected out in a
manner similar to that discussed above; one then obtains
the four-quark condens ates in an unfactorized form.
Here we consider the four-quark condensates only in a
factorized form in which the four-quark matrix elements
are approximated as follows [30]:

& uoa"i lucy"ds&(„= & "aa"t p&p„& "cy"ds&p„

2

II (q, (q u) )= q ln( —
q )(qq & + [(q(iu D)(iu D)q & + —,((g qo Qq & ],4~ 3m q

II, (q, (q u) )= — ln( —
q )(q(iu D)q &

— (qq & (qQq &

(3.43)

(3.44)

II (q, (q u) )=— (q ) (n( —
q ) + 5 )n( —

q ) — ( qn'(in D)q ) — In( —
q ) G

)64m 9m q 32~

1
ln( —

q )
— [(u G) +(u G) ]

—
~ (qq &

— (qdq &, (3.45)
4(q u) as

p
—

p 2 p 4
144~ q ~ 3q' 3q

II (q, (q u) )= ln( —
q )(qQq & + (g, qiio" Qq &

2= 1

3~ ~ 18~ q

2 2(q u)1+
z [(qadi(iu D)(iu D)q & + —,', (g, qrticr Qq & ],

377 q q

II (q, (q u) )= q ln( —
q )(qQq &

— ln( —
q )(g, qQo Qq &

1

3 ~ 12 ~N

+
z z [(qk(iu D)(iu D)q & + —)', (g, qdcr Qq & ],4 (q u)

q

(3.46)

(3.47)
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IIo(q, (q u) )= — ln( —
q )(q4(iu D)q) + ln( —

q ) [(u G) +(u G) ] — (qdq)
9m 36m2 3q2 ~N

IN

(3.48)

Here we have assumed isoscalar nuclear matter and take
(uOu )~ = (dod )z —=(qoq ), with 0 a combination

of Dirac matrices, gluon field tensors, and covariant
derivatives. All polynomials in q in Eqs. (3.43)—(3.48),
which vanish under the Borel transform, have been omit-
ted.

IV. IN-MEDIUM CONDENSATES

To calculate the nucleon correlator at finite density we
need to know the condensates in nuclear matter. In this
section we estimate the various condensates appearing in
the invariant functions. We work in the rest frame,
where u "~u'"=—(1,0), and expand the in-medium con-
densates in terms of the rest-frame nucleon density. To
first order in the nucleon density we have

&o&, =&o&„.,+&o& p +. (4.1)

where . denotes correction terms that are of higher
order in the nucleon density. Note that this expansion is
not a Taylor series expansion in p&. The spin-averaged
nucleon matrix element is

(O)~= f d x((N O(x)~N) —(vac O(x)~vac)), (4.2)

where ~N ) is the state vector for a nucleon at rest nor-
malized to unity ((N N ) =1). Using more conventional
notation, the nucleon matrix element is given by

p2 g2 62

(
' (E +B ) = — [(u' G) +(u' G) ]

7T
~N ~N

(4.5)

(4.6)

We now proceed to estimate the in-medium condensates.

A. Dimension-three condensates

The most important condensates in finite-density QCD
sum rules for the nucleon are the dimension-three quark
condensates (qq ) and (q q ) . These condensatesIN ~N

alone contribute to the leading-order sum-rule results for
the nucleon self-energies [2,4]. The in-medium quark
condensate (qq ) can be expanded in terms of the nu-

~N

cleon density as

nucleon correlator [Eqs. (3.43)—(3.48)] can be written in
the rest frame as (qq ), (q q ), (qiDoq )
(q iDoq), (qiDoiDoq), and (q iDoiDoq) . The
correlator also depends on the quark-gluon condensates
(g, qo. Qq) and (g, q o"Qq) . In the rest frame, it is

~N ~N

convenient to take the two independent gluon conden-
sates to be ((a, /n)(E —B ) ) and ( (a, /m. )(E
+B )), where E and B are the color-electric andIN
color-magnetic fields. In terms of the original forms of
these condensates one has

(o &„=&NioiN &, (4.3)
& qq &

=
& qq &„„+(qq &~p~+ (4.7)

where N ) is once again the state vector for a nucleon at
rest. In this case, the connected matrix element is im-
plied, which is equivalent to making a vacuum subtrac-
tion as in Eq. (4.2), and the nucleon plane-wave states are
normalized as follows:

(N(p)~N(p')) = (2m) 5 (p —p'),
M~

(4.4)

where co =po='1/p +M&.
For a general operator 0 there is not a systematic way

to study contributions to (0 ) that are of higher order
~N

in p&. In the case of (qq), however, higher-order
~N

corrections can be systematically studied with an applica-
tion of the Hellmann-Feynman theorem, although the
corrections are necessarily model dependent. Estimates
of (qq ) in Ref. [3] show that the linear approximation

~N

is reasonably good (higher-order corrections -20% of
the linear term) up to nuclear matter saturation density,
although the models considered in this work are not so-
phisticated enough to allow a definitive conclusion. In
this paper, we assume that the first-order approximation
of the condensates is good up to nuclear matter satura-
tion density.

The in-medium quark condensates that appear in the

where we have used Eq. (4.1). This condensate has been
discussed extensively in Refs. [3,16,17]; therefore, we sim-
ply quote the result here. The nucleon matrix element
(qq )~ is related to the nucleon cr term
o z =—(m„+md )( qq )~, where m„and md are the up and
down current quark masses. Therefore, one obtains

&qq)
tB~ + fold

(4.8)

&q q& „=px— (4.9)

where the factor —', corresponds to three colors (i.e., three
valence quarks) divided by two fiavors. This is an exact
result.

Note that o.& is renormalization-group invariant; there-
fore, as with ( qq )„„,the normalization scale of ( qq )z is
determined by that of m . The most recent estimate of
the o term is cr& -—45+ 10 MeV [46]; thus the quark con-
densate is 30—45 % smaller than its vacuum value at nu-
clear matter saturation density.

The other dimension-three quark condensate is
( q q ) . Since the baryon current is conserved,

(q q ) is proportional to the nucleon density:
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B.Dimension-four condensates

We now estimate the two dimension-four quark con-
densates ( qiDoq ) and ( q iDoq ) and the two

~N ~N

dimension-four gluon condensates ((a, /vr)(E —8 ) )&

and ((a, /~)(E +8 ) ) . We start by considering the
~N

quark condensate ( qiDoq ),which can be evaluated ex-
~N

actly. Using the identity

that analyze the mass spectrum of the baryon octet in the
context of SU(3) fiavor symmetry indicate that the
strangeness content of the nucleon is related to the cr

term in the following manner [46]:
0

~N (4.18)
1

where o-N is the o. term in the limit of vanishing strange-
ness content. Therefore, SN can be parametrized as

D„=2(y—„0+By„), (4.10)

one obtains

(qiDoq ) =
—,((qyoi&q ) + (qi@yoq ) ) . (4.11)

m„+md
(4.19)

Translation invariance of the nuclear matter ground state
implies (qiQyoq ) = —(qi&yoq ) (see Appendix 8);
using the quark field equations [Eq. (2.7)], one then finds

We take o iv -45+10 MeV, criv -—35+5 MeV (from
second-order perturbation theory in m, —

m~ ), and
m, /(m„+md ) =13 [46]; thus we have the following esti-
mate for the nucleon matrix element in Eq. (4.17):

&qiDoq) =m &qtq& =—', m p~, (4.12)

(q iDoq )„„=u'u', (qy"iD q )„„
'

&qq &„„=0, (4.13)

where u„'—= (1,0). We have used the fact that
(qy"iD'q )„„canonly be proportional to g" . The vacu-
um values of the other condensates are determined by
similar considerations. Thus the remaining dimension-
four condensates are expanded as follows:

where we have also used Eq. (4.9). This is an exact result;
we neglect this condensate since it is proportional to the
current quark mass.

The remaining dimension-four condensates are expand-
ed to first order in the nucleon density using Eq. (4.1). In
order to implement this expansion one must first deter-
mine the vacuum values of these condensates. For exam-
ple the vacuum value of the quark condensate
( q iDoq ) is given by

(E —8 ) =0.325+0.075 GeV .~ ~

N
(4.20)

& &(p) lq I y„D„D„]q l&(p) &

At nuclear matter saturation density, ((a, /~)(E—8 ) ) is 5 —10% smaller than its vacuum value.
IN

The matrix elements (q iDoq)~ and ((a, /~)(E
+8 ) )z can be related to moments of parton distribu-
tion functions measured in deep-inelastic scattering ex-
periments [15—17]. We consider the twist-two operators
qty„D„.D„]q and tr[Qi„D„. D„
where I

.
] makes the quantity enclosed symmetric and

traceless in its Lorentz indices. (Recall that twist = di-
mension —spin. ) These operators give the leading con-
tributions to the nucleon structure functions in the Bjor-
ken limit [36,47,48]. Nucleon matrix elements of these
operators can be defined as follows:

(q iDoq) =(q iDoq)~p~+ (4.14)
&. n —1

(4.21)

s E2 +2 s G2
~N

+ E —8 p + . 415

&X(p)ltr[a,„D„.. D„e„']le(p))
n 2

2M
(4.22)

E+9 = E+8 p +
~N

(4.16)

The QCD trace anomaly is used to estimate
((a, /~)(E —8 ))&. The details are discussed in Refs.
[3,16,17]; therefore, we simply quote the result here:

(E —8) =—(M —o —S ),s 2 2 4
9 N N

N
(4.17)

where M& is the nucleon mass, cr& =(m„+m—d )(qq )& is
the nucleon c7 term, and S& ——m, (ss )~ is the strangeness
contribution to the nucleon mass. The strangeness con-
tent of the nucleon is commonly parametrized by the di-
mensionless quantity y = ( ss )& /( qq )&. Calculations

where A„(p ) and A„(p ) are reduced matrix elements, p
is the renormalization scale, and the nucleon plane-wave
states are normalized as in Eq. (4.4). The reduced matrix
elements can be expressed as moments of parton distribu-
tion functions [48—50]:

A~(p )=2f dx x" '[q(x, p )+( —I)"q(x,p )], (4.23)
0

1+(—1)"
A s(p') = dX X g XP

2 0
(4.24)

where q (x,p ) and q(x, p ) are the scale-dependent distri-
bution functions for quarks and antiquarks (of fiavor q) in
the nucleon, and g(x, p ) is the gluon distribution func-
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tion in the nucleon. Given a generic parton distribution
function p (x,p ), the product iu (x,p )dx gives the num-
ber of partons of type p with a fraction of the total nu-
cleon momentu~ between x and x +dx at the scale p
[36,47,48].

For the purpose of evaluating in-medium condensates
to first order in p&, one can consider nuclear matter to
consist of uniformly moving noninteracting nucleons;
thus one takes p„=M&u„To. evaluate (q iDoq )z andf ~

((a, /m. )(E +8 ))~, we consider Eqs. (4.21) and (4.22)
for the n =2 case; evaluating the trace over color indices
in Eq. (4.22) we obtain

(q{y D Iq )~= — M~—A2(p )(u„'u,' ,'g„„—),—
2

( {G~„G""])&=M&A z(p )(u„'u', —
—,'g„),

(4.25)

(4.26)

where we now work in the rest frame. Alternatively, by
projecting out the Lorentz structure of the matrix ele-
ments in the standard manner we get

(q{y„D Jq)z= —', (q Doq)&(u„'u'„——,'g„), (4.27)

( {G~„G," I )

= ——', [((u' G) ) —
—,'(G ) ](u„'u', —

—,'g„)
=

—,'(E +8 )z(u„'u,' —
—,'g„,), (4.28)

(E +8 ) = M&a, (p )Af(p ) .2' (4.30)

In order to obtain numerical values for these matrix ele-
ments we need to know the parton distribution functions.

From a theoretical point of view, the parton distribu-
tions are unknown functions; they can only be deduced
from experimental data. However, the evolution with p
of the parton distribution functions is governed by the
QCD renormalization-group equations [36,47,48]. As a
result, if one knows the parton distributions at some par-
ticular value of p, then one can, in principle, calculate
the parton distributions at all values of p where pertur-
bative evolution is valid.

In practice, boundary conditions are imposed on the
parton distribution functions at an appropriate lower
scale po=0. 2 GeV [51,52]; these boundary conditions

where Eq. (4.27) follows from Eq. (3.31). Matching Eq.
(4.25) [Eq. (4.26)] with Eq. (4.27) [Eq. (4.28)] one finds

(4.29)

together with the measured distribution functions at
p = 10 GeV uniquely determine the various parton dis-
tribution functions at all values of p greater than po.
Since the relevant scale in nucleon sum rules is —1 GeV,
we evaluate q(x, p ), q(x, p ), and g (x,p ) at p =1 GeV .
We use the leading-order (LO) scheme of Refs. [51,52].
In this scheme, all the higher-order terms in the QCD
renormalization-group equations are neglected, and the
parton distribution functions are parametrized as func-
tions of x and p . Using the LO parametrization of par-
ton distributions given in Ref. [51] we get A)(1
GeV )=0.47 and A((1 GeV )=0.50. Using the parame-
trizations in Ref. [52], we obtain A)(1 GeV )=0.55 and
A$(1 GeV )=0.43. We evaluate a, (p ) at p =1 GeV
using the values of A&cD used for the LO parametrization
in Refs. [51,52], which yield a, (1 GeV ) =0.50 and a, (1
GeV )=0.48, respectively. Thus we have the following
estimates for the nucleon matrix elements:

&q'D, q) =0.18+0.01 G V,

( (E +8 ) =0. 10+0.01 GeV .
7T N

(4.31)

(4.32)

C. Dimension-five condensates

The condensates of interest here are the two in-
medium quark condensates ( qiDoiDoq ) and

(q iDoiDoq) and the two quark-gluon condensatesf ~ ~

~N

(g, qo" Qq ) = —2(qiD„iD"q ) and (g q o Qq )
2(q iD„iD—"q ) . Following Eq. (4.1), we

parametrize the density dependence of these condensates
in the rest frame as

&g, qa &q &,
= &g, qa &q &,,+ &g, qa. ~q &~pN+

&g, qto" Qq &, =&g, qto" Qq)~p~+

(qiDoiDoq & + ,'(g, qo. Qq &—

(4.33)

(4.34)

=((q tDQ/Doq)~+ —,', (g, q a gq )~)p~+

(4.36)

=((qiDoiDoq )~+—,'(g, qo Qq )~)p~+ .

(4.35)

&q iDoiDoq) + ,', (g, q o"Qq)—

3In the literature, the nucleon matrix elements in Eqs. (4.21)
and (4.22) are actually taken to be proton matrix elements, and

q (x,p ), q(x, p ), and g (&,p ) are the parton distribUtion func-
tions in the proton. We account for this difference in conven-
tion by taking A„r(p~) = —'[ A„"(p )+ A„"(p~)], with A„"(p ) and

A„"(p ) defined as in Eq. (4.23), but with up and down quark and
antiquark distribution functions. =2k, (p~)(qq ) (4.37)

In Eqs. (4.35) and (4.36) we consider the quark conden-
sates with quark-gluon contributions added since these
combinations occur naturally.

We estimate (g,qo" Qq ) by analogy to the treatment
~N

of this condensate in free space [see Eq. (2.13)]:

& g, q o"Qq &,
= 2& qD'q &,
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2kq 0
(g, qo Qq)z — ——3+1 GeV

mu +~d (4.38)

For an initial estimate we assume A,
* (p&)-A,~; thus we

obtain
Eq. (4.4) and

e„(p, ):—f dx x "e(x,p ) .

For the n =2 case in the rest frame we have

(4.41)

where we have used A, =0.4+0. 1 GeV [6,25],
o& ——45+10 MeV [46], and m„+md ——14+4 MeV [22].
We will assess the sensitivity our nucleon sum-rule results
to a conservative range of values for (g, qo" Qq )~ in Ref.
[14].

The nucleon matrix element (g, q "o"Qq )z has been es-
timated previously [53,54], as it is proportional to the
leading power correction to the Gross —Llewellyn Smith
sum rule. " In Ref. [53] this matrix element is estimated
by performing a rough fit to experimental data for the
Gross —Llewellyn Smith sum rule; the result is

(g, q o"Qq)~ —
—,
' GeV (4.39)

(assuming AqcD —-100 MeV). However, in Ref. [54] an
analysis based on QCD sum rules gives
(g, q cr Qq )z-——0.33 GeV, and this result is shown to
agree reasonably well with other estimates based on vec-
tor dominance ((g, q o"Qq )~ = —0.22+0.04 GeV ) and
a nonrelativistic quark model ( (g, q o"Qq )~ = —0.2
GeV ). Thus the sign of (g, q o gq )& is uncertain, al-
though it seems reasonable to assume that the magnitude
of this matrix element is less than 1 GeV . Numerical
studies of nucleon sum rules using this range of values
will be presented in Ref. [14].

In Appendix C we estimate (g, q o Qq )z and
(g, q o"Qq )z using a bag model. We obtain
(g, qo" Qq)~=0. 62 GeV and (g, q o"Qq)~=0. 66
GeV, although these results cannot be considered to be
reliable. The quark and gluon fields of the bag model are
not the same operators as the quark and gluon fields of
QCD; in particular, the quarks and gluons in the bag
model do not satisfy the QCD field equations: The quark
field equation iraq =0 is violated on the bag surface, and
the gluon fields are treated as eight independent Abelian
fields (nonlinear gluon self-interactions are neglected).

We now consider the dimension-five quark condensates
with their respective quark-gluon contributions [see Eqs.
(4.35) and (4.36)], which can be estimated in terms of
twist-two and twist-three distribution functions. In prin-
ciple, (qiDoiDoq)~+ ,'(g, qo —Qq)~ c"an be related to a
moment of the twist-three distribution function e (x,p ).
Nucleon matrix elements of the twist-three operator
q {D„D„]q are defined as follows [55]:

&N(p) lq ID, . D„ IqlN(p) &:—(
—i)"e„(p')Ip„.p„j, (4.40)

where the nucleon plane-wave states are normalized as in

4These studies estimate the reduced nucleon matrix element
of the twist-four operator g, qQ'" y ysq; due to time-reversal
and translation invariance one finds &g, q o"Qq &~».'& g, q&""—r.rsq )~

&qID„D.]q &~=—', (&qDODoq &~ 8&g—,q—o ~q &&)

X(u„'u' —
—,'g„), (4.43)

which follows from Eq. (3.32). By matching Eqs. (4.42)
and (4.43) we find

(qiDoiDoq)&+ ,'(g,—qo Qq)&= 4M&e2(—p, ) . (4.44)

There is no known practical way to measure e(x, p, )

[55]; however, we can obtain a rough estimate of ez(p )

by using a qualitative feature of the bag model. We
proceed by reexpressing (qiDoiDoq)~ in terms of a
quark-gluon matrix element. Using Eqs. (4.10) and (2.4)
one can show

&qD D.q &~= ,'(&—ig,—qr„)"&i,q &N

—(qy„D 8q) —(qey„D, q) ) . (4.45)

Translation invariance enables us to write the last term as

(q&y„D q )&= —(q&y„D q )& (see Appendix B); using
the quark field equations [Eq. (2.7)] one therefore obtains

(qiDoiDoq)~= —,'(ig, q y Qioq )~+m (q iDoq )~ .

(4.46)

We estimate the quark-gluon matrix element on the
right-hand side of Eq. (4.46) using a bag model. (We
neglect the term proportional to the current quark mass. )

In a bag model, the nucleon is considered to consist of
three quarks moving freely in the perturbative vacuum
inside the bag, while the region outside the bag is the
physical nonperturbative vacuum. Thus one obtains

lgs
(qiDoiDoq)z= — f d x(N q y E"t "q N),

bag

(4.47)

where the nucleon states are normalized such that
(N N ) =1. Since the color-electric field vanishes inside
the bag (see Appendix C), the bag model predicts
(qiDoiDoq )~=0. Therefore, one has

(qiDoiDoq )x+ 8 (g.qtT'~q )x ,'(g, qo" Qq )~,—(4.48)

which can be considered to be no more than a rough esti-
mate. Using the estimate of (g, qcr Qq)~ in Eq. (4.38)
we obtain

0
&qD, D,q) + —,'(g, q &q&

4 m„+md

=0.3+0. 1 GeV . (4.49)

(qID„D ]q) = —M e (p )(u„'u' —
—,'g ) . (4.42)

Alternatively, one can project out the Lorentz structure
of the operator matrix element in the standard manner to
obtain
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where we work in the rest frame. Alternatively, by pro-
jecting out the Lorentz structure of the matrix element in
the standard manner, one obtains

(q[y D„D,Iq)

=2((qtDpDpq )z —
—,', (g, q cr Qq )z)

X [u i u „'u,' —
—,
'

( u ig„,+ u „'gi,+ u ~i„)], (4.51)

which follows from Eq. (3.34). A comparison of Eq.
(4.50) with Eq. (4.51) then leads to the following result:

(qtiDpiDpq)~+ —,', (g, q 0"Qq)jv= 4M) A f(p—) (452)

As with the dimension-four condensates, we take p = 1

GeV . Using the LO parametrization of parton distribu-
tions given in Refs. [51,52], we obtain A )( I
GeV ) =0.14. Thus we find

(qtiDpiDpq)z+ —,', (g, q 0"Qq)Jv-—0.031 GeV . (4.53)

With the exception of (q iDpiDpq )z
+ —,

' (g, q o"Qq ), none of the dimension-five conden-

sates have been determined accurately; however, terms
proportional to these condensates make only small con-
tributions to the nucleon sum rules. Thus the sensitivity
of our sum-rule results to the precise values of these con-
densates is small. A numerical analysis of this sensitivity
will be given in Ref. [14].

V. SUMMARY

In this paper we studied a time-ordered correlation
function of nucleon interpolating fields in nuclear matter
[see Eqs. (3.1) and (3.4)]. The Lorentz structure of the
correlator at finite density di8'ers from its vacuum form
due to the presence of a four-vector, the nuclear matter
four-velocity u ", that yields new structures. The
momentum-space cor relator can be decomposed into
three distinct invariant functions of q and q u.

In the nuclear matter rest frame, these functions de-
pend on qp and ~q~. To derive sum rules for nucleon
self-energies in nuclear matter, we consider the limit in
which qp is large and imaginary, while ~q~ remains fixed

[4]. This limit implies that we probe the correlator at
short distances, so we evaluate it using an operator prod-

Using the bag-model estimate of (g,qo" Qq )z from Ap-
pendix C instead yields a result that is a factor of 4 small-
er than the one in Eq. (4.49).

The nucleon matrix element (q iDpiDpq )~
+ —,', (g, q o"Qq )z can be evaluated in terms of quark
and antiquark distribution functions. We consider Eq.
(4.21) for the n = 3 case:

(q IyiD D.]q)~
= —

—,'M~A)(p )[uiu„'u'„

—
—,'(uig„+u~i +u~i„)],

(4.50)

uct expansion (OPE) [36]. The Wilson coefficients for the
OPE are calculated to leading order in perturbative
QCD, and nonperturbative effects are refiected through
in-medium condensates, which depend implicitly on the
density. We have defined the operators in the OPE such
that all density dependence of the correlator resides in
the condensates. A large number of condensates that
vanish in vacuum are nonzero in nuclear matter.

We have included contributions to the nucleon correla-
tor from quark and quark-gluon condensates up to di-
mension five and dimension-four gluon condensates; we
have also included contributions from dimension-six
four-quark condensates. The in-medium condensates up
to dimension five have been estimated to first order in the
nucleon density, and the four-quark condensates have
been estimated by their factorized forms. Motivated by
earlier considerations of the lowest-dimensional conden-
sates [3], we assume that deviations from the first-order
approximation are numerically small up to the nuclear
matter saturation density. This assumption should be in-
vestigated further.

The lowest-dimensional condensates are the quark con-
densates (qq) and (q"q) . The deviation of (qq)
from its vacuum value is related to the nucleon 0. term; at
nuclear matter saturation density, the in-medium quark
condensate is decreased by 30—45 % relative to its vacu-
um value. The other dimension-three quark condensate
(q q ) is simply proportional to the nucleon density.

pN

The dimension-four quark condensate (qiDpq) is
pN

proportional to the current quark mass times the nucleon
density (thus we neglect it), and (q iDpq ) depends on

pN

quark and antiquark distribution functions determined by
deep-inelastic scattering experiments. In nuclear matter
there are two independent dimension-four gluon conden-
sates, ((a, /m. )(E —B )) and ((a, /vr)(E +B ))
The trace anomaly is used to obtain a model-independent
estimate of ((a, /vr)(E —B ) ) in terms of the o term

and the strangeness content of the nucleon; at saturation
density, this in-medium gluon condensate is about
5 —10% smaller than its vacuum value. The other gluon
condensate ((a, /ir)(E +B )) is estimated in terms of

pN

the gluon distribution function in the nucleon.
We also considered contributions to the nucleon corre-

lator from the dimension-five quark condensates
(qiDpiDpq ) and (q iDpiDpq ) and the quark-gluon

condensates (g,qo" Qq ) and (g, q o Qq ) . These

condensates were estimated in terms of such quantities as
quark and antiquark distribution functions and the

coefficient

of the leading power correction to the
Gross-Llewellyn Smith sum rule. A simple bag-model
estimate of (g, qo -Qq ) and (g, q o -9'q ) is shown in

pN s PN

Appendix C.
The dominant higher-dimensional contribution to the

nucleon correlator arises from four-quark condensates,
since these enter in tree-level diagrams. In vacuum, one
usually estimates the four-quark condensate using the
factorization, or vacuum-saturation, approximation, all
four-quark condensates are proportional to ( qq )2„ in
this approximation. In this paper we use factorization to
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estimate the in-medium four-quark condensates in terms
of &qq &, &qq &p &q q &, and &q q & . However, in

nuclear matter a simple ground-state saturation approxi-
mation may not be justified. Studies of nucleon self-
energies with QCD sum rules suggest that the factoriza-
tion approximation may strongly overestimate the densi-
ty dependence of these condensates [4]. Thus it is impor-
tant to improve our understanding of these in-medium
condensates.

Some of the results of this paper have already been
used to estimate nucleon self-energies in nuclear matter
[2,4]. A more detailed numerical analysis including all
contributions to the correlator discussed here will be
presented in a subsequent work [14].
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APPENDIX A

approximation are the factorization formulas

& qaaqb+cyqdb & pb. & qaaqbP & p& & q yqdb & p&

&—q..qds &,.& q„qbp&...

&u, ~ubp, yddb& =&u, ubp& &d, ddb&

(A2)

(A3)

We motivate these relations by considering a nonrela-
tivistic analogue [30]. For simplicity we neglect interac-
tions. Consider the quantity

Q =
& PoIN(A~V, Ikey»I+o & (A4)

where P; is a nonrelativistic fermion field operator (i is a
generic index),

I %o & is the ground state of a noninteract-
ing finite-density system, and the normal ordering (denot-
ed here by N) is relative to the zero-density vacuum state.
This vacuum state, denoted by IO&, is defined by the rela-
tion g; IO& =0. One can then perform the normal order-
ing to obtain

Q = —&~.IA', V, C I~.& (A5)

Q= —&Vo (a; +b;)(ak+bk)(az+b )(a&+bi )I@o&

(A6)

From the anticommutation relation [ b, , b ]
= ti; one

finds

j b~ ~ jk~ ~'ljk +~ j~b bk

—5 kb) b;+6k)b~b;+b~b)~b;bk,

which implies

(A7)

Q =6; 5gi —5;,5k .

Similarly, one has & VolN(g, g )I+o& =5,"; therefore, one
obtains the factorized result,

(AS)

In order to evaluate Q, it is useful to perform a canonical
transformation and write the field operator g, in terms of
particle destruction operators a, and hole creation opera-
tors b, [30]. Under such a transformation, the state I%'o&
is electively a new vacuum state. One has P, =a,. +b, ,
where a; I %o & =0 and b; %'o & =0. Therefore, one obtains

&+ Io N(@,'@,@'„g )pl+ o&=&+olN(g,'g, )l+o&&+olN(ptkpt)lq'o& &+olN(p, 'g, )l+—o&&+olN(gtk@, )I+o& . (A9)

This relation is analogous to the one in Eq. (A2). Similar, simpler considerations lead to the analogue of Eq. (A3). If in-
teractions are included, the factorized forms of the four-fermion matrix elements correspond to the Hartree-Fock ap-
proximation [30].

We now consider the four-quark condensates listed in Eq. (A1). It is useful to perform the analysis for arbitrary N„
where %, is the number of quark colors. We use the properties of the generalized Gell-Mann matrices,

tr(X")=0, tr(X"X')=2S",
where the indices 3 and 8 now run from 1 to X, —1. Combined with the relation

6,b
& 'q qbp&, „=4N

( & qq &,„bp.+ & qr„q &, ) ii.»
C

which follows from Eq. (3.19), the four-quark condensates appearing in Eq. (Al) can be expressed as

(A10)

(A 1 1)
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(qr qqr q &,„= 1'6 (qq &,„Tr(r )Tr(r )
—

X Tr(r r )
2 1

C

+ (qq )~ (qy„q ) Tr(I, )Tr(y"I z) — Tr(I,y"I z)+Tr(y"l, )Tr(I z) — Tr(y"I, I z)
1 1

C C

+(qy„q) (qy q ) Tr(y"I, )Tr(y'I z) — Tr(y"I,y 1 z)
C

(A12)

&qr, x"qqr, ~ "q &,
=— N, —1

8N,
[(qq ) Tr(I &I z)+ (qq ) (qy„q ) [Tr(l,y~l z}+Tr(y"I,I z)]

+ & qy„q &, & qy.q & Tr(y r, y "r,)j, (A13)

(uI, ddI zu ) = — [(uu ) (dd ) Tr(r&rz)+(uu ) (dy„d ) Tr(I &y"I z)
1

C

+(uy„u) (dd) Tr(y~r, rz)+(uy„u) (dy d)p Tr(y"I, y I z)], (A14)

(ur, A, "ddrzA, "u), =— &, —1
[(uu ) (dd ) Tr(I &I z)+(uu ) (dy„d ) Tr(I &y"I z)SiY ~N

C

+ (uy„u ) (dd ) Tr(y"I, l z)+(uy„u ) (dy d ) Tr(y~r, y'rz)], (A15)

(uI &udI zd ) =
—,
' [(uu ) (dd ) Tr(I &)Tr(l z)+(uu ) (dy„d ) Tr(I &}Tr(y"1z)

+(uy„u )~ (dd )~ Tr(y"1, )Tr(I z)+ (uy~u )~ (dy d )~ Tr(y"I, )Tr(y 1 z)],

& ur, X"udrzk "d
& =0 .

(A16)

(A17)

APPENDIX B

In this appendix we prove the following relations:

(qrD„q), = (qrD„q), —

(ql D„D q ) = —(qI D„D,q ) = (qI'D„D q )

(81)

(82)

where D„=d„ig,A„and—D„=d„+ig,A These re. -

sults, and others with higher numbers of derivatives, fol-
low from the translation invariance of the nuclear matter
ground state.

We first prove Eq. (81). This equality follows from
considering the nonlocal matrix element

(q(0)I q(x) ) = (q( —x)rq(0) ) (83)

where the right-hand side follows from the translation in-
variance of nuclear rnatter. As discussed in Sec. III, the
fields can be expanded for small x in the fixed-point gauge
using a covariant Taylor series expansion; thus one ob-
tains

(q(0)l q(x)) =(qI q)~ +x"(ql D„q)

(q( —x)I q(0)) =(ql q) x "(qrD„q—
&,

+ ,'x&x &qrD—D„q) +.
(85)

(q(0)r(D q) ) = (q( — )r(D,q), )

((qD„) = rq( )) =((qD„) 1 q(0))

(86)

(87)

which follow from translation invariance. This approach
can easily be generalized to give relations involving
higher numbers of derivatives. Similar relations also hold
for nucleon matrix elements of the above operators.

APPENDIX C

where the fields and derivatives on the right-hand side are
evaluated at x =0. Equation (83) and the fact that x is
arbitrarily imply that analogous terms in Eqs. (84) and
(85) are equal. For the terms linear in x~, this fact im-
plies that the coefficients are equal; therefore, one obtains
the result announced in Eq. (81).

Equation (82) is proved in a similar manner by consid-
ering the relations

+ —,'x"x (qI D„D q)~ +

(84)

In this appendix we estimate the nucleon matrix ele-
ments (g, qo Qq )& and (g, q o Qq )& using a bag mod-
el. The results that we obtain here should be considered
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to be rough estimates of these matrix elements at best,
since the quark and gluon degrees of freedom in the bag
model do not coincide exactly with those of QCD. In ad-
dition, the vacuum condensate (g, q o'. Qq )„„is nonzero
due to the spontaneous breaking of chiral symmetry in
the vacuum; thus it is likely that the value of
(g,qo" Qq )& is strongly linked to the physics of partial
chiral restoration. The bag model used here is not a
chiral model.

In the bag model, the nucleon is considered to consist
of three quarks moving freely in the perturbative vacuum
inside the bag, while the region outside the bag is the
physical nonperturbative vacuum. In terms of the color-
electric and color-magnetic fields, E and 8", the above
nucleon matrix elements can be expressed as

(g qo" Qq)~=ig, f d x(N~q[2yoy E
bag

—y. (y XB")]t"q~N ),
(Cl)

(g,qto" Qq)z=ig, f d x(N q [2yoy E"
bag

—y (yXB')]t'qfN),
(C2)

where we integrate over the region inside the bag (with
(N~N) =1). The color-electric field contribution to
(g, q o Qq )& vanishes due to time-reversal and transla-
tion invariance. In terms of the quark wave functions,
these matrix elements can then be written as

3

(g qo Qq)~= —g, g f d x(P;[2y E" yo—y (y XB )]t "g, )~,
bag

(C3)

(g, q o"Qq)~= ——g, g f d x(sty. (y XB")t"1(,)~,
bag

(C4)

where we use the notation ( )& as a reminder that the
three quarks are in a nucleon. This fact will be used to
establish appropriate relations between the spin and color
projections of the quarks.

The quarks in the nucleon are assumed to be in the
lowest eigenstates of the bag model; thus the wave func-
tion of the ith quark is taken to be [56,57]

copr
jo '

R Xt

I

(g, qto" Qq)„
i= ——g, g f d x(Q;y (yXB")t g, )~ .
2 i=i

(C8)

B"(x)= g A, ;" o; 2M(r)+ p(R) p(r)
8m, .

In the limit of equal quark masses, the color-magnetic
field is given by [56]

1t;(x)= &4' „coor
io. -rj&

(C5)

where

+3~( ~) p(r)
r

(C9)

where cop-—2.043 is the lowest solution of the equation
j 0(ci))=ji(co), R is the bag radius, and g, is the spin and
color wave function for the ith quark. The wave func-
tions are normalized such that the ith quark appears in-
side the bag with unit probability:

670+2-
2R (coo —1)jo(coo)

p(r) = f dr'p'(r'),
0

M(r)= f dr'
r r

3 . ~Or ~orp'(r)= ', g, N r3jo —j,—

(C10)

(Cl 1)

(C12)

= ——g, g f d'x(it, 'yor (rXB")t'0;4
' =1 bag

(C7)

The color fields E" and B"are generated by the three
valence quarks. In calculating these fields, we only con-
sider the one-gluon exchange interaction, which is of
lowest order in e, . At the one-gluon exchange level,
non-Abelian gluon self-couplings do not contribute; the
gluons act as eight independent Abelian fields. Thus the
problem reduces to ordinary electrostatics and magneto-
statics with appropriate boundary conditions on the bag
surface [56,57]. In the limit in which the quark masses
are equal, the total color-electric field E vanishes at
every point within the bag; therefore, terms with E do
not contribute, and this leads to

(g,qo" Qq )~

(g, qo" Qq ) = f, g ((cr; o )(A, ;"A, ". ))
R

(C13)

(g, q o Qq)&= f2 g ((o; cr, )(A, ,"A,"))~ .
R2 J J (C14)

The estimated quark-gluon condensates thus depend on
the strong coupling constant a, and the bag radius R. f,
and f2 are defined by

In Eq. (C9) we have also introduced the spin and color
projections o.;=y~cry; and A, , —=y~A, g, . Note that the
color-magnetic moment from the ith quark is
p; =o, (A.,"/2)p(R).

Straightforward calculations result in
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2

J dy y' j0(y)+ j—i(y)
24(coo —1) sin coo

2
COO o z z 1

24 coo 1 sin coo

4 ., ~(y)—j&(to&)+jo(y) ——j &
(y)

COO
3

JK(cop)
2 & 4 2 ~(y)

3
—jo2(~0)+j02(y) +—j21(y) 3

0 3

(C15)

(C16)

where (o; o, )~ = —1, (A,; A,,")~= —
—,', (C19)

y y cos2y 3 sin2yA, y = —+ (C17)

CT 'CT —3 I I 3
(C18)

The magnitudes of the spin and color projections are well
known:

for i Wj.
We choose the coupling constant and bag radius to fit

the nucleon root-mean-square charge radius and the N-6
mass splitting; this implies a, =2.55 and R =1.18 fm
[57]. Evaluating the integrals in Eqs. (C15) and (C16) we
obtain

where there is no sum over i. The products of the spin
and color projections of different quarks are constrained
by the fact that the three quarks must combine to form a
spin- —,

' color-singlet nucleon. Thus one obtains [56,57]

(g, qo Qq )~=0.62 GeV

(g, q o"Qq)z-—0.66 GeV

(C20)

(C21)

[1]M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,
Nucl. Phys. B147, 385 (1979);B147, 448 (1979);BI47, 519
(1979).

[2] T. D. Cohen, R. J. Furnstahl, and D. K. Griegel, Phys.
Rev. Lett. 67, 961 (1991).

[3] T. D. Cohen, R. J. Furnstahl, and D. K. Griegel, Phys.
Rev. C 45, 1881 (1992).

[4] R. J. Furnstahl, D. K. Griegel, and T. D. Cohen, Phys.
Rev. C 46, 1507 (1992).

[5] B. L. Ioffe, Nucl. Phys. B188, 317 (1981); B191, 591(E)
(1981).

[6] V. M. Belyaev and B. L. Ioffe, Zh. Eksp. Teor. Fiz. 83, 876
(1982) [Sov. Phys. JETP 56, 493 (1982)]; 84, 1236 (1983)
[57, 716 (1983)].

[7] B.L. Ioffe and A. V. Smilga, Nucl. Phys. B232, 109 (1984).
[8] D. B. Leinweber, Ann. Phys. (N.Y.) 198, 203 (1990).
[9] For a review, see L. J. Reinders, H. Rubinstein, and S. Ya-

zaki, Phys. Rep. 127, 1 (1985), and references therein.
[10]S. J. Wallace, Annu. Rev. Nucl. Part. Sci. 37, 267 (1987).
[11]S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R.

L. Mercer, Phys. Rev. C 41, 2737 (1990).
[12]B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1

(1986).
[13]B.D. Serot, Rep. Frog. Phys. 55, 1855 (1992).
[14]T. D. Cohen, R. J. Furnstahl, D. K. Griegel, and X. Jin

(unpublished) ~

[15]T. Hatsuda and S. H. Lee, Phys. Rev. C 46, R34 (1992).
[16]E. G. Drukarev and E. M. Levin, Pis'ma Zh. Eksp. Teor.

Fiz. 48, 307 (1988) [JETP Lett. 48, 338 (1988)];Zh. Eksp.
Teor. Fiz. 95, 1178 (1989) [Sov. Phys. JETP 68, 680
(1989)];Nucl. Phys. A511, 679 (1990);A516, 715(E) (1990).

[17]E. G. Drukarev and E. M. Levin, Prog. Part. Nucl. Phys.
27, 77 (1991).

[18]T. Hatsuda, H. He(gaasen, and M. Prakash, Phys. Rev.
Lett. 66, 2851 (1991).

[19]C. Adami and G. E. Brown, Z. Phys. A 340, 93 (1991).
[20] C. Itzykson and J.-B. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1980).
[21]R. Tarrach, Nucl. Phys. B196,45 (1982).

[22] J. Gasser and H. Leutwyler, Phys. Rep. 87, 77 (1982).
[23] A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman,

Pis'ma Zh. Eksp. Teor. Fiz. 27, 60 (1978) [JETP Lett. 27,
55 (1978)].

[24] E. V. Shuryak, The QCD Vacuum, Hadrons, and the Su
perdense Matter (World Scientific, Singapore, 1988), and
references therein.

[25] A. A. Ovchinnikov and A. A. Pivovarov, Yad. Fiz. 48,
1135 (1988) [Sov. J. Nucl. Phys. 48, 721 (1988)].

[26] M. Kremer and G. Schierholz, Phys. Lett. B 194, 283
(1987).

[27] A. P. Bakulev and A. V. Radyushkin, Phys. Lett. B 271,
223 (1991).

[28] S. V. Mikhailov and A. V. Radyushkin, Phys. Rev. D 45,
1754 (1992).

[29] E. V. Shuryak, Nucl. Phys. B328, 85 (1989).
[30] A. L. Fetter and J. D. Walecka, Quantum Theory of

Many-Particle Systems (McGraw-Hill, New York, 1971).
[31]V. A. Novikov, M. A. Shifman, A. I. Vainshtein, M. B.

Voloshin, and V. I. Zakharov, Nucl. Phys. B237, 525
(1984).

[32] A. R. ZhitnitskiI, Yad. Fiz. 41, 805 (1985) [Sov. J. Nucl.
Phys. 41, 513 (1985)];41, 1035 (1985) [41, 664 (1985)];41,
1331 (1985) [41, 846 (1985)].

[33]J. Govaerts, L. J. Reinders, F. de Viron, and J. Weyers,
Nucl. Phys. B283, 706 (1987).

[34] B.L. Ioffe, Z. Phys. C 18, 67 (1983).
[35] K. G. Wilson, Phys. Rev. 179, 1499 (1969).
[36] J. C. Collins, Renormalization (Cambridge University

Press, New York, 1984).
[37] A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M.

A. Shifman, Yad. Fiz. 41, 1063 (1985) [Sov. J. Nucl. Phys.
41, 683 (1985)],and references therein; V. A. Novikov, M.
A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B249, 445 (1985), and references therein.

[38] F. David, Nucl. Phys. B263, 637 (1986), and references
therein.

[39]V. Fock, Phys. Z. Sowjetunion 12, 404 (1937).
[40] J. Schwinger, Particles, Sources, and Fields (Addison-



2900 JIN, COHEN, FURNSTAHL, AND GRIEGEL 47

Wesley, Reading, MA, 1970), Vol. I.
[41] C. Cronstrom, Phys. Lett. 908, 267 (1980).
[42] A. V. Smilga, Yad. Fiz. 35, 473 (1982) [Sov. J. Nucl. Phys.

35, 271 (1982)].
[43] W. Hubschmid and S. Mallik, Nucl. Phys. 8207, 29 (1982).
[44] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.

Zakharov, Fortschr. Phys. 32, 585 (1984).
[45] M. Shifman, Nucl. Phys. 8173, 13 (1980).
[46] J. Gasser, H. Leutwyler, and M. E. Sainio, Phys. Lett. 8

253, 252 (1991),and references therein.
[47] See, for example, F. J. Yndurain, Quantum Chromo

dynamics (Springer-Verlag, New York, 1983); D. J. Gross,
in Methods in Field Theory, edited by R. Balian and J.
Zinn-Justin (North-Holland, Amsterdam, 1976); or R. L.
Jalfe, in Relativistic Dynamics and Quark Nu-clear Physics,
edited by M. B. Johnson and A. Picklesimer (Wiley, New
York, 1986).

[48] A. V. Efremov and A. V. Radyushkin, Riv. Nuovo Cimen-

«3(2) 1 (1980) and references therein
[49] J. C. Collins and D. E. Soper, Nucl. Phys. 8194, 445

(1982).
[50] G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys.

B175,27 (1980).
[51]M. Gliick, E. Reya, and A. Vogt, Z. Phys. C 48, 471

(1990).
[52] M. Gliick, E. Reya, and A. Vogt, Z. Phys. C 53, 127

(1992).
[53] E. V. Shuryak and A. I. Vainshtein, Phys. Lett. 1058, 65

(1981);Nucl. Phys. 8199, 451 (1982).
[54] V. M. Braun and A. V. Kolesnichenko, Nucl. Phys. 8283,

723 (1987).
[55] R. L. Jaffe and X. Ji, Nucl. Phys. 8375, 527 (1992).
[56] T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, Phys.

Rev. D 12, 2060 (1975).
[57] R. K. Bhaduri, Models of the Nucleon: From Quarks to

Soli ton (Addison-Wesley, Redwood City, 1988).


