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Coulomb polarizability of the deuteron and the E1 capture mechanism
in the He(d, y) Li reaction
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The He (d, y) Li reaction, which proceeds through the overwhelming E2 transition, but with a small
admixture of the E1 transition, is a possible mechanism for the Li nucleosynthesis in the Big Bang. The
E1 radiation is, however, strongly suppressed in the radiative deuteron capture reaction in self-conjugate
nuclei. Usually, the observed small, but not negligible, E1 radiation has been attributed to the spin-
dependent electric dipole operator. In this study it is shown how the Coulomb polarization of the deu-
teron generates electric dipole transition as well in the He(d, y) Li reaction. Expressly we investigate
the E1 capture process which proceeds with a small change of the deuteron internal structure in the en-

trance channel state. The structural change of the deuteron is engendered by the Coulomb field in the
system of target and deuteron and such a deviant deuteron state is surveyed by calculating the expecta-
tion value of the relative coordinate between the proton and neutron in the deuteron. We then show
how the electrically polarized deuteron state releases the usual E1 selection rule, and subsequently we
calculate the relative intensity of the E1 versus E2 radiation in the He(d, y) Li reaction.

PACS number(s): 25.40.Lw

I. INTRODUCTION

There has been recently much interest [1—5] in the He
(d, y) Li radiative capture reaction at astrophysical low
incident deuteron energies. This is because the radiative
capture of the deuteron by an a particle is believed to be
a possible mechanism for a large amount of the Li nu-
cleosynthesis in the early Universe. Additionally, the
study of this reaction allows us to obtain information on
the D-state component [6—8] of the system composed of
the deuteron and the a particle. An interesting feature of
the radiative deuteron capture reaction resides also in the
strong exothermic character of the reaction, as we can
see from Q values of the reactions (d, y) for various light
nuclear targets. Indeed, the Q values of the radiative
deuteron capture reaction are 22.28, 16.69, 15.82, 25.19,
18.68, 10.27, and 20.73 MeV for the targets Li, Li, Be,
' B, "B, ' C, and ' N, respectively. However, contrary
to these, the Q value of the He(d, y) Li reaction is only
1.47 MeV, which is very low. Recent experimental re-
sults [1],obtained for the incident energy down to 1 MeV
in the center-of-mass system, show that the diff'erential
cross section exhibits a typical characteristic of the E2
transition but with a small forward-backward asym-
metry. The small asymmetry of the angular distribution
has been explained by the interference between the
overwhelming E2 transition and the minor E1 transition.
However, because of the extremely small electric dipole
moment of the d-a system, the E1 transition is very un-
likely. In other words, since both the initial and final
states have isospin T=0 in the direct He(d, y) Li reac-
tion, the usual spin-independent E1 operator has no con-
tribution because of the isospin selection rule. Accord-
ingly, the provenance of the observed small E1 radiation
has been ascribed to the spin-dependent electric dipole
operator. Furthermore, it is also believed that a
significant contribution from the M1 transition is im-

probable. Arguments in favor of such hindrance of the
Ml transition should be reviewed [9] very carefully. In
an earlier paper [10], we have investigated the radiative
deuteron capture reaction in the giant resonance region
of ' 0 and provided an explanation for the experimental
gamma-ray angular distribution [11]which also exhibits
an admixture character of electric dipole and quadrupole
transitions.

In this paper, we discuss various possible E1 transition
mechanisms in the direct radiative deuteron capture reac-
tions in self-conjugate nuclei, especially in the
He(d, y) Li reaction. In particular, we investigate the

possibility of El radiation induced by the Coulomb po-
larization of the deuteron. The E1 transition selection
rule is actually based on the usual spin-independent part
of the E1 operator which has been deduced with the help
of the long-wavelength approximation for photons.
There are, however, several unusual E1 transition opera-
tors by which the E1 transition may yet take place. For
example, the dipole moment resulting from a distribution
of magnetization associated with the spins of nucleons is
the origin of the aforementioned spin-dependent E1 tran-
sition operator. In addition to this, we may also have E1
radiation caused by higher-order terms in the long-
wavelength approximation for photons, which have been
customarily neglected in the usual spin-independent El
transition operator. Generally contributions of these
unusual operators to the E1 radiation are appreciably
smaller than the contribution of the usual spin-
independent charge density and they have therefore been
neglected. It has been, however, suggested that the only
source of the observed El radiation in the He(d, y) Li
reaction is the spin-dependent E1 operator. However,
there exists another possibility for the direct E1 capture
process which comes about through the structural
change of the deuteron internal state engendered by the
Coulomb interaction between the incident deuteron and
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the target. The deuteron is a particle composed of two
loosely bounded nucleons and the Coulomb interaction
acts, not between the center of mass of the deuteron and
the target, but between protons of the target and the pro-
ton of the deuteron. The fact that the center of mass and
the center of charge of the deuteron does not coincide has
an effect to bring in a spatial asymmetry in the deuteron
structure and accordingly the deuteron is electrically po-
larized. This is the so-called Coulomb polarizability of
the deuteron [12—15]. The spatial asymmetry of the
deuteron could not be very sizable, but it is still enough
to loosen in part the usual selection rule for the direct
deuteron E1 capture process in self-conjugate nuclei. In
other words, the initially vanishing matrix element of the
usual spin-independent E1 transition operator between
the deuteron ground state and the final nucleus becomes
nonvanishing when the electrically polarized deuteron
state is introduced. The Coulomb polarization vector or
the spatial asymmetry may be defined as the expectation
value of the relative coordinate vector between the pro-
ton and the neutron in the deuteron which undergoes the
Coulomb interaction. Such an average value certainly
vanishes in the absence of the Coulomb field.

In this work, we estimate the E1 and E2 transition
probabilities within the framework of a naive cluster
model as well as a simple shell model for the Li nucleus.
The use of the cluster model, such as the a+d model for
Li, has been widely used [5] for the analysis of the
He(d, ) ) Li reaction.

In Sec. II, we first give a short description of the usual
E1 and E2 transition operators and show how the E1
transition is suppressed in self-conjugate nuclei. We then
estimate the contributions coming from the unusual E1
transition operators by computing the relative intensity
of the E1 radiation versus the predominant E2 radiation.
In Sec. III, we discuss the inAuence of the Coulomb in-
teraction between the target and the incident deuteron on
the deuteron internal structure and this is realized by cal-
culating the Coulomb polarization of the deuteron. In
Sec. IV, we discuss the electrically polarized deuteron
internal wave function as well as the resulting nonvanish-
ing E1 transition matrix element for the radiative deu-
teron capture process. Finally, we give a summary and
conclusion for general features of the dy reaction mecha-
nism in self-conjugate nuclei, in particular, in the
He(d, y) Li reaction.

II. RELATIVE INTENSITY
OF UNUSUAL E1 VERSUS

PREDOMINANT E2 RADIATION

z
Qi =

—,'Cr g (1+x;, ) — g (1—r,, ) r; Yi (r, )

=
—,'C~g +r,, r Y*, (r) (2.1)

for the E1 transition and

Q~ =
—,'e( —k~Vir/15)

2 2Z
g2

(2.2)

for the E2 transition, where Cr = iek &4n—/3, k is.
the photon wave number, and ~;, is the third component
of the isospin operator of the ith nucleon. As we see
from (2.2), the effective charges for the E2 transition may
not be of much significance.

For a pair of nucleons which are actually involved in
the deuteron capture reaction, the E1 and E2 transition
operators can be expressed in terms of the center-of-mass
coordinate, R =

—,
' (r, + r2 ), and the relative coordinate,

r =r, —r2. For the proton and neutron pair we get

Q, =Cr R Y*, (R)+—,'r Y'*, (r) (2.3)

for the E1 transition and

Since the usual electric multipole transition operators
are quite well known, we first describe brieAy the parts of
transition operators which are needed for discussion of
their suppressive character in the radiative deuteron cap-
ture process in self-conjugate nuclei.

The effective charges in the electromagnetic transition
operators in nuclei arise when the center-of-mass motion
is extracted from the relative motion between nucleons
or, equivalently, when the recoil correction is made. The
effective El transition operators [16] are then expressed
as

r

Qz = ek i/ir/15 —1 — [R Yz (R)+ —'r Yz (r)]

+2&10ir/3 1 ——Rr g ~ lm'lm —m'l2m ) Yi (R)Yi (r) .

fPl

(2.4)

for the E2 transition. It is observed that we may equally formulate the transition operators in terms of the separation
coordinate between the deuteron and the core, p =

—,'(r, +rz) —r„„.For example, when the origin of the coordinate sys-
tem is not the center of mass of the a particle, the E2 transition operator with the separation coordinate vector in the
d-a cluster is multiplied [5] by a numerical factor, —,. Actually the second terms in (2.3) and (2.4) correspond to the
ET=1 transitions in isospin language. The fact that the first term in (2.3) vanishes identically for self-conjugate nuclei
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and that the second term in (2.4) contains only odd order radial operators illustrates clearly which transitions are al-
lowed and which transitions are not. When the two-particle states constructed out of the final nucleus are either in S or
D states, such as is the case in the cluster model of Li, we see that the E1 transition in self-conjugate nuclei is strictly
forbidden, since the matrix element of the operator rY] between the deuteron ground state and the final two-particle S
or D states vanishes. Accordingly, only the E2 transition is allowed and it becomes overwhelming. To argue further
the necessity of investigating the Coulomb polarizability of the deuteron in relation to the experimental differential
cross section [1],it will be necessary to estimate first the order of magnitude of the contribution of the unusual E 1 tran-
sition operators and this may be realized following the arguments put forward in Refs. [17—21].

Actually the relative intensity of the habitually neglected higher-order terms in the usual E1 transition operator in
the long-wavelength approximation for photons may be estimated in the single-particle picture by taking into account
the higher-order expansion terms of the spherical Bessel function in the vector potential. Using the relation

(k r) (k r)
y r

(2L + 1)!! 2(2L +3)!!
where jL is the spherical Bessel function, the vector potential for the electric multipole transition may be written as

(2.5)

L+1
A(e)= 2rrP g DMp(k )

L (L +1)
(L+1)(2L+1) „L (L+1)(L+3)

k L+2
(2L +1)!! r 2(2L +3)!!

XVL TLL
1

k + &L+1T
(2L +3)!! L,L+1 (2.6)

where TL =g(1 @AM+—p~LM) YzM+„(r)g „with g „being the spherical basis vector. The first term with (k r)
is the usual operator which we employ commonly for the calculation of electric 2 pole transitions. The ratios of two
other terms to the first term lead, respectively, to

2

(2L + 1)2(2L +3) (2.7)

and

(k R ) =(—') (k R )L (2L +3) (2.8)

where Ro is of the order of magnitude of the nuclear radius. These ratios give rise to the order of magnitude varying
from 10 to 10 for E =1—10 MeV. In view of this, one can safely neglect the contributions of the higher-order
terms in the long-wavelength approximation as far as the E1 transition is concerned. A similar estimation has been
made in Ref. [20].

The spin-dependent E 1 transition operator is generally given by

lk
Q', = — g p V[r Y', (r. )](r.Xo ),

2 2Mc
(2.9)

where p is the magnetic moment of the particle in Bohr magnetons and a. is the Pauli spin operator. Using the transi-
tion operator (2.9), a very crude estimation of the ratio between the spin-dependent E 1 radiation and the predominant
E2 radiation can be made in the single-particle transition picture. Following the argument given in Ref. [17], this ratio
may be put into the form

2

&4~/3(1/2)k Ro[(1/Ro)p o Ro+(I/Ro)p„o „Ro]~ 2Mc
&4~/15krR o

P5(fikr /4Mc)(pro p+p, „o„)
k Ro

(2.10)

In deriving (2.10) we have replaced the operator V by
Ro '. When we further remark that I./(L +1) is of the
same order of magnitude as po. and that the operator L
gives rise to a multiplication by a number of the order L,
we see that the ratio (2.10) amounts to be of the order of
10 or less for E =1—10 MeV. However, this estima-
tion represents merely the order of magnitude and may
not be very reliable due to several crude approximations

I

we made. Actually the intrinsic magnetic moments p of
the nucleons are somewhat larger than unity and there-
fore po is probably a few times larger than I./(L +1).
The resulting underestimation may be counterbalanced
with the overestimation arising from the consideration on
the same footing of the magnetic moments of proton and
neutron.

In order to obtain an estimate of the actual value of the
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ratio, we have to assume a specific nuclear model. For
the pair of proton-neutron, the spin-dependent E1 opera-
tors (2.9) can be transformed into the form

We now write the entrance channel state as

4~i'& ldmd lad l JM, &

Q( =iky 3/4~ —,'(p +p„)2Mc '
X [2R XS+—,

' r X ( o, —o 2 ) ]g'* (2.11)

ldmd JMJ

X Yl* (kd )N(ld JMJ )4, (a), (2.13)

where g is the aforementioned spherical basis vector
and S=—,'(o, +o2) is the total spin operator of the pair.
Since the expectation value of the operator cr, —o.

2 be-
tween two triplet states vanishes, the only operator to be
considered is the total spin part. For practical calcula-
tions, use will be made of the identity

(RXS)g* =i 8~/3+ & lm —vlvllm &RY, (R)S

where kd is the wave-number vector of the incident
deuteron,

4(idJMg)= g &l m laglJMJ &

Xf( (kdR )1'( ~ (R)pd(r)y(lcrd ),
(2.14)

(2.12)

where S is the m —v component of the total spin
operator.

and 4, denotes the a-particle wave function. In (2.14), g
and Pd stand for the deuteron spin and internal wave
functions, respectively. The radial function in the en-
trance channel fI may take the form

d

f& (p)=expi(g& +5& )[F& (p)cos51 +GI (p)sin61 ]/p, (2.15)

where p=kdR, g is the Coulomb phase, 6 is the phase shift related to the optical potential, and I' and 6 are the regular
and irregular Coulomb functions, respectively. As in Ref. [1], we may employ the distorted wave generated by the
McIntyre-Haeberli potential [22] for the incoming continuous state. Similarly, the final state may be written as

lJIMf &= & C&LIM~S/MslJIM/&4/(LIMz, R, r)g(S/Ms)%'/(core),
Mz Ms

(2.16)

where 4& stands for the spatial part of the two-particle state out of the core denoted by +& and y is the two-particle
spin function. The explicit forms of C and N depend on the specific model for the final nucleus. For the d-0. cluster
model, the coordinate R may represent the separation coordinate between the a particle and the deuteron. For a sim-
ple shell model in which the core consists of (Os) particles, the function &0 represents the Moshinsky-Brody [24]
transformed harmonic-oscillator function.

Having calculated all transition matrix elements between the initial and final states defined by (2.13) and (2.16), the
relative intensity of the Q, transition probability versus the Q2 transition probability may now be put into the form

2

[(fi/2Mc)(l 2/)(pz +p„)] g a, f u;(R)f &(kdR )R dR
i=o

(2.17)2

b; f u;(R)fz(k&R)R dR
I=O

where the coefficients a; and b; stand for various numeri-
cal factors related to specific nuclear models, including
the radial integrals over dr. For example, for a simple
cluster model without the D-state component, a& =b, =0
and uo represents the S state of the d-a cluster. For the
harmonic-oscillator two-particle states, u,- denotes the ra-
dial function A „t(R ) with different combinations of n and
l.

For the simple cluster model [23], the radial function
u o is given by

uo(R)=R [exp( —c,R )+c2exp( —c3R )], (2.18)

where c, =0.18 fm, c2=0.25, and c3=0.065 fm

When use is made of this function, the relative intensity
is shown to be at most of the order of 10 at the deu-
teron incident energy, E, =2. 1 MeV, which is slightly
smaller than the corresponding value extracted from Ref.
[1]. However, because of the different nuclear model
used and also of the normalization constants involved in
Ref. [1], it seemed less suitable to make a straight com-
parison of two estimations. In this approximation and in
what follows we have assumed a structureless a particle.

When we use the harmonic-oscillator wave function for
the two-particle state out of the core, the result is about
four times larger than the previous estimation, but the or-
der of magnitude remains unchanged.
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III. COULOMB POLARIZABILITY OF DEUTERON Eq. (3.6) can be written in a tractable form. In fact, the
omission of the potential V„(r) is based on the assump-
tion that the critical values of r lie outside the range of
the potential. In the studies [12—15] of the Coulomb po-
larizability of the deuteron, it has been argued that, when
the Coulomb polarizability a of (3.1) is expressed explicit-
ly in terms of two-body-potential-dependent and
-independent parts, the contribution of the term with
V„(r) to the polarizability is small since the short-range
two-body interaction contributes mainly for S states but
the matrix elements with the z-coordinate operator in
(3.1) vanish for states of even parity. In this context we
expect that the overlook of such an interaction potential
V„~(r) may not have much infiuence on the evaluation of
the Coulomb polarization of the deuteron. We get

The usual definition [12—15] of the Coulomb polariza-
bility of deuteron is the ratio of the polarization energy,
which is actually the change in the binding energy for the
ground state, to an adiabatically applied uniform electric
field 8,

(3.1)

E+ b, ~
— q' — y(R, q)=F(R, q),4M M R

(3.7)

where y(R, q) and F(R,q) are the Fourier-transformed
functions which take explicitly the forms

y(R, q) = f y(R, r)e 'q'dr1

(2m. )
(3.8)

Ze
b. — b,„+V„(r)+

2

(3.2)
and

Here $V is the energy corresponding to the second-order
Stark e6'ect arising from the perturbation —

—,'ezra, where
z is the third component of the relative distance
r=r —r„along the direction of the electric field
However, the Coulomb field in the target-deuteron sys-
tem is not static and thus the adiabatic application of the
Coulomb field does not correspond to the physical reali-
ty. The inconvenience of such an adiabatic application of
the Coulomb field will be seen more clearly in the follow-
ing discussion.

The Hamiltonian for a deuteron in the field of a target
charge Ze may be written as

where Az and A„are the operators with respect to the
coordinates R and r, respectively, R being the center-of-
mass coordinate of the deuteron.

The Schrodinger equation which describes the deute-
ron scattering is then given by

F(R,q)= f H'Pd(r)e 'q'dr .
1

(2~)'" (3.9)

Upon performing again the Fourier transformation of H',
the function F(R,q) is transformed into

(E Ho )%(R,r—) =H'%(R, r),
where

(3.3) F(R,q)= Ze NdF'(R, q)
4

(2~)'

with

(3.10)

H'=Ze 1

R
(3.4) F'(R, q)=4(R) f

p a +(—,'p —q)

1

o, +q
with HO=H H'. In Eq. —(3.3) E is the sum of the in-
cident kinetic energy of the deuteron and the deuteron
binding energy. We now assume that the total wave
function %(R,r) is composed of two parts, qlo(R, r) and
y(R, r), in such a way that %'o(R, r) is the product of the
Coulomb scattering function of the deuteron C&(R) and
the unperturbed deuteron internal wave function Pd(r).
The polarization vector or the polarization of the deu-
teron is then defined by the expectation value of the rela-
tive coordinate r,

P =
& q'(R, r) lrlq'(R, r) &

Xe 'i'Rdp. (3.11)

In deriving Eq. (3.10), we have used the exponential form
of the deuteron internal wave function,
Pd(r) =Ndexp( ar )/r with—Nd =&al27r.

At this stage it is worthwhile to discuss the inconveni-
ence of the adiabatic application of the Coulomb field to
the calculation of the polarization. When a deuteron is
placed in a uniform Coulomb field, the peturbation Ham-
iltonian H' takes the form given below Eq. (3.1). In this
case, the Coulomb polarization, Eq. (3.5), may be simply
written as

=2Re&y(R, r)lrl4(R)gd(r) & . (3.5) P =2& yi(r) lrlyd(r) &,

where

(3.12)

Since H' is assumed to be small, we may replace, as a
first approximation, the function %(R,r) on the right-
hand side of Eq. (3.3) by Vo(R, r ) and we get

P,(r)= — f G(r, r')H'Pd(r)dr' .
M

(3.13)

(E—Ho)y(R, r) =H'~pa(R, r) .
The Green's function G(r, r') satisfies the equation

(3.6)

Neglecting the two-nucleon interaction potential in Eq.
(3.6) in accordance with the introduction of an explicit
form of the deuteron ground-state wave function into +o,

(
—6+a )G(r, r')=l(r —r') . (3.14)

Equation (3.13) can be solved by using the Careen's func-
tion (3.14) and the polarization is then shown to be
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1 Z8 R
16Bd R

(3.15)

where B&=A' a /M. This polarization is in a very con-
cise and simple form. However, the shortcoming of this
expression resides in the fact that the polarization of the
deuteron goes to infinity when R tends to zero, which is
quite inconceivable. In fact, the validity of the result
(3.15) and therefore the applicability of the perturbation
H'= —ezra/2 is limited to the region where R & r. This
is understood by expanding the dynamical perturbation
Hamiltonian H', Eq. (3.4), as

1 TH'=Ze' g—
OR 2R

Pi (cosOa, ) for R )r, (3.16)

where 0&, is the angle between R and r. We see that the
term with X=1 corresponds precisely to the uniform
electric field with which we have calculated the polariza-
tion of the deuteron, (3.15).

Using the Fourier-transformed functions we have de-
rived so far, the general formula for the Coulomb polar-
ization of the deuteron can now be expressed by

X&Ze 4*(R) ' dq,(~2+q2)2

where the function y'(R, q) satisfies the equation

(3.17)

fi ZeE+ bi, —
q

— y'(R, q)=F'(R, q) . (3.18)
4M M R

Putting

y'(R, q ) =4(R ):-(R,q),
the polarization is finally shown to be

p MZ
~
@(R )

~

q=( R, q )

( 2+q2)2

(3.19)

(3.20)

P —ip-ag
p'(~'+ (p/2 —q)')

(3.21)

where the function =(R,q) is now the solution to the
equation

2Vi, +(R)
bz+ V~:-(R,q) —(a +q ):-(R,q)

The calculation of the polarization is then reduced practi-
cally to the evaluation of the function =(R,q) satisfied by
Eq. (3.21). As a very crude approximation we neglect the
terms in the square brackets on the left-hand side of Eq.
(3.21). In this case the function =(R,q) takes a simple in-
tegral form which can be analytically integrated and the
polarization takes the form

P 1 Ze /R
R„16 B„R2

4RX 1 —exp
Rd

4R 8R

Rd Rd
(3.22)

where Rd is the deuteron radius. For the region of small
R where the Coulomb force acts strongly, the polariza-
tion becomes simply

2Z 2/R
R ~C(R)~',

3 Bd
(3.23)

V~4&(R)

@(R)
=ikd . (3.24)

Actually this approximation implies that the ratio of the
gradient of 4'(R) to N(R) may not be very much
different from the corresponding ratio obtained from the
plane-wave approximation, though the scattering wave
function @(R) is not the plane wave. The polarization is
then expressed as

which is finite. This result is to be compared to the previ-
ous estimation, Eq. (3.15), obtained from the adiabatic
application of the electric field. The numerical variation
of the quantity P/Rz in units of 10 as a function of R
can be shown to be 1.21, 0.72, and 0.39 for distances
R =0.5Rd, R =Rd, and R =1.5Rd, respectively. For a
practical application to specific nuclei, these values are to
be multiplied by the factor Z~4(R)~ . The imperfection
of this result is that, because of the omission of the first
two terms in Eq. (3.21), it is independent of the incident
deuteron wave number kd. A more accurate evaluation
of the Coulomb polarization which takes into account the
deuteron incident energy can be carried out by putting

MZ
—ip R

A~ p (a +q ) [a +(p/2 —q) ][a +q + —,'(p —2p kz)]
Upon performing the integration over q, we get

MZP=i lC&(R)l' f p g(p kq)e ~ &p
4A m.

d

where

(3.25)

(3.26)

a +p /16
4

(a+P)'

2P &d 1 64~
p' —2p 4 ~'+p'/16 p(p' —2p 4)

i 2(a+P) i 4a
tan —tan

P
(3.27)
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for /3 =
—,'(p —2p kd )+a )0 and

1

a'+ '/16(,k )= 4
(a —i/3 o)

2p.kd 1 64a, 4a p /2+ pc+i a
2 2 2 2

—tan ' —
—,'i ln

p —2p kd a +p /16 p(p —2p kd) p
' p/2 —

/3o
—ia (3.28)

for /3 &0 with Po= —
/3 . The integral over dp is some-

what cumbersome but can be evaluated numerically. As
a first step, let us assume kd =0, i.e., the deuteron wave is
assumed to be standing. The polarization then becomes

32MZ RP = —R
I
&P(R)

I
(2I —3I, ) . (3.29)

The explicit forms of the two integrals I, and I2 are
given in Appendix A. The variation of the quantity P/R
in units of 10 is now seen to be 2.03, 0.83, and 0.41 for
R =0.5R„, R =R„, and R =1.5R„, respectively. For a
practical application to a specific nucleus, these values
are also multiplied by the factor Zl&(R)l . It is
remarked that these values of the polarization are very
close to the previous results obtained from expression
(3.22), except for the region where R is small. Incidental-
ly, the two approximations are similar due to the fact
that both calculations are implicitly independent of the
deuteron wave number. According to expressions (3.15),
(3.22), and (3.29), the polarization P is directed to the ra-
dial vector R, as it ought to be.

Generally, kd is not equal to zero and P is either posi-
tive or negative. By putting p-kd =pkdx and pR =y, we
see that the inequalities for P may be written as

y +a /4)
pay

(3.30)

16MZ' «I@(R)l'I, ,
mh'

(3.31)

where the functions Iz are various double integrals over
dx and dy. When kd=2e, the integral I& 3 takes the
form

I3= dx dy x sin xy &
x,y—1 0

(3.32)

where the function f, is composed of several elementary
functions and shown in Appendix A.

For /3 )0, the general expression of the integral Ii 4

may be written as

where a =4aR and y=kd/2a. By taking into account
these inequalities, the general form of the polarization of
the deuteron is now given by

I

yay. The explicit forms of the function fz as well as
functions f3 and f4 in Eq. (3.34) are given in Appendix
A.

For P & 0, the integral becomes
b+ +1

dy f dx[x sin(xy)f3(x, y)
c(y)

—x cos(xy)f4(x, y)] . (3.34)

where I' is the conAuent hypergeometric function with
r/=Ze /fivd, g=R —Z, and vd =Pi kd/4M, Z being the
third component of R. The square modulus of the
Coulomb function (3.35) can be evaluated by computing
directly the conAuent hypergeometric function in terms
of complex variables. At the origin, the square modulus
becomes

TABLE I. The ratio P/Rd in units of 10 . For a particular
nucleus these values are multiplied by the factor Z IN(R) I'.

The explicit forms of the functions f;(x,y) are rather
cumbersome but they are composed of elementary func-
tions only. Table I displays the numerical results of the
deuteron polarization in units of 10 . For actual values
of the polarization, these values are also to be multiplied
by the factor Z IN(R) I, as was remarked before. It is ob-
served that the polarization is not very sensitive to the
change of the wave number kd. In the case of /3 &0, the
integral over dp in (3.26) can be carried out only under
particular conditions and this is because the inequality
leads to very restricted and unusual angles between p and
kd. The convergence of the integral is accordingly
suffered and the resulting polarization at a small region of
R becomes rather inapposite, though it is still finite. In
what follows we show only the result for P )0. General-
ly the polarization decreases when R increases and it de-
creases also for increasing kd, as was expected.

The square modulus of the function N(R) may be cal-
culated by using, for example, the Coulomb scattering
function expressed in parabolic coordinates,

4(R)=exp( —
—,'ilier)I (1+i')exp(ikdZ)F( —ir/, l, iKdg),

(3.35)

Ii 4= f dy f dx+ f dy f' dx

+ f dy f dx [x sin(xy)f2(x, y)], (3.33)

where b+ =(a/2)(y++y —1) and c(y)=(y +a /4)/

(MeV)

2.2
5
9

14
20

R =0.5Rd

0.81
0.59
0.41
0.31
0.26

R =Rd

0.62
0.42
0.34
0.27
0.23

R =1.5Rd

0.37
0.35
0.27
0.22
0.18

R =2Rd

0.21
0.27
0.22
0.21
0.15
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(3.36)

In fact, the function N(R) may be assumed to be not very
much diff'erent from the plane wave exp(ikz R) for small
values of g and therefore we may put ~4(R)~ =1 for
high incident energies. We have already discussed the
usefulness of the plane-wave approximation for the func-
tion N(R) in relation to the reduction of the very compli-
cated equation (3.21). When g is large enough, the
square modulus of function (3.35) becomes very small in
the vicinity of the target nucleus. Instead of (3.35), we
may equally use the Coulomb wave function expressed in
spherical coordinates. Nevertheless, because of the
infinite summation over the partial waves involved in this
case, use of such a Coulomb wave function may be less
convenient than form (3.35). The square modulus of the
scattering function (3.35) can also be expressed in terms
of the real regular Coulomb function (see Appendix 8).
We have

i@(R) =[Fo(g,p)]

rl+ —Fo(rl, p) +1+g—F, (g,p)p. '
(3.37)

where p= —,'keg and FI(rl, p) is the regular Coulomb func-
tion. Since actual values of Fo and F& are very easily
available, we can carry out readily the numerical value of
(3.37). Table II exhibits the polarization of the deuteron
in the He(d, y) Li reaction, calculated with the help of
the result shown in Table I. The comment made previ-

Ed =Bd
Ed =4Bd
Ed =9Bd

R =0.5Rd
/=0 g=R

0.97 1.28
0.64 0.81
0.45 0.54

R =Rd
/=0 g=R

0.75 1.20
0.53 0.70
0.38 0.44

R =1.5Rd
/=0 g=R

0.44 0.78
0.42 0.52
0.31 0.36

R =2Rd
/=0 g=R

0.35 0.44
0.35 0.44
0.25 0.30

ously on the general feature of the Coulomb polarization
in relation to Table I holds also for the result in Table II.

IV. COULOMB POLARIZATION
AND THE He(d, y) Li REACTION

Since the deuteron scattering wave function %(R,r) is
assumed to be expressed as

%(R,r) =N(R)gd(r)+y(R, r), (4.1)

the matrix element of the E1 transition operator (2.3) be-
tween the initial and final states for the radiative deu-
teron capture process may be represented in short by

( 0 f(LfMf R, r)~ —,
' rF*,M(r)~y(R, r) ) (4.2)

The explicit form of the function y(R, r) follows from
Eqs. (3.8) and (3.19). We get

Xd Ze
@(R)J:-(R,q)exp( iq r)d q,

4m
y(R, r) =

where the function =(R,q) is the solution to Eq. (3.21).
Explicitly =(R,q) takes the form

TABLE II. The ratio P/Rd in units of 10 in the system
d + He. Here g= R —Z and Bd is the deuteron binding energy
[see Eq. (3.35)].

M —IP.R
:-(R,q) = — dp

p [a +q + —,'(p —2p.k&)]la +(p/2 —q) ]
(4.4)

To understand how the Coulomb polarization of the
deuteron releases the initially forbidden E1 transition, we
take an illustrative example by assuming the polarized
deuteron wave function in the form

y(R, r) =C&(R)[gd(r)+P&(r)], (4.5)

where Pd(r) denotes the unperturbed ground state of the
deuteron and P, (r) is the electrically polarized deuteron
internal wave function. When use is made of the adiabat-
ic perturbation Hamiltonian H' = —

—,
' ez @ with

6'=(Ze/R )R, the perturbed function P&(r) can be ob-
tained by solving Eq. (3.13). We get

aZe2 R.r
P, (r) =Nd exp( ar ), —

8a„R R2
(4.6)

where 8d is the deuteron binding energy. Owing to the
presence of the factor R r in (4.6), we see that the matrix
element (4.2) now leads to a nonvanishing value, which
implies that the usual selection rule for the electric dipole
capture process is released as far as the polarized deu-
teron state P&(r) is concerned. We understand in this

manner how the E1 transition in self-conjugate nuclei
proceeds through the Coulomb polarization of the deu-
teron. Since the present spatial asymmetry disappears in
the absence of the Coulomb interaction, the Coulomb po-
larization of the deuteron has to be regarded as a dynami-
cal quantity.

The relative intensity of the E1 transition induced by
the deuteron polarization versus the predominant E2
transition in the He(d, y) Li reaction can be estimated
as before by calculating explicitly the matrix element (4.2)
with the help of the polarized wave function (4.6). The
calculation with the harmonic-oscillator two-particle
wave function for the final state yields 0.12 for the rela-
tive intensity at deuteron incident energy E, =2. 1

MeV. The use of the simple cluster model wave function
in place of the harmonic-oscillator function does not
make any substantial modification of the relative intensi-
ty. This rather large value of relative intensity is undou-
btedly overestimated due to the use of the adiabatic per-
turbation Hamiltonian. As we have seen previously, the
adiabatic application of a uniform electric field leads to
the irrelevant polarization at small values of R and there-
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fore the radial integral over dR without cutoff in the ma-
trix element (4.2) may turn out to be fallacious.

The actual relative intensity can be estimated by intro-
ducing the reliable wave function g(R, r) which is in the
double integral form and which can be integrated only
numerically. The method of calculation of the matrix
element (4.2) becomes somewhat similar to the calcula-
tion of the polarization, since the E 1 transition operator
can be transformed into the relative coordinate vector r
via the identity rY,*M(r)=v'3/4~/Mr, where gM is the
spherical basis vector.

Upon performing all numerical computations involved,
we get finally 0.05 for the relative intensity of the El
versus E2 radiation at the same incident energy as before.
This value is about half of the previous result obtained in
the framework of the simple adiabatic polarization mod-
el. The use of the simple cluster model leads to a compa-
rable conclusion. The present intensity is of the same or-
der of magnitude as the ratio of the total El to E2 cap-
ture cross section, shown in Ref. [1]. It should be, how-
ever, observed that the present calculation is actually
concerned with the relative intensity obtained in a slight-
ly different nuclear model having no adjustable normali-
zation parameters, and therefore a simple and direct
comparison of the present result with the analysis in Ref.
[1]has to be made with much caution.

V. SUMMARY AND CONCLUSION

In the present work we have shown how the Coulomb
polarization of the deuteron induces the electric dipole
radiation in the direct deuteron capture process in self-
conjugate nuclei. Instead of analyzing systematically the
experimental capture cross section of the He(d, y) Li re-
action, we have rather devoted ourselves to the inquiry

I

about the origin of the observed small but not negligible
E 1 radiation.

The expectation value of the relative coordinate vector
of the proton-neutron pair in the entrance channel state,
which is actually the definition of the Coulomb polariza-
tion, is contiguously connected with the transition matrix
element of the usual spin-independent E 1 operator of the
pair and thus the initially vanishing matrix element of
this operator gives rise to a specific contribution to the
El radiation. A marked feature of the present study is
that the small but non-negligible El transition probabili-
ty originating from the Coulomb polarization of the
deuteron is comparable with the corresponding transition
probability estimated with the help of the dipole mo-
ments associated with the spins of nucleons. In other
words, the relative intensity of the E 1 versus E2 radia-
tion, calculated by means of the polarized deuteron wave
function but using the usual El transition operator, has
been shown to be of the same order of magnitude as the
corresponding quantity, estimated by employing the
unusual spin-dependent E 1 operator and the unpolarized
deuteron internal wave function.

The usual calculation of the Coulomb polarization de-
pends somewhat on the accuracy of the solution to Eq.
(3.21), which is rather unwieldy. Since the approxima-
tion (3.24) is believed to be satisfactorily reliable as is the
resulting solution to Eq. (3.21), the present result of the
expectation value of the relative coordinate may not be
very much different from the actual value. A more exact
calculation of the Coulomb polarization and the subse-
quent relative intensity of the El versus E2 radiation
may consist in inclusion of all possible nuclear interac-
tions in the Hamiltonian (3.2). However, in view of the
complex numerical procedure already involved in the
present work, such an elaborated calculation will be
beyond the present scope of feasibility.

APPENDIX A

The integrals I& and Iz in expression (3.28) for the Coulomb polarization have the forms

1

z +a
4

~
d' ~(a++a +4z )

(Al)

I slnz
z'

a
(z+a )

4

(a+Pa +4z ) +a +4z
dz (A2)

where z =pR and a =4aR.
The functions fz in the integrals (3.31)—(3.33) explicitly take the forms

r

1 1 z, y[a/2 —+a /4+y(y —yax)]fz(x,y)= + ya xtan
(y +a )(y —yax) y (y —yax) y +a[a/2+'~/a /4+y(y —yax)]

2

——')/a /4+y(y —yax )
2

(A3)

f, (x,y)=fz(x, y) with y=l, (A4)

f, (x,y)=, , +, , ~ ya'x —,'tan
(y +a )(y —yax) y (y —yax)

a +tan ) Q

fQX 2p

Q

2
+y(y —yax ) (A5)
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ya x [y++y(y« —y) —a /4] +a /4 a y(y« —y) —a /4 .
4y (y 7'«) [y —+y(yax —y) —a /4] +a /4 y'(y —y«) (A6)

APPENDIX 8

Using the relation between the regular Coulomb function and the conAuent hypergeometric function

Ft(ri p) =Ct(rl)p'+'exp( ip—)F(l + 1 ir—i, 2l + 2, 2ip),
where

Ct(rl) =2 exp( ——'~g) l
I (l+ I+iq) l

(2l + I )!

we get the identity

Fo(n p)
Im[exp( ip)F—( iri, 1—, 2ip)] =-

Co(q)

On the other hand, successive use of the recursion relation

exp( —i p)F( i r1, 1,—2ip) =exp(ip)F(i'll, 1, 2ip—)
—2ip exp(ip)F(1+i', 2, —2ip),

(B1)

(B2)

(B3)

(B4)

leads to a relation

F( i rl, 1,2ip) =— . ( 1+2')F(1—ig, 2, 2ip)
2

1+l'g

—
—,'(1 i 71 )p F(2—i rl, 4,—2i p)

e xp(2i p)F(i r!1,—2ip) . (B5)
1 —ig
1+Eq

I

Re[exp( i p )F(——i q, 1,2ip ) ]

=(I+gp) —(I+g )
pCo(rl) 3C, (ri)

(B7)

Using (B3) and (B7), we finally obtain the square modulus
of the function @(R) in terms of the regular Coulomb
functions. %'e have

In obtaining (B3) and (B4), use is made of Kummer's
identity [25]

IC (R) l'= [F,(q,p)]'
2

F( —i l,r1, 2ip) =e px(2ip)F(1+i l,r1, —2ip) .

In view of (B5), we get

(B6)
+ rl+ —Fo(rl, p) —t/I+ri F, ( i,rp)
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