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Collective effects on transport coefficients of relativistic nuclear matter
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In order to evaluate qualitatively and in order of magnitude the result of some collective effects on
dense matter, a specific model is studied: the Walecka's model of nuclear matter. In this model, the
meson fields contribute to the various observables in the Hartree approximation only while all correla-
tions give rise to a collision term considered in the relaxation-time approximation. Within these approx-
imations, a transport equation is given and solved in the Chapman-Enskog expansion in first order. The
main transport coefficients (thermal conductivity, shear and bulk viscosities) are calculated and com-
pared to the results first obtained by Anderson and Witting.

PACS number(s): 21.65.+f, 25.75.+r

I. INTRODUCTION

Transport properties of relativistic dense matter are
quite important in many physical or astrophysical situa-
tions. Essentially two classes of dense matter have to be
dealt with, quark matter or nuclear matter. These states
of matter are supposed to appear in heavy-ion collisions,
quark stars (quark matter), or neutron stars. In the case
of heavy-ion collisions [1] the relaxation of a possible
Quid phase is controlled by dissipative effects via trans-
port coefficients (shear and bulk viscosities, thermal con-
duction, difFusion, etc.) while properties of dense stars [2]
(such as the cooling of a neutron star or its possible
"glitches" occurring through transport of momentum
from its inner part towards its crust) are also concerned
with these basic coefticients.

These transport coefficients are generally calculated via
the use of relativistic kinetic theory [3] and thereby imply
the knowledge of a collision term which we briefly discuss
below. In such calculations nucleons, quarks, or quasi-
baryons of either sort propagate freely between two
pointlike collisions. This calls for several remarks. First,
a collision term must be chosen in conformity with what
is known on the dense matter at hand. When dealing
with quark matter that is supposed to be created in
heavy-ion collisions, it is clear that its states falls in the
confinement-deco nfinemen regime, a phase where
presently nothing is really known from either a theoreti-
cal point of view or experimentally. As to nuclear
matter, the one boson exchange cross section generally
used in a Boltzmann-like (or Uhlenbeck-Uehling version
[4]), kinetic equation corresponds to the second-order
term of a nonconverging expansion of the transition am-
plitude, assuming also that a correct quantum field theory
describing nucleons is known. For these reasons, and
also for the sake of simplicity, most authors have pre-
ferred the use of a relativistic kinetic theory involving a
relaxation-time approximation [5]. Such an approach,
somewhat less ambitious than a general one, is, in our
opinion, more realistic in the sense that it yields general
expressions of the transport coefBcients as functions of
the temperature, the energy density, etc., whereas all

dynamical problems are rejected in a single (or a few [5])
parameter(s), the relaxation times(s), to be evaluated with
specific models. In this spirit, most authors have used the
Anderson-Witting form [6] of the relativistic kinetic
equation [7]

p df (x,p ) = — '" [f(x,p )
—f,„(x,p )],

7

where u" is the local average four-velocity of the medi-
um, where f,q(x, p) is the local equilibrium distribution
function, and r is the relaxation time. Equation (1.1) is
next solved at first order in a Chapman-Enskog [3,5,6] ex-
pansion and immediately provides the first correction to
f, as

f(,)=(rp asap i )f„. (1.2)

Then following standard procedures [3,5 —8], transport
coeScients are derived.

However (and here is our second remark), when collec-
tive effects must be taken into account, such as, e.g., bo-
son condensates or average fields, then Eq. (1.1) has to be
modified and, accordingly, so is the case for the transport
coefficients of the system. Such a modification occurs in
two different ways. First, it appears as a (self-coupled)
force tenn, as we show in Sec. II; next, it affects the
scattering amplitudes and hence the relaxation time.
However, this last effect is of no importance in the first-
order Chapman-Enskog expansion for it appears only in
second order.

In this paper, we would like to investigate the inhuence
of such collective effects on the transport properties of
relativistic dense matter. To this end, some side effects
(such as those ones due to spin [5], isospin, or other inter-
nal degrees of freedom) are neglected; moreover, a
specific dynamical model must be chosen as to dense
matter. In order to get some idea, and also to be more
specific, the Walecka model of nuclear matter [9,10] has
been chosen, although we are conscious of its problems
[10];the Walecka model is indeed a standard reference as
to relativistic nuclear matter. This model is based on the
following Lagrangian:
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(1.3)

where P is a scalar field of mass m, coupled to the nu-
cleon field 1(t via the coupling constant g, and V" is a vec-
tor field of mass mi, coupled to g through the coupling
constant gv, while F„ is connected to V„ through
F„=B„V—8 V . From this Lagrangian, the main ob-
servables are obtained, i.e., the baryonic four-current

1F(x,p)= (2' )

X f d4Re '~'(y(x+ 'R-)e p(x —
—,'R)) (2.1)

whose properties are studied elsewhere [11,12] (see also
Ref. [3]). In Eq. (2.1) the brackets denote a quantum-
mechanical statistical average. With F(x,p ) the average
value of the baryonic four-current J", and of the fermion
part of the energy-momentum tensor TI, can be calculat-
ed as

Jo, =4y"0

and the energy-momentum tensor

(1.4)

and

Ji"—(J",„)=Sp f d p y"F(x,p ) (2.2)

TI~ = i7tD'y—"g ri" —[(—d(b) m, P
—]+d"Qr) P+F"~F TI'„=( T",

~ „i) =Spf d p y~p F(x,p), (2.3)

+m V"V ——g" I V ——F FP2 v ~ v 2 2
v 2 v 2 Pk (1.5)

where Sp indicates a trace operation over the spinor in-
dices involved in y" and F. In fact, one can also define

which are repeatedly used throughout this paper. In Eqs.
(1.3) and (1.5) use has been made of the following nota-
tion:

=Sp fd'p y"(p' gv —V )F(x p )

(2.4)

(2.5)

iD:[i8 ——g&V'] [id +—gv V'] . (1.6)
As a matter of fact, only the knowledge of J"and TI'„ is
necessary in the derivation of transport coefFicients in a
first-order Chapman-Enskog expansion.

II. TRANSPORT EQUATION

In this section the transport equation is briefly derived
and discussed. The basic tool, which recommends itself
in a relativistic quantum kinetic theory, is the covariant
Wigner function

A. A kinetic equation for the covariant signer function

From the Walecka Lagrangian (1.3), Dirac's equations
obeyed by the nucleon field f are easily obtained and,
after they are used in the definition of the Wigner opera-
tor F, [i.e., in Eq. (2.1) where the average value is not
taken], one obtains the following equations:

[iy 8+2(y p —m)]F,~= 4 f d R d (e p[x—i(p g) R] g~y"—F,~(x, ()V& x ——R g, F, (x,g)P—x ——R

(2.6a)

F, [iy.B—2(y p —m )]

f d R d /exp[ i(p g)—.R] g&V„—x+ —R F, (x,g)y" g, P x+ R—F,—(x, g) (2.6b)

XF,p=gi f y F,pV —g, fF,pg,

F X=—
graf VF y+g fPF,

(2.6a')

(2.6b')

which are equivalent to Dirac's equations obeyed by the
fields g and g. Similarly, the equations obeyed by the
fields P and V" give rise to

( +m, )P=g, Sp f d p F~( px), (2.7)

( +mv)V"=gi Sp f d p y"F,~(x,p) . (2.8)

These four equations can be rewritten in a symbolic
manner as

XGP=g, Sp fF,
EGV=gv Sp yF,

(2.7')

(2.8')

so as to obtain a Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy [11,12] by taking average
values of the various possible products of operators as,
e.g. , (Foz), (F,zP), (F,zF,z'i, (F PP), etc. For in-
stance, taking the average value of Eq. (2.6a') connects
(F, ) to (F, P) and (F,~ V). Multiplying (2.6a') by P
from the right and taking the average values yields a con-
nection of (F P) and (F z P P) and also with
(F,~

P.V ), etc.
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In order to make the collective effects and the correla-
tion (i.e., the effects of collisions) apparent in the lowest-
order equations of the hierarchy [i.e., in the above system
(2.6)—(2.8) where the average value is taken] let us write
the second-order moments as (cluster decomposition)

(F, P) =(F, )(P)+&(F, ,P),
&F., V) =&F., )& V)+«F.„,V),

(2.9)

where the first terms on the right-hand sides are nothing
but the collective terms we are looking for, while the
second terms represent correlations. Here we do not
need other such decompositions. In ordinary kinetic
theory the correlation terms lead, via a variety of as-
sumptions, to a specific collision term. Next, it is argued
that this collision term can be approximated by a
relaxation-time expression. However, it was shown else-
where [5] that, in the absence of polarization perturba-
tion, such expressions very generally give rise to results
identical with the Anderson-Witting ones [6]. Therefore,
a simple relaxation term is chosen here, whose properties
are studied in Refs. [5,13];it reads

i(y u —l~)(F F, ), —

i(F F, —)(y u—lr),
(2.10a)

(2.10b)

where Eqs. (2.10a) and (2.10b) are the relaxation terms
that corresponds to Eqs. (2.6a) and (2.6b), where the clus-
ter expansion (2.9) has been introduced after a statistical
quantum average value has been taken on both sides. In
Eq. (2.10) u" is the average four-velocity of the medium,
~ is the relaxation time to be calculated elsewhere or es-
timated roughly as, e.g. , ~=(na (v ) ) ', n being a num-
ber density, o a cross section, and ( v ) an average of the
(relative) three-velocity between two nucleons. Finally,
F,„ is the equilibrium Wigner function, which is briefly
studied below.

Finally, the relativistic quantum kinetic equation we
are looking for reads

SF=g,f y F & V & g, fF (—y) (Ey u l~—)(F F„), —
(2.11)

Indeed, the system (2.12) makes use of the following
quantities only:

f(x,p ) —= —,
' SpF(x,p ),

f"(x,p ) —= —,
' Spy"F(x,p ),

(2.13)

(2.14)

m —=m —g, (P(x)),
p" =—p"—g & V"( )&,

(2.17)

(2.18)

(2.19)

Let us now successively take the trace of Eq. (2.16)
(and of the similar equation which has not explicitly been
written) with I, y", and o ~; let us also make the sum and
the difference of the resulting equations; one then gets

dg" B)P„V f"+—dgm V f= —(u„lr)(f"—f", ),
(2.20)

and, moreover, these quantities are also the ones which
appear in the calculation of the main macroscopic ob-
jects, i.e., J" and T" [see Eqs. (2.2), (2.3), (2.7), (2.8), and
(1.5)]. Hence, it would be highly desirable to get a kinetic
equation which would involve f and f" only. Technical-
ly, this can be achieved when one takes a second remark
into account. One must indeed realize that the use of a
Chapman-Enskog method (or any other one) for the cal-
culation of transport coefficients does imply a weak gra-
dient assumption for the average fields (P) and ( V).
This means that, in actual practice, one can take

(y( + ,'R)&-&—y( ))+-,'R &y( )+O((&(y))') (2.15)

and a similar expression for ( V(x+ —,'R)). This expan-

sion is discussed further in Sec. VI.
Introduced into Eq. (2.6a), Eq. (2.15) yields

[iy.8+2(y p —m)]F iB —(y p m)—VF

= —i(y u lr)(F F,q ) (2—.16)

and a similar equation to Eq. (2.6b). In Eq. (2.16) the fol-
lowing definitions have been used:

to which the equations for the average fields ( V) and
( P ) must be added,

SCG(y) =g, Sp fF,
(2.12)

KG( V) =gy Sp fFy .

(u& l~)(f f,q ), — —

8' fi) —B~( V~f~)+2p E" ~ f, 4mf ~—
= —u ( [(f~) —f~eq) )l~] .

fJ = —g~ f ( V) F y+g, f (P) F i(F F,q)(y u—lr),— fp —mfPp P1

Bg—B~„Vf +8~m V f+4p f "
(2.21)

(2.22)

(2.23)
The system (2.11) and (2.12) constitutes the relativistic

quantum analog of the usual Boltzmann-Vlasov equations
of ordinary plasma physics, for the Walecka model of nu-
clear matter.

B. A simpler kinetic system

In these last equations use has been made of the usual
decomposition of Fon the Dirac algebra

F=fI+f„y"+if„,o" +iffy +f5„y y" .

Multiplying now Eq. (2.22) by p„and using Eq. (2.21),
one is led to

At this point two remarks appear to be in order. First,
it should be noticed that the sixteen components of the
covariant Wigner function F are not at all needed.

p Bf—B„m.f"—
—,'[B~(p —m )] V f

= —(u ply)(f f,q) . —(2.24)
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Similar manipulations involving Eq. (2.23) multiplied
by p, and the use of Eq. (2.21), provide

P.df~ r}~—m.f—
—,'[B~(P —m )]V f~+d(~p f

= —(u p/r)(f~ f~q—) . (2.25)

III. CHAPMAN-ENSKOG EXPANSION
AND THK TRANSPORT COEFFICIENTS

In this section, explicit expressions for the main trans-
port coefficients are derived from the Chapman-Enskog
expansion of Eqs. (2.12), (2.24), and (2.25). Such an ex-
pansion, in its simplest form [5], depends on one dimen-
sionless expansion parameter (see, however, Ref. [5] and
the remarks below) s given by

c =~/L, (3.1)

where L is a macroscopic (hydrodynamic) length on
which various gradients vary in an appreciable way. It
can be written as

F=Fe +7F(&)+
&~&=~.,+-~ +

V ) =V&q+rV(i)+

(3.2a)

(3.2b)

(3.2c)

where the subscript eq denotes equilibrium values, taken
I

Finally, the system (2.24) and (2.25) involves only f and
f" and is somewhat simpler than the initial system (2.6).
In fact, a consistent Chapman-Enskog expansion of the
system (2.6) would have led to the same final results, al-
though in a much more involved way.

f = f&q+rf (~) +
f9=f9 +rfP +

(3.3)

so that our first task is to determine the equilibrium
quantities feq, f~~q, Peq, and Vgz. By assuming as usual
that the latter are x dependent through the macroscopic
parameters (temperature, density, and average four-
velocity) involved therein, the Chapman-Enskog expan-
sion provides the off-equilibrium part J~~&~ of the four-
current and Ti["&~ of the energy-momentum tensor and, ul-

timately, the transport coefficients.

A. Thermal equilibrium

The thermodynamic equilibrium properties of nuclear
matter, assumed to obey to the Walecka model in Har-
tree approximation, have been thoroughly studied
[9,10,14] and hence only the main results are recalled and
adapted to the covariant Wigner function used
throughout this paper.

In the Hartree approximation, the equilibrium proper-
ties of nuclear matter are essentially controlled by the
Fermi-Dirac statistics of free quasinucleons endowed
with the following excitation spectrum [10,14,15]:

E*(k)=g~V,q++k +m' (3.4)

so that the equilibrium Wigner function is easily calculat-
ed and reads

as the zeroth order in the expansion. Owing to the fact
that only f and f" are to be effectively considered, in-
stead of Eq. (3.2a), it is preferable to use

w *') g( eO)
F,„(p)= (y p'+m*)5(p* —m ) +

(2m ) exp[P(p ' —p*)]+1 exp[ —P(p * —p" )]+ 1

—&( —p* ) (3.5)

m*=m —g, P,„, (3.6a)

where D is a degeneracy factor (D =2, for pure neutron
matter; D =4, for symmetric nuclear matter) and where
the following notations have been used:

ms'. ,=gs f d"p f.,(p»)

vV"., =gv Jd'pf"., (p»)

=gynic Q

(3.7)

(3.8)

p +P =pP —g P'P (3.6b)

p =p —g&u&V, (3.6c)

also P—= 1/k~ T and p is the chemical potential.
As to the equilibrium fields, they have to obey the

equations of motion (2.12) or, equivalently,

where nz is the baryon density and where the invariance
under space-time translations of physical quantities in
global equilibrium have been taken into account. The
gap equation (3.7) involves P,q

in f, via Eq. (3.6a) and is,
accordingly, an implicit equation for P, (see also Ref.
[16]) that controls the whole thermodynamics of the sys-
tem. From Eq. (3.5) one easily obtains

f",q =(p*~/m ')f,q, (3.9)

f, (p)= 5(p* —m" )
D

(2n. )

8(p* )

exp[P(u~*"—p')]+ 1

8( — *
)P g( pro)

exp[P( —u~ *"+p' )]+ 1
(3.10)
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B. Conservation relations

From the above expressions the equilibrium macro-
scopic quantities are obtained and, in particular, the
four-current and the energy-momentum tensor. They are
local quantities via their x dependence occurring through
the macroscopic (local) parameters P,p, u which must
obey zeroth-order conservation relations

B„TI, =0, (3.11)

which play an important role in the derivation of trans-
port coef5cients.

Using definitions (2.2) and (2.3) for the matter part (nu-
cleons) of J", and T",", in which Eqs. (3.9) and (3.10) are
introduced, one finds [17]

Let us now derive the consequences of the conservation
equations (3.11). First, the conservation of the baryonic
charge immediately leads to

7lB +nB0=0,

where use of the following (standard) notations

~—=u~a ~,P

(3.21)

(3.22)

p+ (p+P )8=0,
(p+P)~ "(u )a, =~'(u )a~;

Eqs. (3.21) and (3.23) finally provide

(3.23)

(3.24)

has been made. Next, the contractions of B„T", =0 with
u and with b,„(u )—:g„—u„u yield, respectively,

4~m D
B 3(2 )3 y 4yO (3.12)

for the baryonic density (remember that J", =nB u ")and

Qp
TP f d4 P J2

m*

m

(3.25)

(3.26)

2 2 2
1 2 m —m* 1 gv B——m, +—
2 gs mv

These last equations are easily solved for the quantities
which are needed in subsequent calculations, and one
finds

2 2

+ gvnB

mv
(3.13)

3

I4 OI2, 3
—I2,2I4 i

(I2,2 ) —I2, iI2
(3.27)

for the canonical energy-momentum tensor derived from
the Lagrangian (1.3). In Eq. (3.12) and in the following
equations use is made of the notations 3

I4 O 2, 2 I2, 1I4, 1

(I2 2) I2 iI2~3— (3.28)

y' =m *p,a*=—y'p*/m "=p(p gvnB
—/m v ), (3.14)

i„'—= dy sinh"y cosh y
~ e+ ~ n m 1

(3.15)
exp( y

* coshy +a* ) + 1

exp(y* coshy+a*)
I„*+=f dy sinh"—y cosh y

[exp(y* coshy+a*)+ 1] g)fc —
g ]+

Om
(3.29)

These equations are formally identical to the correspond-
ing ones obtained in the Anderson-Witting calculation
[6], the only difference being that nonstarred quantities
are replaced by starred ones a*, y*, and I„* and with

From the general expression of T",q,

T", =(p+P)u "u' Prjf"—
and from Eq. (3.13), one obtains

(3.16)

(3.17)

0* is a kind of effective divergence of the four-velocity
and it is shown in Sec. V that it is actually this quantity
that appears in the entropy production. Finally, after re-
placing the explicit expressions (3.18) and (3.19) of the en-
ergy density and of the pressure into Eq. (3.24), one ar-
rives at

+4 m 2
4ttm D ., s

(
s )2+ v 2

3(2m )
'

2g, 2m v2

(3.18)
b," Bia= [(p+P)/nB ]5" (u )(ciQ+Puz), (3.30)

g4 m 2
4mm D., s „2 gv

P t22 m —m
2 71B(2'�) '

2g, 2mv
(3.19) which is identical to the expression given by Anderson

and Witting [6] except that, in our case, the enthalpy

which constitute the equation of state of the system
when the gap equation (3.6a), or, equivalently,

Ii =(p+P)/nB (3.31)

also contains the contribution of the average fields P,
and V, .

g, 4~m, D

m, (2n. )
(3.20)

C. The Chapman-Enskog expansion
and the ofF-equilibrium quantities

is joined. It is not necessary, here, to enter into a detailed
study of these last equations since they have been careful-
ly studied elsewhere [10,14].

Let us now solve the kinetic system (2.24) and (2.25) at
order 1 in the expansion parameter c or, equivalently, in
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p'a ——a)(p —m * ).V" f,q, (3.32)
Q P

f~(i) =(p'"~m')f(i) . (3.33)

Since its right-hand side contains spatial gradients
[18],the first order can be obtained quite easily by replac-
ing f and f"by their corresponding zeroth-order f, and
f",q. In this way, one gets

J(1)=7

This property has the nice consequence that the off-
equilibrium part of T" is symmetric.

The calculation of Jl("1~ and T~(1"~ does not present any
particular difficulty although it is a bit long and uses vari-
ous properties of the integrals I„* . The final expressions
for these off-equilibrium quantities are

~4 " ' ' —I,*, ~~'(u)(a~+Pu, )
3(2 )3

It is interesting to notice that the equilibrium form for
f", i.e., f",q =(p "/m*)f, , is conserved at order 1 in r.

I

(note also the interesting alternative form for J~~,
~

(3.34)

for the baryonic four-current and

g4p„4~Dm 2 e e pv y
(1) +

15 6, —1~ ~
9(2m. )

I*2~* +I~2I~ 2I~ I~
,0, , 1. . .0

I42
2, 2 2, 1 2, 3

I4 1I4
I4 o (a++pu g )

I40

4 2~B
+ [ pQpA( )+ vgpl, ( )]

3(2m) my

I/2 Tg +I/2Ig 2Ig Ig Tg

~y* m —m * (3.35)

where o." is the shear tensor

~~.——[~~.(u)~.t'(u) —,~~ (u)~ t'(u)]a, .u„
with the following properties:

u„o"'=0, b," (u )o.„=O .

From Eqs. (3.34) and (3.35) the transport coefficients of the medium are obtained and discussed in the next section.

(3.36)

(3.37)

IV. TRANSPORT COEFFICIENTS

The general structure of J~(1~ and T~(,
~

is given by Eqs.
(3.34) and (3.35), i.e.,

J~, =aS~ ( )(ua~+pu, ),
T(~) =2&o' +—$8*5 (u )+ A

(4.1)

(4.2)

where A"" is easily obtained from Eq. (3.35). While Eq.
(4.1) obeys u„J~~,

~

=0, T~~(~ is not orthogonal to u„. In
other words, the Landau-Lifschitz matching conditions
[19,20] are not obeyed by the off-equilibrium energy-
momentum tensor. This is due to the collective fields
(P) and ( V ). The baryonic part of T~~,

~
can indeed by

shown to obey the Landau-Lifschitz condition
Q p T( 1 )bmiypII 0, but this is of little use here since trans-
port coefficients involve the total off-equilibrium energy-
momentum tensor.

Usually, in order to identify the transport coefficients,
one transforms the off-equilibrium quantities J'("1

~
and T)("1

~

to their Eckart [21] form with a redefinition of the equi-
librium four-velocity [19,20,22]: It is indeed defined up
to O(r) terms.

Another problem has to be discussed. In the preceding
section an "effective" four-divergence of the average
four-velocity field u" was introduced, namely, 0', and the
bulk viscosity is to be defined with respect to 0*. This
has yet to be justified on the basis of an analysis of the en-
tropy production of these dissipative processes. This is
done below using t~o different definitions of the entropy,
one based on the Gibbs relation and another one arising
from microscopic considerations: Both lead to the same
results.

A. Kckart's form and transport coefBcients

T~()) has the following form

T~(() =q'"u"'+2rio" + '$86,"'(u ) . — (4.3)

In the Eckart's form of relativistic hydrodynamics [21]
the off-equilibrium four-current is identically zero [up to
O(r ) terms]. After a redefinition of the pressure and en-

ergy density.

p~p+ (m —m *)$8*/3,

P ~P (m —m ')$8*13,—
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Q~q"= —Xa" (u ) —a.— (4.4)

This modification of the pressure and energy density as
well as the use of 0* instead of 0 is justified below by the
calculation of the entropy production. In Eq. (4.3) q" is
the heat Aux four-vector

where the index "nucleons" refers to quantities calculat-
ed with the Wigner function of the nucleons only and
not, e.g. , to quantities connected to the collective fields
&y& and ( V'&.

From Eq. (4.13) the entropy production rate o is given
by

O —0 S(1) (4.14)

in Eqs. (3.35) and (3.36), one arrives at the Eckart's form
(4.3) with the following choice (with nE, k

=ns )—:

P=(rC/n )a" (u) (a/~ +Pu ) (4.6)

i), g, and A. are the transport coefficients we are looking
for. Changing u" into U",

(4.5)

= —()„a.J~(() +B„(Pui )T(I') .

p (1) (()nucleons '~p( Y u k )™
()'*/m *)(ms'.q 0())+gv+"'ui J„())) .

(4.15)

(4.16)

This last expression is Anally cast into a sum of squares as

o =XI —[b," (u)B&a*+PgvF)' u)„] ]

so that, Anally, one gets +il(y" /m*) ((r" ) + —,)g(y*/m") (6)*) (4.17)
4mDm I6,y* (shear viscosity),
15(2~)'

(4.7) where use was made of the energy-momentum conserva-
tion relation written in the form

4~are
3
—y'

3(2~)'
I40 23+I41I21 2I22I4& 41

I22 I2 1I
~pTfields gs~ 0Id I f+gv+ (4.18)

(bulk viscosity),

47TDVl ~2 4 1 4 1 4, —1

3
y*

3(2n) I4 () I4 ()

(4.8)

In Eq. (4.17) the first square [ ] is negative, owing to the
space character of the tensor involved therein and the
other terms are positive: The entropy production rate o.

is positive as is demanded by the second principle of ther-
modynamics. Furthermore, it can be written in the gen-
eral form

(thermal conductivity) . (4.9)
cr= g A.;y' (4.19)

Once more, one can realize that these three quantities
are formally identical to similar expressions obtained by
Anderson and Witting [6] and they differ only by the oc-
currence of starred quantities. This was a priori not obvi-
ous although it seems natural.

B. Entropy production (1)

Here the entropy production of the off-equilibrium sys-
tem is calculated on the basis of the covariant formula-
tion of the Gibb's relation [23]

S"=I'E.kP" a~Lk+Pu), T—k".), (4.10)

with p= 1/T and a= l4/T, and whe—re S~ is the entropy
Aux four-vector; the total entropy of the system is thus

(4.11)

S",
q
= [(p+I' )„„,)„„,y*/m ' —a*ni) ]u" (4.12)

and can be shown to obey B„S", =0, with the help of Eqs.
(3.27) and (3.28), as it should be.

At order 1 in v., it is difficult to show that Eq. (4.10)
leads to

S"=P„„„„„,(y*/m *)u" a*J"—
+(y*/m *)u&T„„"„„„,, (4.13)

at "time" X.
At order zero (i.e., in local equilibrium), Eq. (4.11) can

be rewritten as

where the A,"s are the transport coefficients (4.7)—(4.9)
and the y"s are the associated thermodynamic forces.
The latter appear to be modified by the presence of the
scalar and vectorial Aelds: For instance, 0 is replaced by
8* [see Eq. (3.29)] which involves P, and P,„. It should
be noticed that had we not modified the pressure term in
the energy-momentum tensor (equivalently, had we not
decomposed T~(() as was done), then we would not have
obtained a decomposition of the entropy production rate
of the general form (4.19) and, consequently, our trans-
port coe%cients would have been ill defined.

C. Entropy production (2)

From a microscopic point of view, since f plays the
role of a distribution function on the mass shell
p* =I*,the entropy four-fIux 5"can be defined as usu-
al [3,23] and is thus given by

+(1 f ) ln(1 f ) ], — —(4.20)

where f and f refer, loosely speaking, to nucleons and an-
tinucleons, respectively, and where the Boltzmann con-
stant has been taken to be unity. Using the new variable
a)~ —=I)"*/m *, one can rewrite Eq. (4.20) as

S"=—Jd p* [f lnf+(1 f )ln(l f )+f ln—f—I



47 COEFFICIENTS oS ON TRANSPOECTIVE E

10

2853

rpductlon rate u is given byand the entroPy P

(4.21) E 10

10
gp=g S)'=3() lnO. =

p P

ln f
COO

+ ln f ~g (4.22)
i f.—

pfwnd f in Powers othe expan

f=f„+f(()
one obtains

r

f())
f.q(1 —f.q)

f.q
f., —1 f-

' nofo. wepr . nr ex
'

o . I the calculationa
' '1 r expression fo f.and a simi ar ex

(4.24)

=[() CX () (i Qg 'CO
q q

B~ = —[B„a*+B„y'u~ .a)eq

so that one finally obtains

(4.25)

p J V kp
nucleons~=3a ln(m*) S"+a JP

/lA g ~e,JIs2QX$2+ F J e, )s
Q Pl

m*

e r) /me)+~ ( Y A, )( ( )nucleons

rder zero, cr =0 as it shou
entropy four-Aux re

pA,p
(1)nucleonsS = A J(&)(i)

(4.26)

(4.27)

(4.23)
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FIG. 4. Thermal conductivity X/~ at constant temperature
as a function of the dimensionless energy density p/p„„, &

(pure
neutron matter).
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FIG. 7. The effects of the various collective fields is indicated
in the case of thermal conductivity (pure neutron matter) for
two different chemical potentials, as a function of y. 8'. Walec-
ka model; V: vector field only; 5: scalar field only; 0:
Andersen-Witting case.
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FIG. 5. Shear viscosity q/~ at constant temperature as a

function of the dirnensionless energy density p/p„„, ~ (pure neu-

tron matter).
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FIG. 6. Bulk viscosity g/r at constant temperature as a func-

tion of the dimensionless energy density p/p„„, &
(pure neutron

matter).

FIG. 8. The effects of the various collective fields is indicated
in the case of shear viscosity (pure neutron rnatter) for two
difterent chemical potentials, as a function of y.
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7~4 8x 4 —20X'+15
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u 77 6x —3 777-4
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3 + ~ 0 ~

u'
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xu m 12x —9x+

7m 8x —20x +15x
120y* u

where u —=p*/m * and x =+u —1. The thermodynamic
parameters are thus given by

P~ (2x —5)+—ln(x+u )+ xu4~m *"D xu 2 3
3(2m. ) 2y"

2 2ms gv(I —m*) + n
2gs 2m v2

0.1
i ~ i I I I I l I wt I I I I l LL

10 100 p~ (2x —1)——ln(x+u )
4am* D xu 2 1

(2~)'
FIG. 9. The effects of the various collective fields is indicated

in the case of bulk viscosity (pure neutron matter) for two
different chemical potentials, as a function of y.

order to evaluate the effects of the different collective
fields, the corresponding coupling constants have been
switched off and the result is compared to the other cases
(Figs. 7—9). Therefore, each figure exhibits four different
curves (at least when they are not superposed): (i) collec-
tive effects c,AO, c,&0, (ii) Anderson-Witting c, =c„=O,
(iii) vector field effects c,AO, c, =0, and (iv) scalar field
effects c,AO, c, =0. Furthermore, asymptotic regimes
prove quite helpful to study. Thus we begin by evaluat-
ing the various quantities at hand in such asymptotic
cases. Also, the different constants are taken for the
canonical Walecka model [9,10]; for instance,
c, —=g, (m /rn, ) =267. 1 and c, =g„(m /m 2) = 195.9.

x2u ~2 6x4 —9x2+2
y 6y
x3u m2 12x5—19x3+6x

I2, 3 43 3

7~ 8x —28x +35x —20x
120y* u

7m x +4
120y* u

A. Low-temperature —degenerate case: y* »1, a* »y
In this case a Sommerfeld expansion is performed on

the various integrals I„and one finds

u ~ 1 7~ 4x
y* 6y* u 120y* u

xu 7T' 2x 3x 7& 5x
ye 6ye3 u3 120ye5 u7

4mm* Dng~
3(2~)3

+ 3x 2x

6y itc2 u

2 2ms gv+ (m —m*) + n
2gS 2mv

u + 6x —3
6y~2 u

2
gs 4am* D 1 1m*~m- —xu ——ln(x+u )
m (2m)

2
77 X

6y~2 u

4~m* D 7m 8x —23x +18xS~ xu+
3(2m ) y* 120@" u

while the transport coefficients (per unit relaxation time)
are

4am* D
3(2'�)

u m 14—27x +4x+
9y* x 90y' ux

4 e4D 5 2+,2
(12x +x +2)

15(2~) x 6y* x

4~m* D
3(2'�)

16+4 u

45y* x

The collision time z can be estimated by the simple for-
mula r=1/(on& 0) where o is the cross section in the
medium, U is a mean velocity, and nz- represents the num-
ber of holes available in the Fermi sea,
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nT=ns(y*) —ns(0)

~[4m.m* D /3(2~) ](m. /6y' )[(6x —3)/u] .

The mean velocity is defined (see, e.g., Ref. [24]}by

U =
~p ~

/E Q—(p/ns ) —m /(p/nz ) .

The exact value of the cross section corrected for collec-
tive effects in a dense hadronic medium is still a debated
issue. In any case, the temperature dependence brought
about by the cross section is not very important com-
pared to the T factor from nz-, so that for practical pur-
poses, and considering the other uncertainties stemming
from the imperfection of the model we may take it as be-
ing constant and of the order of 40—100 mb. Replacing
this estimate of w in the reduced transport coefficients
A, /r, ply, and g/r indicates that they respectively vary,
at low temperatures, as T, T, and T . This is the
standard result expected for relativistic Fermi systems
[25].

B. High-temperature —nondegenerate case: y* && 1, a* &&y'*

In this case, the Fermi-Dirac factors can be expanded
in geometric series that lead to rapidly converging series
of modified Bessel (i.e., Kelvin) functions [26]; i.e., one
has

1

—@*[cosh(x)—P /m ]+1

( 1 )ke
—ky [cosh(x) —

Io /m ]
7

k=0

1

(e
—y*[cosh(x) —p /m*]+ 1)2

1 )k(k + 1)
—kr*[cosh(x) —p /m ]

k=0

which leads to

QQ

I* — g ( —1)" 'sinh K, (ky*),
y I =1 m

we 6nd the high-temperature form of the integrals

1
I2 y*

7T 1 p 1
I21 —— + —1 +—,

7 3 Q3 3
'

2 Q 3p 7T + 1
2 p p

2, 2 m* y* 2y* m m*
1 p
4 m*

42
r,*,— " + 12"

2, 3 m*
772

g4 42
1 p p

2ye m 44 m e2 30

As a consequence, the thermodynamical parameters are
given in this region by

T

7(m*) D~p~
360

gs (m*) D
ms2 288

gv (m*) D )M' 1+
m 72 m* y~

7(m*) Dn. gs (m*) Dp~ +
120 m~ 288

gy (ms )6D2 s2
+-

72 m* y~

(m') D p* 1

(m*) D 7m

90

Replacing further the Bessel functions by their high-
temperature approximation [26]

K„(x ) ——,'(n —1)!(2/x )",

OO

I2, — „g (
—1)" 'cosh „Kz(ky*),

k=1 m

oo

g ( —1)" ' sinh
k=1 m

X [3K3(ky*)+K,(ky')],

Iz 3
— g ( —1)" ' cosh

y k=1 m

X [K4(ky*)+K2(ky*)],

4~m+ D 49~ m+ 1

3(2~)3 675 p*2 y*5

7'IT m

675 p*
15 14 P

m*
42+36-",

gs (m*) D
m —m* —+ 42ms 12y

and the transport coefficients behave as

1
Q3

oo
( 1)k —i

If ()
—

~ g sinh K2(ky*),
y k=1 m

4am* D 77r vr+
15(2'�} 15y* 6y*

pal
2—5+ 12 42

K3(ky*) . 4am* D 16
3(2m ) 21
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At constant baryonic charge n~, one has

p*-y nz, m*-y m, A, /r-1/y =T,
yI/r-1/y =T, g/r-y =T

E„(x)~
2x

1/2
4n —1

Sx

(4n —1)(4n —9)
2(8x )

from which it follows that the various thermodynamical
parameters are given by

1/2
(m') D mng~

2%.2 2

1/2(m') D
2 2

y (p*/m —1)
e 3/2

Q( Q/ Q 1)
e 5/2

C. Low-temperature —nondegenerate case: y* ))1,
a «y

The integrals are again expanded as a sum of Bessel
functions and the E„(x) estimated here from their low-
temperature form [26]

' 1/2
(m*) D vr 1 ys(„*q s ))

2 2 */
2

gs
2ms

2
gv

2mv

(m )D 1 2*( *~ *,)e y p
16m y*

(m') D2 1 2 *(„s~ s, )

Sm y*
1/2

(1—p*/m ') 1

+ 1/2 e 3/2

(m*) D
2m2 2

Xey 'p ' *-')
2

gsm* —m~
2ms

' 1/2
(m') D m

27T2 2 e 3/2

while the transport coe%cients read
1/2

5m* D m 1 y+(p+/ + 1)ey p
4 2 2 ye 5/2

1/2 r

(m") D m 1 133
2~2 2 yes/2 64y

)( y*(p*/m —1)

1/2
5m D 77 1 y+(p+/m + —1)

4 2 2 e9/2
p

2
gs

2ms
2

gv
2mv

(m ) D 1 2ys'(~s'y '" ))
16m y*

(m ) D 1 2y+() em* —))
Sa y

D. High-temperature —general case y « 1

In the high-temperature range, the integrals were also
expanded irrespective of the value of the chemical poten-
tial, using the following method: first a change of vari-
ables in I2 „[27]was performed,

e y* coshx+a*

y* coshx+a*)2
e y coshx —a*

+(—1)"
(1+ y* oshx —a~)Z

1 (n+ l)y"+' ny"—Iz „= sinh x cosh"x

1
d3'

1+ey v
1)n+)

y y —a

2 (n+1)(1+t ly*)"+' n(l+t /y*)"—
p (2y e + t2)1/2

1 n+1 1, +( —1)"
t +y (1—p /m ) 1+ t +y (1+p /m )

with y =cosh(x ) = 1+t ly*, and then expanded as a power series of the small parameter y*. For example, we have

2 ( 4t 12t
~ Jp e4 e3 2+2y

d
2dtd(t') 1+e"

The results are identical to the above ones (y* « l, a* « y').

E. Discussion

The effects of the coupling to the vector and scalar
fields were studied separately. This is displayed in Figs.

I

7—9. Figure 7 is a good illustration of the modification
brought by the coupling to the vector meson field. It is
seen that the presence of a vector coupling at constant
chemical potential tends to increase the thermal conduc-
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tivity in the high-temperature regime (it behaves now as
T instead of T ) and lower it at low temperature
(without changing the slope). When one remembers that
the thermal conductivity is a transport of energy, an ex-
planation for this behavior can be given: the energies are
shifted by the presence of V". For instance, the effective
chemical potential is

p*=p —g V =p —(g /m )n

Also at high temperatures

n~ Im = (p —p*)Icv
-p*/y

so that the effective chemical potential vanishes as T in
this domain. However, one also has

' —2

—-m*' y
—9

7- m

1

y5 e2
1

ye5

At low temperatures, on the other hand,

(m*u )

(y*x )

and n~-m* u gives

ng
y

—i(p+& m e2)3/2/
(yp')

with n~ and p* constant, but p* is reduced at high densi-
ties, so that A, /r is finally lower than in the free particle
case.

The presence of a scalar coupling, on the other hand,
does not have such a drastic effect on the thermal con-
ductivity. The scalar field increases A, a little in the low-
temperature high-density regime. As a matter of fact, the
effective mass drops to zero at high density [9,14,16]: the
smaller inertia of the particles renders them more
effective in transporting energy. At high temperature
the scalar field enters as a second-order effect only.

Looking at the shear viscosity, collective effects prove
to show up more easily at low temperatures and high
densities. The scalar field enhances g a little, since its at-
tractive properties increase the cohesion of the Quid,
while the repulsive vector field lowers it by several orders
of magnitude by repelling two adjacent layers of Quid.
From the above results it can be checked that indeed
rI/r-y at high temperature as in the free particle
case. For large y's, rj/r-(p* m' ) /@*. —

Finally, let us say a word about the bulk viscosity.
Most of the differences correspond here to the high-
temperature or high-density regime. This is easily ex-
plained by noticing that the effective mass drops to zero
in this range whenever the scalar field is switched on: the
bulk viscosity vanishes as is known to be the case for a
system of massless particles. The coupling to the repul-
sive vector field alone favors the expansion (enhances the
bulk viscosity) at low temperatures or high density when
the short-range effects are expected to be predominant.
The coupling to the attractive scalar field, on the other
hand, counteracts the expansion (lowers the bulk viscosi-
ty).

VI. DISCUSSION AND CONCLUSION

'r(N. q)+4(1)& (0 q)+ '

r(P,q)
+o(v ) . (6 1)

f f,q
is a first-order qua—ntity and any (new) first-

order term like P~, ~
gives rise to a second-order term.

Therefore, our results are formally not affected by the
possible P dependence of the relaxation time. It is clear,
however, that the numerical value of ~ has changed and
that the comparison of our results with those obtained by
Anderson and Witting makes sense only for those ~ such
that ~(P,q) =r. In order to get a more precise idea of the
infiuence of P on ~, we obviously need a specific calcula-

Let us now summarize our results and discuss the vari-
ous assumptions behind our calculations.

(1) A specific model had to be chosen as to the descrip-
tion of relativistic nuclear matter and the Walecka model
was the dynamical basis of our calculations. This partic-
ular model was chosen essentially because it is "canoni-
cal" in this sense that it is used as a reference for almost
all other relativistic models. Of course, it contains its
own problems, such as the much too large value of the
compressibility coefficient [10] of nuclear matter, but this
can be cured by adding suitable terms (or fields) to the
basic Lagrangian: For instance, the addition of self-
couplings of the scalar field constitutes one such possibili-
ty [28]. Therefore, our choice is not unreasonable even
though it is not the only possible one: our calculations
can always be improved.

(2) Using the covariant Wigner function techniques
developed elsewhere [11]a hierarchy, equivalent to both
the statistical and the dynamical content of the model,
was given. Essentially, the first equations of the hierar-
chy were used in the "derivation " of the transport equa-
tion: those connecting the one-particle Wigner function
to averages like, e.g., (F, P) or (P). Next, a cluster
decomposition of terms like (F,~P) and (F,~V") was
done, thereby exhibiting a separation between collective
terms (like (F,~ ) ( P ) and (F,~ ) ( V") ) and irreducible
correlations. The latter usually give rise, through various
assumptions and reasonings, to a collision term. Since
our aim was an evaluation of some collective effects the
simplest collision term was chosen, a relaxation-time ap-
proximation [13] one that reduces to the Anderson-
Witting [6] one in the absence of collective effects. This
choice was motivated both by the necessity of comparing
similar results (with and without collective effects) and by
the physical content of this collision term [5,6,13].

(3) The dynamics of the system was (within this
relaxation-time approximation) entirely involved in the
relaxation time ~, itself to be evaluated with a more de-
tailed analysis. However, the relaxation time could well
be dependent on the collective fields P and V". In order
to discuss this point let us limit ourselves to the case of
the scalar field only. In the collision term r(P) appears
only as v. ' so that in a first-order Chapman-Enskog ex-
pansion, one has
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tion. Nevertheless, an estimation of r as w-I/no can
give some clues in the absence of P: In cr, the mass of a
nucleon m has to be replaced by its effective mass
rn *—=m —g,P, . A simple calculation shows that the one
boson exchange nucleon-nucleon total cross section is
proportional to m . This leads to ~~m and hence
r(P, )-(m —gP, ) . It follows that P makes r smaller:
r(P,q)

~ r(0). It should also be remarked that, in a one
boson exchange calculation (or in higher-order process-
es), it is sufficient to use the customary vacuum boson
propagator: In the domain of temperatures and densities
considered both T and p are much smaller than m, .

(4) A few words have now to be said about the
Chapman-Enskog expansion of the solution of the trans-
port equation. This expansion was a series expansion in
powers of the small parameter E= r/L where L is a (mac-
roscopic) hydrodynamic scale. As a matter of fact, there
also exist several other scales, namely, the ones defined by
the various wavelengths occurring in the system, i.e.,

A,~= I/m,
A,&

—1/m&,

A, ~=1/m~ .

(6.2)

(6 3)

Therefore, a complete Chapman-Enskog expansion
should be an expansion in powers of several dimension-
less parameters, besides E, such as q = I/mL, —y= 1/m, L,
/= 1/mvL. In fact, instead of g we would rather use the
parameter g*=—1/m *L. As discussed elsewhere [5] while
the parameter g is negligible, it is generally not so at high
densities and/or temperatures for the parameter q* and,
consequently, a multiparameter expansion should be dea-
lt with [5]. On the other hand, the remaining parameters
y and g are also negligible in the approximation under
study; however, when collective effects involve the con-
sideration of quasi-bosons [30], their effective mass might
lead to effective parameters whose values are not negligi-
ble (compared to unity).

(5) The problem of renormalization has now to be dis-
cussed. In our calculations no infinities occurred: This
was due to the fact that, systematically, the vacuum con-
tribution to the Wigner function, i.e., terms involving

F„,(p)—: 8( —p* )5(p* —m* ),
(2m )

were discarded. Does this procedure make sense? The
answer to this question is twofold and it depends on the
fact that the system is dominated either by collisions or
by collective effects. When collective effects dominate,
then the thermal equilibrium state of the medium is con-

trolled by a renorrnalized gap equation [14,30] arising
from the regularization of the vacuum term occurring in
the gap equation. On the other hand, when the system is
dominated by collisions (as, for instance is the case of a
dilute "gas"), the renormalization process reduces to the
usual renormalization procedure leading to a finite cross
section and hence to a finite relaxation time. However, it
should be borne in mind that we are dealing with a mere-
ly phenomenological theory and also that the length scale
at hand (kinetic scale) is much larger than most scales
where quantum fluctuations do show up, i.e., of the order
of Compton wavelengths. Accordingly, it is not neces-
sary to take quantum fluctuations (via the vacuum
Wigner function) into account (6.3). However, in order
to be consistent with what is usually done in the case of
thermodynamical equilibrium (in the Hartree approxima-
tion) one can use the renormalized gap equation studied
elsewhere [14,29] instead of Eq. (3.20) and various coun-
terterms.

(6) The limiting cases (low density and/or temperature;
high density and/or temperature) can easily be under-
stood in this model. At low densities, the effective mass
m * is close to the nucleon mass m while for the effective
chemical potential p* one has p*=p+0(n~). Accord-
ingly, our results should be close to those already ob-
tained by Anderson and Witting [6]: These properties
can be checked in Figs. 4—6 where the various transport
coeKcients are computed as functions of the energy den-
sity expressed in units of the nuclear saturation density,
for several temperatures. In the other limiting case, the
effective mass of the nucleons is almost vanishing
[10,14,16,30] and hence the general behavior of the trans-
port coefficients can be obtained from the extreme relativ-
istic limit of Anderson and Witting s results. Finally, our
results mainly differ in the intermediate regime, as wit-
nessed by the figures shown above. Note, however, the
change in the slope of the curves A, and g when y —+0.

(7) Finally, we would like to warn the reader that the
results contained in this paper are quite preliminary in
this sense that only the self-consistent fields were taken
into account in our calculations. It is clear that there ex-
ists many other kinds of collective effects that should also
be taken into account. For instance, not only the col-
lisions of quasinucleons must be dealt with —as was done
here —but also there exist the quasibosons contributions
(quasinucleons or quasibosons collisions) to be considered
and discussed in a more "realistic" calculation. This can
be done in several ways; for instance, via a Landau liquid
model [31,32, 15]. Such an approach is presently under
active consideration [33].
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