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The penetrability is computed exactly through two-peaked fission barriers consisting of three smooth-
ly joined parabolic segments by evaluating accurately the Weber’s cylinder functions appearing in the ex-
act formulation of Cramer and Nix. When this is compared with the penetrability obtained in the WKB
approximation for an identical potential barrier, it is found that the WKB transmission resonances
within the intermediate well exhibit variable amounts of energy shifts from the exact resonances as large
as 150 keV for narrow wells, for incident energies between the top and the bottom of the well. To illus-
trate the overall performance of the WKB method as an approximation to fission penetrability calcula-
tions, the ratio of penetrabilities by the WKB and the exact methods is graphically presented for all the
allowed incident energies. The influence of curvature of the intermediate well, and of adjacent barriers
on energy shifts is examined in detail. It is found that the use of accurate values of Weber’s function
yields spontaneous fission half-lives which are about 10% higher than the values reported by Cramer and

Nix.

PACS number(s): 24.75.+1

I. INTRODUCTION

Both discoveries of fission isomers and subthreshold
fission [1] can be explained in terms of shell and pairing
corrections introduced by Strutinsky [2]. These correc-
tions gave a double-humped shape in the fission barrier of
actinides. Most of the actinides are now known to exhib-
it double- or triple-humped fission barriers. Well beyond
and during the past two decades, such fission barriers
have generated a great deal of interest in the calculation
of the probability that the nucleus will penetrate a com-
plex barrier of this shape. To explain various fission phe-
nomena in the actinide region, one of the methods em-
ployed by several authors to compute the probability of
fission is the pioneering work of Ignatyuk, Robotnov, and
Smirenkin [3], based on the traditional WKB approxima-
tion [4]. However, this approximation imposes limita-
tions on the computation of penetrability in two ways:
(1) It lacks mathematical rigor because the indiscriminate
use of connection formulas at the turning points has been
seriously questioned [5-11], and (2) the approximation
cannot be applied for incident energies close to the top of
the potential barrier and the bottom of the intermediate
well.

Another successful approach, where an exact numeri-
cal solution can be obtained in terms of Weber’s parabol-
" ic cylinder functions, is the case in which the mul-
tihumped barrier is composed of smoothly joined para-
bolic segments. Initiated by Wong and Bang [12], this
technique was employed by Cramer and Nix [13] for a
two-humped potential barrier (Fig. 1). In that work a
comparison of exact penetrability with the calculation
from the WKB formula of Ignatyuk, Robotnov, and
Smirenkin [3] superficially showed that both methods
produced similar results at energies well below the peaks,
while increasing differences appeared in the penetrabili-
ties at incident energies approaching the top of the bar-
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rier. From the graphical representation of penetrabilities
in their work [given in the inset of Fig. 2(a) of this work],
it is quite clear that a close agreement seemingly exists
between the penetrabilities through an asymmetric two-
peaked barrier obtained by using the two methods. Sub-
sequent to that work, these methods have been widely
employed by several authors [14—21] to compute penetra-
bility through double- or triple-humped barriers, but lit-
tle attention has been given to a detailed quantitative
comparison of the above methods.

The purpose of this work is to present a broad compar-
ison of the WKB method with the exact one by comput-
ing in high precision the penetrability through a two-
humped barrier constructed out of three smoothly joined
parabolic segments. The precise evaluation of the Weber
functions and their derivatives involved in the exact
method has been successfully achieved in this work to at
least eight-digit accuracy over a wide range of values of
arguments. We believe that this has contributed to the
significant departure of exact penetrabilities from those
calculated by the WKB approximation. The probabilities
computed by using the two methods are presented here
and compared with the work of Cramer and Nix [13].
The differences and similarities of the results from the
two methods arising with regard to symmetry of barriers,
their heights, and curvature of the intermediate well are
discussed in detail.

II. CALCULATION OF PENETRABILITY
AND EVALUATION OF WEBER’S FUNCTIONS

To compute the exact penetrability through the two-
peaked barriers, the formula from the work of Cramer
and Nix is used. Considerable effort has been involved in
the precise evaluation of Weber’s functions, namely,
U(a,x), Ula,x), V(a,x), V(a,x), W(a,x), and W(a,x)
appearing in that formula.
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For negative values of a and/or x, Miller’s tables [22]
are reproducible for W(a,x) and W(a,x ) by the series
expansion method using long double precision (10 byte
number with 20-digit precision and exponential +4932).
However, the series method is found to work only for
small positive values of a and x. For moderate to large
positive values, the most suitable method is found to be
as described by Olver [23], using an Airy function calcu-
lated with Moshier’s algorithm [24]. For very large
values, these functions could be obtained through the use
of auxiliary functions described by Fox [25]. Again, to
evaluate Ul(a,x), V(a,x), and their derivatives for small
to moderate values of a and x, Moshier’s algorithm for
hypergeometric functions, and for large values, Oliver’s
method was used. The eight-digit accuracy in the evalua-
tion of all the Weber functions was established through
the use of Wronskian relations.

III. TWO-PEAKED POTENTIAL BARRIER

Penetrabilities are computed through a two-peaked po-
tential barrier of the type shown in Fig. 1, consisting of
three smoothly joined parabolas at the connecting points
a and b. The potential energy function V(e) of the sys-
tem as a function of the nuclear deformation ¢ is given by

Vie)=E, —*lzia)%(e—e])z, e<a

=E2+}iw§(e—82)2,

5 a<e (1)

=E3—fziw§(e—s3)2, b<e.
The energies E,; and E, are the maximum values of the
potential at the deformations €; and &, respectively, and
E is the minimum value at €,. u is the effective mass for
motion in the € direction; it is assumed to be constant for
all values of €. The curvature parameters at the points €,
€,, and €3, are fiw,, fiw,, and fiw;, respectively.

The barrier defined by Eq. (1) apparently contains a to-
tal of nine parameters, three to describe each of the three
parabolas. Two of the nine parameters are eliminated by
the requirement that the outer parabolas join smoothly at
the intersection points @ and b. Another parameter can
be eliminated by arbitrarily setting

V(e)=0 at €=0. (2)
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FIG. 1. Illustration of a two-peaked asymmetric fission bar-
rier consisting of three smoothly joined parabolas. The barrier
parameters are E;=6.0 MeV, fin;=1.3 MeV, E,=2.0 MeV,
#iw,=2.0 MeV, E;=5.0 MeV, and #w;=0.48 MeV for a nu-
clear mass 4 =240. The quasibound states L,—L, in the inter-
mediate well of the potential barrier are shown here.

This reduces the number of parameters required to define
the barrier to 6. These are chosen to be the three ener-
gies E|, E,, and E; and the three curvatures #iw,, fiw,,
and fiw;.

IV. EFFECT
OF ACCURACY ON EXACT PENETRABILITY

It is interesting to see whether the precise evaluation of
Weber’s functions appearing in the exact method makes
any significant difference to the penetrability calculated
previously by others. Therefore the present calculations
are carried out for the same barrier parameters as used by
Cramer and Nix (CN) [13] in their work. The subthresh-
old fission resonances and the peak values of the penetra-
bilities (P;) selected through the best-fit Laurentzian
curve, from their work and ours (SD), are given in Table
I. The peak values of penetrabilities for levels L, L,, L3,
and L, of (SD) are in very close agreement with those in

TABLE I. Subthreshold fission resonances in this work (SD) and in that of Cramer and Nix (CN) for a two-peaked barrier, whose
parameters are E, =5.50 MeV, fiw,=1.25 MeV, E,=2.00 MeV, #w,=1.00 MeV, E;=5.00 MeV, and #iw;=0.50 MeV for a nuclear
mass 4 =240. P; is the maximum probability selected through the best fit of the Laurentzian curve.

Energy (CN) Energy (SD) FWHM (CN) FWHM (SD)
Level (MeV) (MeV) P, (CN) P, (SD) (keV) (keV)
L, 2.492 2.491923 0.699X107¢% 0.69778X107° ~0.01 2.1X1073
L, 3.430 3.4296 15 0.349X 1073 0.34877x1073 ~0.10 4.2%1073
L, 4.215 4215367 0.115 0.11440 0.196 0.195
L, 4.811 4.8108 37 0.785 0.78618 9.464 9.43

Spontaneous-fission  2.45X10'? yr (CN) 2.70X10'? yr (SD)

half-life
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the work of (CN). Also, the energy values of the quasi-
bound levels in both works agree within 0.5 keV. Howev-
er, the fission widths at half maximum (FWHM) of L,
and L, in the work of (SD) are sharply lower by factors
of 5X1072 and 2.5X107}, respectively, from those in
the work of (CN).

V. WKB AND EXACT PENETRABILITIES

A. Asymmetric barrier

Penetrabilities computed by WKB and exact methods
are given in Fig. 2(a) for an asymmetric potential barrier
(Fig. 1). For the sake of comparison with others, the pa-
rameters of the asymmetric barrier are the same as used
by (CN): E;=6.0 MeV, %iw,;=1.3 MeV, E,=2.0 MeV,
#iw,=2.0 MeV, E;=5.0 MeV, and #iw;=0.48 MeV. The
inset of Fig. 2(a) displays the penetrability functions for
the same parameters as used by (CN) using the above
methods.

Figure 2(a) clearly displays the WKB penetrability res-
onances shifted to higher energy relative to the location
of exact penetrability resonances. The magnitude of shift
increases as one goes down to lower quasibound states in
the intermediate well. Energy shifts, the location of
WKB and exact resonances, and their respective penetra-
bilities at resonance are given in Table II. At 4.76 MeV
peak, the energy shift in our work is 20 keV, which
agrees with the value reported by (CN). However, the
presence of 25 and 55.5 keV shifts at 4.0 and 2.82 MeV,
respectively, has not been previously reported. Penetra-
bility at resonance, by the exact method, P, (exact), are
in general higher than P, (WKB) by factors of 3.5, 4, and
100 at energy values of 2.82, 4.00, and 4.76 MeV, respec-
tively. The FWHM from the WKB method for level L,
is 4.5 times larger than from the exact method.

A more explicit comparison between penetrabilities
from the two methods is given in Fig. 2(b), which illus-
trates the semilog plot of the ratio of P,,(WKB) and
P, (exact) for incident energies varying from 2 to 5 MeV.
The exact penetrability is accurately reproduced by the
WKB method only in two short energy intervals of
3.2-3.6 and 4.3-4.5 MeV.

B. Symmetric barrier

In Fig. 3(a) are shown the penetrabilities calculated for
a symmetric potential barrier using both methods; the pa-
rameters of the barrier are the same as used by (CN):
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FIG. 2. Comparison of exact and WKB penetrabilities for an
asymmetric barrier shown in Fig. 1 whose parameters are
E,=6.0 MeV, #iw;=1.3 MeV, E,=2.0 MeV, #iw,=2.0 MeV,
E;=5.0 MeV, and #iw;=0.48 MeV for a nuclear mass 4 =240.
(a) The semilog plot compares the exact result (solid line) and
the WKB result (solid points). The increasing energy shifts be-
tween the WK B and exact methods are clearly indicated at 4.76,
4.00, and 2.82 MeV energies of resonance. The inset contains
the semilog plot of penetrabilities through the same potential
barrier by Cramer and Nix. (b) The semilog plot compares the
WKB and exact methods in terms of the ratio of their respective
penetrabilities at various incident energies.

TABLE II. WKB energy shift from exact subthreshold fission resonances for an asymmetric.

FWHM FWHM
E(exact) E(WKB)— E(exact) (WKB) (exact)
Level E(WKB) (MeV) (keV) P, (WKB) P, (exact) (keV) (keV)
L, 2.872496 2.816973 55.523 2.13x1077 2.50X 1073 8.6X107° 5.9%X1073
L, 4029481 4.004371 25.110 1.52%107! 6.07x107! 2.4X1072 1.0X1072
L, 4.783 384 4.763282 20.102 1.78X 107! 6.08X 107! 1.85x10™! 4.07

Spontaneous-fission 4.61X10'" yr (CN)

half-life

5.09%X 10" yr (SD)
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E,=6.0 MeV, fiv;=1.0 MeV, E,=2.0 MeV, #w,=0.5
MeV, E;=6.0 MeV, and 7w;=1.0 MeV. The inset of
this figure shows the penetrabilities in the work of (CN)
for a symmetric barrier defined by the same parameters.
The energy shift of WKB resonances from the exact ones
is hardly discernible in the figure. However, contrary to
the trend in the case of the asymmetric barrier, the exact
penetrabilities at resonance are significantly lower than
the WKB ones for the first four quasibound levels in a
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FIG. 3. Comparison of exact and WKB penetrabilities for a
symmetric barrier whose parameters are E;=6.0 MeV,
#fiw;=1.0 MeV, E,=2.0 MeV, #w,=0.5 MeV, E;=6.0 MeV,
and #w;=0.48 MeV for a nuclear mass 4 =240. (a) The semi-
log plot compares the exact result (solid line) and the WKB re-
sult (solid points). The inset contains the semilog plot of
penetrabilities through the same potential barrier by Cramer
and Nix. (b) The semilog plot compares the WKB and exact
methods in term of the ratio of their respective penetrabilities at
various incident energies.
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symmetric barrier. A finer comparison of the two
methods can be seen in Fig. 3(b), which contains a semi-
log plot of the ratio of P,,(WKB) to P, (exact) against
the incident energy. The exact penetrabilities are accu-
rately reproduced by the WKB method up to 5 MeV en-
ergy of incidence, except at resonance energies where the
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FIG. 4. Energy shift of WKB quasibound states from exact
states in the intermediate well of a two-peaked potential barrier
is plotted against the curvature parameter (#w) of the inter-
mediate well. (a) A linear plot of the energy shift for an asym-
metric barrier with the well parameter varying between 0.5 and
3.5 MeV. The fixed parameters of the barrier are E; =6.0 MeV,
#iw,=1.3 MeV, E,=2.0 MeV, E;=5.0 MeV, and #iw;=0.48
MeV. Labels L, L,, and L; on the curves refer to the states in
the intermediate well. (b) A linear plot of the energy shift for a
symmetric barrier with the well parameter varying between 0.5
and 3.5 MeV. The fixed parameters of the barrier are £, =6.0
MeV, #w,;=1.0 MeV, E,=2.0 MeV, E;=6.0 MeV, and
#iw;=0.48 MeV. The labels L,,. . .,Lg refer to the states in the
intermediate well.
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TABLE III. WKB energy shift from exact subthreshold fission resonances for a symmetric two-peaked defined by the same param-
eters as in Fig. 3.

E(WKB) E(exact) Shift FWHM(WKB) FWHM(exact)

Level (MeV) (MeV) keV) P,,(WKB) P, (exact) (keV) (keV)

L, 2.250000 2.250 000 0.000 0.956 2.18X 10712 4.9%x10°1 5.0% 10711

L, 2.750 000 2.749 999 0.000 1.00 1.42X1071° 9.7X107° 9.7X107°

L, 3.250000 3.249991 0.009 1.00 2.44X10°¢ 8.7X1077 8.8x1077

L, 3.750 000 3.749916 0.084 1.00 1.50X 1072 4.9X10°° 5.0% 107

Ls 4.250 000 4.249419 0.581 1.00 9.03Xx 107! 1.9x1073 2.0X1073

Lg 4.750 000 4.746 863 3.137 1.00 1.00 6.2X1072 6.0X107?

L, 5.249 958 5.235906 14.052 1.00 1.00 1.4 1.36

Lg 5.729 369 5.697 428 31.941 1.00 1.00 2.46X 10*! 2.05%10*!

Spontaneous-fission

half-life

1.95% 10" yr (CN)

2.15X10'7 yr (SD)

ratio of P,,(WKB) to P,,(exact) decreases progressively

FWHM(WKB)

for L 8

is slightly higher

than

from 10 to 1 at higher levels. Energy shifts appear to be
absent in the first six resonances.

In Table III are given the WKB energy shifts, the loca-
tion of WKB and exact resonances, and their correspond-
ing penetrabilities at various resonances. A shift of 31.9
keV at 5.7 MeV resonance agrees well with a 30 keV shift
reported by (CN). Other unreported shifts of magnitudes
0.009, 0.084, 0.581, 3.137, and 14.052 keV appear at
L,,...,L,, respectively. There is a strikingly large
difference in the maximum penetrabilities for the first
three resonances in the intermediate well. The

FWHM(exact).

VI. EFFECTS OF WELL CURVATURE

It is of interest to see how energy shifts of WKB reso-
nances from the exact ones and the maximum penetrabil-
ities at resonances from the two methods vary with the
curvature parameter (#iw,) of the intermediate well. Fig-
ure 4(a) displays a plot of energy shifts for various energy
levels against the curvature parameter of the well of an
asymmetric barrier. fiw, is varied from 0.5 to 3.5 MeV.

TABLE IV. Energy shifts of WKB from exact resonances and their respective penetrabilities at various resonances when fiw, is varied in incre-

ments of 0.5 MeV for an asymmetric barrier whose fixed parameters are the same as of the barrier in Fig. 1.

fiw, 0.40 0.90 1.40 1.90 2.40 2.90 3.40
P, (exact) 2.82968X1071° 3.20119%107'0 2.30836X107% 8.76478X107% 2.71575%107% 3.27911x107% 1.21123%x107¢!
L,P,(WKB) 2.15902X107'2 1.64570X107% 5.12804X107% 2.96698%X107% 5.55436X107% 1.13604X107% 3.71395X107%
E(shift) 0.000 000 00 0.004 52209 0.034 058 09 0.052733 90 0.065943 00 0.08081794 0.075 63305
P, (exact) 8.15022%x 1071 1.21382X107% 5.13107X107%  6.05959%107%  6.07140Xx107%"  6.07642X107°"  6.06269x 107
L,P, (WKB) 5.28306X107% 5.05749Xx107% 1.77562X107% 1.20726X107°% 2.96753X107°" 4.64487x107°" 590893107
E(shift) 0.000 006 91 0.012 86697 0.008 26097 0.022766 11 0.03187227 0.036 34501 0.038 578 03
P,, (exact) 4.51184X1071° 6.03894%x107%"  6.07641X107%1  6.07644X107°1 6.07644X107°"  6.07644X107%  6.07644Xx 107!
LyP,(WKB) 3.78353X107% 2.22331x107% 7.08526X107°" 2.10780X107°" 1.09915X107° 7.93156X107% 6.649 58X 10~ %
E(shift) 0.00007701 0.004 09508 0.022 255 90 0.02051926 0.01923323 0.01862621 0.017 84992
P, (exact) 1.26695X107%  6.07643X 107
L,P, (WKB) 2.84727X1079 3.39501x107%
E(shift) 0.000 543 12 0.01433992
P, (exact) 5.47026x107°!
LsP, (WKB) 8.97565x107%
E(shift) 0.002 72703
P, (exact) 5.97917x107°!
L¢P, (WKB) 9.49318%107%!
E(shift) 0.005 201 34
P, (exact) 6.07631x10™%
L,P,,(WKB) 4.20018%x107%
E(shift) 0.004 644 87
P, (exact) 6.076 441079
L¢P, (WKB) 5.48614Xx107 %2

E(shift)

0.007 95603
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The other five parameters of the asymmetric barrier are
kept fixed at the same values as in Fig. 1. In Fig. 4(b) is
given a similar plot for a symmetric barrier whose fixed
parameters are the same as in Fig. 2(b).

Variations with #io of energy shifts for level L, in Figs.
4(a) and 4(b), corresponding to asymmetric and sym-
metric barriers, respectively, follow a similar trend in
which both curves rise smoothly from a zero shift at
fiw,~1 MeV, attaining different maximum values at
fiw,=3.5 MeV. Shifts for the symmetric barrier appear
to rise more rapidly than for the asymmetric one. The
variation curve for L, in Fig. 4(a) follows a trend similar
to the one for L, in Fig. 4(b) and vice versa, both crossing
over at around a 2 MeV value of the curvature parame-
ter.

A detailed comparison between the WKB and exact
methods when #iw of the asymmetric barrier in (Fig. 1) is
varied in steps of 0.5 MeV can be seen in Table IV in
which the columns contain the computed values of the
maximum WKB penetrability, the maximum exact pene-
trability, and the energy shifts corresponding to the vari-
ous quasibound levels possible in the intermediate well
for a particular well parameter. Similar data are present-
ed in Table V for a symmetric barrier whose fixed param-
eters are the same as in Fig. 2(b).
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VII. EFFECTS OF BARRIER CURVATURES

Figure 5(a) displays the variation of the WKB shift
from the exact resonances as the curvature parameter of
the first barrier in Fig. 1 is varied from 0.5 to 1.5 MeV,
while the other parameters remain fixed. Similarly, Fig.
5(b) displays the variations of the WKB shifts when the
curvature parameter of the second barrier in Fig. 1 is
varied from 0.5 to 1.5 MeV. The variations in energy
shifts corresponding to levels L; and L, in Fig. 5(b) are
more pronounced than those in Fig. 5(a) and have oppo-
site curvatures. This may be a result of the asymmetry of
the two barriers.

VIII. DISCUSSION

From the above it is clear that the precise evaluation of
Weber’s functions in the exact method plays a significant
role in the computation of exact penetrabilities through a
two-peaked barrier. Table I demonstrates how the pre-
cise values of Weber’s function in this work (SD) leads to
considerably lower fission widths at half maximum than
those of CN for the two lower levels of the intermediate
well, as much as 500 times larger in the case of first level.

The exact penetrabilities are not accurately reproduced

TABLE V. Energy shifts of WKB from exact resonances and their respective penetrabilities at various resonances where #w, is varied in incre-

ments of 0.5 MeV for a symmetric barrier whose fixed parameters are the same as of the barrier in Fig. 3.

#io, 0.40 0.90 1.40 1.90 2.40 2.90 3.40
P, (exact) 1.78387X107 11 1.03486x107%7 3.72034Xx107% 1.12093x107% 1.10735X107% 1.00785%x107° 4.23841x10™ %
L,P,(WKB) 2.29015X107 ' 9.99999x 107 1.000 000 1.33945X107%  2.83713X107% 9.53188%x107%* 4.06068x 10!
E(shift) 0.000 000 00 0.000 13399 0.008 03709 0.051 84007 0.10736108 0.137859 11 0.15321016
P, (exact) 2.68676X 10710 4.80445X107% 9.95820X107°" 9.99283x107% 9.99998x107%" 9.99998x107%  9.99999x 107!
L,P, (WKB) 9.97588x10 ! 1.000 00 8.31063X107%"  9.99793Xx107°" 9.99990%x107%  9.99990Xx107°"  9.99999x 107!
E(shift) 0.000 000 00 0.002 133 85 0.046 433 93 0.036 36074 0.01558542 0.004 776 00 0.000 121 12
P, (exact) 4.00037X107% 9.83467x107 %! 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00
LiP, (WKB) 9.99998X107% 9.66507x107° 1.000 00 1.000 00 1.00000 1.00000 1.000 00
E(shift) 0.000 000 00 0.016 15191 0.023 57101 0.025 444 98 0.037786 96 0.043 490 89 0.044 743 06
P, (exact) 1.21412X107% 1.000 00 1.000 00

L,P, (WKB) 1.00000 9.99999x 10! 1.00000

E(shift) 0.000002 15 0.031544 69 0.026 448 25

P, (exact) 2.93398%x107 % 1.000 00

L,P,, (WKB) 1.000 00 1.000 00

E(shift) 0.00001502 0.030 76506

P, (exact) 4.78978x 107!

L¢P, (WKB) 1.000 00

E(shift) 0.000 10204

P, (exact) 9.99096x 100!

L,P, (WKB) 1.000 00

E(shift) 0.000 57507

P, (exact) 9.99991x 107!

LgP, (WKB) 1.000 00

E(shift) 0.00272703

P, (exact) 1.000 00

LyP, (WKB) 1.000 00

E(shift) 0.01115513

P, (exact) 1.00000

LyP,,(WKB) 1.000 00

EXshift) 0.027 65274
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by the WKB approximation for energies well below the
barrier tops, as illustrated for an asymmetric barrier in
Fig. 2(a), its inset depicting the results by CN for visual
comparison with this work. The increasing forward shift
in energy of the WKB peaks from the exact ones for in-
cident energy near the well bottom is particularly strik-
ing. As a consequence of these shifts, as shown in Fig.
2(b), the logarithm of the ratio P,,(WKB)/P,, (exact) ex-
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FIG. 5. Energy shift of WKB quasibound states from exact
states in the intermediate well of a two-peaked potential barrier
is plotted against the curvature parameter of the two barriers.
(a) A linear plot of the energy shift for an asymmetric barrier
with the first barrier parameter hw, varying between 0.5 and 1.5
MeV. The fixed parameters are E; =6.0 MeV, E,=2.0 MeV,
fin=2.0 MeV, E;=5.0 MeV, and #w;=0.48 MeV. Labels L,
L,, and L; on the curves refer to the states in the intermediate
well. (b) A linear plot of the energy shift for the same asym-
metric barrier as in (a) with the second barrier parameter hw
varying between 0.5 and 1.5 MeV.
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hibits a sudden jump in magnitude about the peak posi-
tions within a very narrow energy width depending on
the size of the shift. The WKB method reproduces the
exact penetrabilities in only two narrow energy intervals,
marked by dotted lines in the Fig. 2. It should also be
noted in Table II that the maximum penetrability (P,,)
at the lowest resonance by the exact method is about 100
times higher than that given by the WKB method, be-
sides a 55.5 keV energy shift. The FWHMl(exact) for the
three levels in the intermediate well are lower than the
corresponding FWHM(WKB), the difference in fission
width from the two methods increasing with higher ener-
gy levels.

Looking into the penetrability functions of Figs. 3(a)
and 3(b) for a symmetric barrier, a slightly different pic-
ture seems to emerge. There are hardly any noticeable
energy shifts in the first six resonances, and the exact
penetrabilities are accurately reproduced by the WKB
method in the regions between the peaks. This is quite
consistent with the results of CN given in the inset of Fig.
3(a). However, from Table III, P,,’s by the WKB method
are sharply higher than the exact ones for the three lower
resonances, and FWHM(WKB) for L; is about 4 keV
higher than FWHM (exact).

It was deemed essential to investigate the effects of
variation of the well-curvature parameter on energy shifts
and P,,’s using the two methods. The results of such
computation are summarized in Tables IV and V for
asymmetric and symmetric barriers, respectively. The
linear plots of the energy shift versus curvature for the
two types of barriers are displayed in Figs. 4(a) and 4(b).
From Fig. 4(a) and Table IV concerning an asymmetric
barrier, it is clear that the energy shifts of the three
lowest levels in the well are small (~7.5 KeV) for 1 MeV
curvature; shifts of L, and L, reach 80 and 39 keV, re-
spectively, at curvatures between 1 and 3 MeV, while L,
reaches a 20 keV plateau around 1.5 MeV. Moreover,
there is a crossover of L, and L shifts around 1.75 MeV.

The energy shifts of the three lowest levels in the well
of a symmetric barrier [Fig. 4(b) and Table V] exhibit a
slightly different trend from the case of an asymmetric
barrier. The shift function of L, is zero below 1 MeV
and then rises to a 150 keV plateau between 1 and 3.25
MeV curvature. The L, function starts rising from zero
at 0.8 MeV to a maximum of a 49 keV shift at 1.5 MeV,
and then decreases to zero again at 3.25 MeV curvature.
L, starts rising at 0.7 MeV, attains a peak value of 30
keV at 1 MeV, decreases to a minimum at 1.6 MeV, and
starts rising again to a 45 keV plateau at 3.5 MeV. The
shift functions of L, and L, intersect twice at 1.2 and 2
MeV curvatures.

In the course of this study, comparison of penetrability
through a single barrier using the two methods was car-
ried out. The WKB method reproduced the exact pene-
trability quite accurately in most of the energy range,
with only slight deviations occurring at the lower end of
incident energy. The lifetime of a spontaneously fission-
ing isomer depends upon the penetrability through each
of the two peaks surrounding the secondary minimum.
Consequently, both are expected to yield the same results
for the half-life of a spontaneously fissioning isomer.
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The spontaneous-fission half-life for a nucleus was
determined by computing the zero-energy penetrability
using the exact method and substituting into the equation
(13]

TE=10"28[P(E,)] ! yr, (3)

for an estimated first-well curvature of 1 MeV. As given
in Tables I-III, the spontaneous-fission half-lives in our
work are 10% higher than the values obtained by CN.

IX. CONCLUSION

In this work a detailed comparison of exact penetrabili-
ties with those from the WKB approximation for both
symmetric and asymmetric two-humped barriers reveals
more pronounced differences than previously reported, as
a consequence of the precise evaluation of Weber’s func-
tions appearing in the exact method. While strongly
dependent on the well-curvature parameter, the WKB
penetrability resonances exhibit forward energy shifts
from the exact ones, ranging between 0 and 150 keV for
the data used in this work. Generally, the magnitude of
this shift tends to be greater for incident energies near the
bottom of the well, rather than near the top.

The maximum penetrabilities at resonance computed
by the exact method are generally smaller than the ones
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obtained by using the WKB approximation. For some
low-lying resonances in the intermediate well, the exact
penetrabilities are found to be lower, as much as by a fac-
tor of 107!2. The FWHM’s given by the exact method
are considerably smaller than those by the WKB method
for energy levels near the top of the intermediate well,
which is an important region of incident energy where
the fission cross-section data are widely available.

It has been found fruitful to evaluate Weber’s functions
accurately when using the exact method to compute
penetrability through two-humped barriers. The
spontaneous-fission half-lives obtained for such types of
barriers in this work by using the exact method are about
10% higher than the ones by CN of the same parameters.

Finally, it may be noted that the exact method is ap-
plicable to potential barriers consisting of smoothly
joined parabolic segments. There are no strong reasons
to believe that the shape of the barrier remains quadratic
for all deformations during the fission process. As a
matter of fact, there exists a large uncertainty as to the
exact shape of the potential barrier.
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