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Proton- Zr mean field between —60 and + 185 MeV from a dispersive optical model analysis

Y. %'ang, " ' C. C. Foster, ' ' R. D. Polak, " ' J. Rapaport, ' ' and E. J. Stephenson' '

'"Physics Department, Kent State University, Kent, Ohio 44242
' 'Indiana University Cyclotron Facility, Bloomington, Indiana 47408

' 'Physics Department, Ohio University, Athens, Ohio, 4S701
(Received 11 February 1993)

Elastic scattering of protons from Zr in the energy range E~ =9.8 to 135 MeV is analyzed using a
dispersive optical model potential (OMP). In this analysis, a dispersion relation connects the volume in-

tegrals of the imaginary and the real parts of the OMP. Best-fit dispersive OMP parameters are obtained
from fits to experimental cross section and analyzing power data at each energy, while the volume in-

tegrals of the imaginary potential and dispersive correction terms are fixed at the empirical values ob-
tained in the individual proton elastic scattering analyses from 9.8 to 135 MeV. Predictions of the cross
section and analyzing power angular distributions from the best-fit dispersive OMP and conventional
OMP are obtained, and give similar quality fits to data. A dispersive OMP with parameters that show a
smooth energy dependence are determined from fits to the entire data set. Comparison of cross sections
and analyzing powers calculated by the dispersive OMP with experimental data at 160 and 185 MeV is

also presented. The dispersive OMP with a smooth energy dependence is extended to the negative ener-

gy region with the guidance of the known first single-particle and single-hole state energies near the Fer-
mi energy, EF= —6.8 MeV, to provide parameters for the shell model potential. This analysis also pro-
vides estimates for single-particle and hole energies E„», root-mean-square radii R„l,, expectation values

of the effective mass (m */m )„I,, occupation probabilities X„&,, absolute spectroscopic factors S„l,, and

spectral functions g„&,(E„) for proton single-particle and single-hole orbits in Zr. These estimates are
compared with available experimental information.

PACS number(s): 24.10.Ht, 24.70.+s, 25.40.Cm

I. INTRODUCTION

In recent years, dispersive optical model potential
(OMP) analysis of elastic nucleon-nucleus scattering data
has been recognized as a powerful tool connecting the
shell model potential at negative energies with the optical
model potential at positive energies [l—5]. The real cen-
tral term in a dispersive OMP is represented by two com-
ponents, the so-called Hartree-Pock term, VH„(E), which
represents the local equivalent of the nonlocal mean field
and is constructed to have a smooth energy dependence
over a large energy range that includes the Fermi energy,
and a second term, which is evaluated using the disper-
sion relation connecting the real and imaginary poten-
tials. The second term, called the dispersive correction,
has a more complicated energy dependence, especially in
the vicinity of the Fermi energy. The Hartree-Fock term
is evaluated in the positive energy region using elastic
di6'erential cross section and analyzing power data, and
then, with the help of the known first single-particle and
single-hole state energies near the Fermi energy, it is ex-
trapolated to negative energies. This mean field can then
be used to evaluate binding energies of single-particle and
single-hole states where there is no experimental data
available. It also may be used to evaluate values of the
root-mean-square radii, expectation values of the e8'ective
mass, occupation probabilities, absolute spectroscopic
factors and spectral functions for nucleon single-particle
and single-hole orbits.

Dispersive OMP analysis also has been applied to

nucleus-nucleus systems [6,7], where the energy depen-
dence of the real central potentia1 at low energies has
been studied, and contributions of the dispersion correc-
tion terms in the real central potential are evaluated. For
a nucleus-nucleus system, the dispersive OMP analysis is
limited to the positive energy region, since it is not yet
clear how to interpret particle clusters bound in a nu-
cleus.

There are mainly two methods for dispersive OMP
analyses reported in the literature. These methods are
distinguished by the way in which the constraints of a
dispersion relation between the real and imaginary cen-
tral potentials, and the requirement of a smooth energy
dependence of a particular form, are applied to the prob-
lem of obtaining dispersive OMP parameters. One, called
the iterative moments analysis [3], works with an expan-
sion of the potential in moments weighted by r". The
coefficients of this expansion, which is based on a more
conventional set of single-energy optical model fits to
elastic scattering data, are themselves reproduced in a
multienergy analysis including Hartree-Pock and disper-
sive correction terms. In the other method, called the
dispersive optical model analysis [2,4,5], the energy-
dependent potential parameters are varied to obtain a
good fit to the experimental cross sections and analyzing
powers in a grid search. Both methods give a reasonable
reproduction of experimental data, however, the quality
of the dispersive fits is not as good as that of best fits in a
conventional OMP analysis. One factor is clearly the
smaller number of dispersive OMP parameters coupled
with the constraint that they follow a smooth function of
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the proton incident energy [2,4,5].
In Ref. [7], we took a different approach in the analysis

of deuteron elastic scattering from Pb. Constraints of
the dispersive analysis are applied to the volume integrals
of the potentials, since they are better determined by the
data than any single OMP parameter. Initial values of
the volume integrals are obtained from best fits obtained
by applying a conventional OMP to individual data sets.
These volume integrals exhibit a smooth and easily
parametrized energy dependence. In the subsequent
search using dispersive constraints, the volume integrals
of the imaginary terms are kept fixed to the parametrized
values. The volume integrals of the correction terms in
the real central potential are evaluated using the volume
integrals of the imaginary potentials through the disper-
sion relation (see Sec. II). Then, a dispersive OMP
analysis is made in which the geometry and strength pa-
rameters are chosen to reproduce these volume integrals,
as well as the original measurements.

Dispersive OMP analysis has been applied to the
neutron- Ca [1], - 'V [8], - Kr [9], - Y [10], - Zr
[5,11], - Nb [12],-" In [13],- Pb [2,14], and - Bi [15]
systems, and the proton-" Ca [5] and - Pb [3,16] sys-
tems. Among these nuclei, Ca, Zr, and Pb have
been regarded as the nuclei of choice to test the method
of dispersive optical model potential analysis. Therefore,
a dispersive OMP analysis of the proton- Zr system is
useful. In this paper, we present the best-fit for proton-

Zr elastic scattering data using dispersive OMP and
compare it to the best-fit results obtained with conven-
tional OMP analyses. Moreover, the proton- Zr mean
field with a smooth energy dependence is determined
from the data sets over a large energy range, and the
properties of proton bound states in Zr are evaluated.

The proton data used in the dispersive OMP analysis
are the cross section and analyzing power data reported
at proton energies of 9.8 [17], 20.3 [18], 30.0 [19], 40.0
[20], 49.4 [21], 65.0 [22], 79.8 [23], 100.4 [23], and 135.0
MeV [23]. Data much below the Coulomb barrier (-10
MeV for Zr) or close to the isobaric analog state reso-
nance [24—26] were not included. For the data at
E =9.8 MeV [17], the analyzing powers have values as
large as 0.2 and the compound nucleus contributions at
this energy are relatively small [27]; therefore we kept
this data in our analysis. At energies above 135 MeV, the
volume integral of the imaginary potential shows a
significant increase for proton energies above the pion
production channel, and these energies were not included
in this analysis.

Section II describes the best-fit dispersive OMP
analysis. In Sec. III, the proton- Zr mean field with a
smooth energy dependence is presented. In Sec. IV, we
present our results for the bound single-particle state en-
ergies, e6'ective masses, root-mean-square radii, expecta-
tion values of the efFective mass, occupation probability,
absolute spectroscopic factors and spectral functions.
Comparisons are made with available experimental infor-
mation. In Sec. V, a discussion section, we compare the
empirical mean fields from proton- Ca and - Pb with
the results presented here for Zr. Finally, Sec. VI
presents a summary of this study.

II. BEST-FIT DISPERSIVE OMP ANALYSIS

Uz(r, E)= V(r, E)+iW(r, E)
= V&(E)f (r, R z, a&)+iW&(E)f (r, R~, a~)

d
i4aD WD(E—) f (r, R~,a~),dr

(2)

where f (r, R , a ) with j=. V, W is a function with a
Woods-Saxon form. W(r, E) is the sum of the volume
part, Ws(r, E), and the surface part, WD(r, E). For the
spin-orbit part Uso(r, E), the radial dependence is as-
sumed to be that of the Thomas form factor

1
Uso(r E) 2Vso

d jsoR(r RsoR, asoR)l s
r dr

1 d
+i2Wso fsot(r, Rsoi, asoi)1 s .

r dr
(3)

In the reanalysis of the data within the frame-
work of the conventional OMP using relativistic
kinematics, we chose ten free parameters,
(V rv av Ws WD rw aw Vso rsoR asoR) which were
used for best fits for energies below 50 MeV and an addi-
tional three parameters, ( Wsor s„oa so), for energies
above 50 MeV. The geometry parameters r~ and a~
were taken to be the same for both the 8's and 8'D terms
in the imaginary potential. The parameters from this
analysis are listed in Table I. The predicted cross sec-
tions and analyzing powers using these best-fit parame-
ters are almost identical to the solid line in Figs. 1 and 2,
which are the results of the best-fit analysis with the
dispersive OMP (discussed later in this section).

In a dispersion relation treatment, the real central po-
tential, V (r, E), consists of a term which varies slowly
with energy, the Hartree-Fock (HF) term, VH&(r, E), plus

The method developed in Ref. [7] for study of the
best-fit dispersive OMP analysis is used here. Before
evaluating the volume integral of the dispersive correc-
tion terms, one needs first to parametrize the volume in-
tegral of the imaginary potential obtained in a conven-
tional OMP analysis. The data we use here cover a wide
energy range (9.8 —135 MeV proton energies) and were
taken over the last three decades. Data below 80 MeV
were analyzed using non-relativistic treatments [17—22],
and at or above 80 MeV were analyzed using a modified
Schrodinger equation and relativistic kinematics [23]. In
order to obtain a consistent parameter set we reanalyzed
the entire data set with relativistic kinematics and a con-
ventional OMP. Relativistic kinematics also was used in
the dispersive OMP analysis.

The conventional proton- Zr OMP, U(r, E), is given
by

U (r, E)= Vc(r) U(r, E) —Uso(r, E—)
where the Vc(r) is the Coulomb potential and is taken to
be that of a charged sphere or radius R&=rcA' . A
value 'of the reduced charge radius r&=1.235 fm was
used [28]. U~(r, E) is the central part of the proton-9~Zr
optical potential and Uso(r, E) is the spin-orbit part. The
central part is defined as
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TABLE I. Best-fit conventional optical model potential parameters. Units are MeV and fm.

E (MeV)

V
Tv

av
s

RD

+8'
Vso

SOR

asoR
so

I"soi

&soi

9.8

51.62
1.274
0.621

10.85
1.353
0.350
7.052
0.901
0.365

20.3

50.46
1.204
0.620

8.17
1.299
0.601
5.420
1.026
0.693

30

57.13
1.094
0.792
3.43
5.80
1.331
0.666
5.959
0.909
0.478

40

46.97
1.176
0.690
3.66
4.75
1.292
0.686
6.576
1.017
0.872

49.35

48.43
1.153
0.749
8.70
2.86
1.268
0.548
6.383
1.074
0.759

E (MeV)

V
rv
av

s
8'D

~W

Q~
Vso
~soR
a soR
Wso
~soi
&sot

37.03
1.222
0.764

10.32
1.08
1.322
0.404
5.625
1.140
0.702

79.8

34.76
1.198
0.668
7.12

1.446
0.480
5.210
1.053
0.688

—0.729
1.006
0.306

100.4

29.11
1.217
0.691
8.12

1.391
0.546
4.742
1.074
0.652

—0.961
0.966
0.625

134.8

24.74
1.239
0.687

10.36

1.338
0.623
3.734
1.056
0.605

—1.722
1.050
0.599

Up(r, E)= VHF(r, E)+b, V(r, E)+iW(r, E),
where

W E'

(4)

a correction term, EV(r, E), which is calculated using a
dispersion relation, so that

The symbol I' denotes the principal value. For the
proton- Zr case, Ez= —6.8 MeV and is half the sum of
the proton separation energies for Zr and 'Nb [29].
The term b V(r, E) is divided into two terms, b, Vs and
AVD, which arise through dispersion relations from the
two terms in the imaginary potential, 8'z and O'D. Ac-
cordingly we rewrite Eq. (2) as

Uz(r, E)= V(r, E)+i W(r, E)= VH+(r, E)+b, V&(r, E)+5VD(r, E)+i W&(r, E)+i WD(r, E)
d=VHF(E)f(r, RHF aHF)+bV&(E)f(r, Rs ~s) 4aahVD(E)
d

f(r, RD, aD)

+i Ws(E)f (r, R&,a&) —i4aD WD(E) f(r, RD, gz ),Q

dr

where f (r, R, a ) with j=HF, S,D represents the
Woods-Saxon functional dependence. We will make the
connection between the imaginary potential and the real
correction term though the volume integral per nucleon.
The dispersion relation [see Eq. (5)] stated in terms of the
volume integral is

p „J„(E')
E' E~ E E'——

In this study, the energy dependence of the volume in-
tegrals of the best-fit imaginary potentials, J~(E) and
J~ (E) (shown in Fig. 3), were described using the pa-s
rametrization [30]

(E —E )~
J,(E)=a,' (E EF) +p;—
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Values larger than one reAect the fact that there are addi-
tional constraints in the dispersive OMP.

III. PROTON- Zr MEAN FIELD
%ITH A SMOOTH ENERGY DEPENDENCE

rHF =1.217 fm and aHF =0.76 fm; (14a)

(ii) the volume imaginary and dispersive correction po-
tentials,

The properties of the proton- Zr mean field with fixed
geometrical parameters and potential depths which vary
smoothly with energy are presented in this section. In
the process of determining this mean field, through a grid
search, the volume integrals of the imaginary potential
and the dispersive correction potentials were fixed at the
values calculated from Eqs. (8) and (9). The re, , aii, are

not constrained in the present work as in previous work
[1—5], in which rii, and aii, were set equal to rH„and

S S

aHF, respectively. This was necessary to obtain a reason-
able overall fit to the cross section and analyzing power
data, which covers the energy range from 9.8 to 135
MeV. The modified code sNooP YsQ [32] treats separately
the HF potential and the volume part of the dispersive
correction potential, which makes this treatment feasible.

The radius and diffuseness of the imaginary volume
part Ws ( r, E) are determined mainly from data with ener-
gies higher than 80 MeV, where the imaginary surface
potential is negligible. Then the form factor of the imagi-
nary surface potential WD(r, E) is determined mainly
from data with E ~ 80 MeV. Fitting to the entire data
set using the potentials defined in Eqs. (6) and (3), the fol-
lowing potential form factors were obtained: (i) the HF
potential,

100

80

60

40

0 i I i & i i I i I i & I

—50 0 50
E (MeV)

I I I I I I I I

ioo i50

FIG. 6. Energy dependence of the HF potential depth
VHF(E). The circles at negative energies are the best-fit to the
experimental single-particle energies E„I, when the values of the
EV(r, E„») are used. The circles at positive energies are the
best-fit to the scattering data. The solid line refers to the HF
potential depth V» given in Eqs. (16) and (17).

der to obtain reliable bound-state information, VH„(E)
was also constrained to reproduce the potential depths
needed for the closest particle and hole states near the
Fermi energy. The smooth curve, described in the next
section, is also shown in Fig. 6.

The calculated cross sections and analyzing powers us-
ing the dispersive OMP parameters [Eqs. (8) to (16)] are
shown as dashed lines in Figs. 1 and 2. As can be seen,
good agreement between the data and calculations is

r~ = 1.37 fm and a ~ =0.588 fm;
S S

(14b)

(iii) the surface imaginary and dispersive correction po-
tentials,

10

~ ~ F I
(

~ I ~ ~ I ~ I ~

I
I I I I

I
I I I

r~ =1.294 fm and a~ =0.607 fm;
D D

(14c)

Vso(E) =6.0—0.0178E (MeV) . (15a)

A small negative imaginary spin-orbit potential was
necessary to give a good At to the analyzing power data
for energies above 50 MeV:

(iv) spin-orbit potentials,

rsoR ="soi =1 05 fm and asQR aso, =0.6 fm . (14d)

The depth Vso(E) of the real spin-orbit potential was
found to be

10

~ 10

10
b

10 2

10

8'so(E) =0, E ~ 50 MeV,
= —0.0175(E —50), E ~50 MeV .

(15b)

I I I I I ~ I I I I ~ I I I I I I ~ I I I I I I

0 20 40 60 80 100

0, (deg )
The depth VH„of the HF potential is determined from

fits of the individual data sets at each energy after the
form factors and other potential components have been
fixed at the values given in Eqs. (9)—(15). The VH„are
shown as open circles at positive energies in Fig. 6. In or-

FIG. 7. Angular distributions of the cross section for proton
elastic scattering from Zr at 160 and 185 MeV. The circles in-
dicate experimental data. The calculations using dispersive
OMP parameters with a smooth energy dependence are shown
as solid lines.



47 PROTON- Zr MEAN FIELD BETWEEN —60 AND +185 MeV. . . 2683

IV. BOUND STATE PROPERTIES

I I I I I I I I I I I I I I I I I 1 I I I I I

I I I I I I I I [ I I I I I I I I I I I I I I I

0 20 40 60 80 100

g. (deg )

FIG. 8. As in Fig. 7 but for analyzing powers.

achieved, except for the data set at E =9.8 MeV. More-
over, the comparison between the data and calculations
at higher energies from extrapolation of the dispersive
OMP parameters with smooth energy dependence to 160
[23], and 185 [23,33] MeV is shown in Figs. 7 and 8, and
the agreement is reasonable. The dispersive and conven-
tional OMP parameters have also been used to predict re-
action cross sections o.z. The comparison between data
[34] and the calculations is shown in Fig. 9, Reaction
cross sections, oz(E), calculated with dispersive OMP
parameters with smooth energy dependence overestimate
the data at low energies and underestimate it at high en-
ergies.

An appealing feature of the dispersive OMP analysis is
that it provides the shell model potential for bound states
from the extrapolation of the dispersive OMP to negative
energies. A wealth of experimental information is avail-
able for the single-particle and single-hole energies for
these orbits near the Fermi energy in Zr. The spectro-
scopic information on these orbits in Zr has been mea-
sured by various means, such as stripping and pickup re-
actions, and (e, e'p) (see Ref. [35]). Experimental cen-
troid energies and sums of the spectroscopic factors for
the subshells in Zr are discussed below and tabulated
for comparison with the results of the present work in
Tables III and IV, respectively. The general appearance
of the measured proton bound state properties in Zr is
that the centroid energies for a given subshell measured
by difT'erent reactions are in a good agreement. However,
there are large discrepancies for the spectroscopic factors
obtained from (e, e'p) reported in Ref. [35], with (d, He)
reported in Ref. [36], and with (n, d) reported in Ref. [37]
for the subshells below the Fermi energy. Also there are
sizable di8'erences for spectroscopic factors measured by
(d, n) and ( He, d) reactions [38,39] for the orbits above
the Fermi energy, except for the 1g9/2 orbit. A detail de-
velopment of these points is given in the following sub-
sections.

A. Single-particle energies

Single-particle energy (E„& ) calculations are performed
using a subroutine implemented in the distorted wave
code DwUcK4 [40] that solves the Schrodinger equation

1600

1400

1200

1000

I I

I

I I

where the V(r, E„&~) is the real part of the dispersive
OMP, which is the sum of the HF, EVs(r, E), and
b, VD(r, E) potentials. Also included is the spin-orbit po-
tential. We adopted the similar treatment for the spin-
orbit potential depth as in Ref. [4], the depth,
Vso(E) = Vso(0) =6.0 MeV, was used in the calculation
of the single-particle energies for all proton bound states.
The single-particle wave function for a subshell with the
quantum number nlj can be written as

800

600

400

—()

—
I

I

50 100
E (Mev)

DOMP Smooth
DOMP Best Fit
COMP Best Fit

I I I I t I

150 200

FIG. 9. Reaction cross sections, o.&(E). The circles are ex-
perimental data and the solid line is the calculation using
dispersive OMP parameters with a smooth energy dependence
(DOMP Smooth). The o.R calculated using dispersive OMP
best-fit (DOMP best fit) and conventional OMP best-fit (COMP
best fit) parameters are shown by the dashed and dot-dashed
lines, respectively.

u„i (r)
&b„IJ(r)= Yl (Q) .

r

Based on the existing experimental information for first
single particle and hole states near the Fermi energy,
which is shown in Table III, the depth VH„was adjusted
to reproduce the bound state energies. The dispersive
correction terms, 6Vz and 6VD, were included in the po-
tential and fixed at the values calculated using Eq. (9). At
the Fermi energy the value of the potential depth is
VHF =60.8 MeV.

The energy dependence of VHF has been described be-
fore using an exponential as function of energy [2]. With
this form a reasonable reproduction of the positive ener-
gy values can be obtained, but the extrapolation to nega-



2684 WANG, FOSTER, POLAK, RAPAPORT, AND STEPHENSON 47

TABLE III. Energy of proton single-particle orbits in Zr. The numbers in parentheses are the ex-
perimental uncertainties in E„»~

nlj

2d5/2

1g 9/2

2p l/2

2p 3/2

lf s/2

if712
2$

1d3/2
1d 5 /2

1p 1/2

1p3/2

1$&/2

Present
work

—0.45

—4.87
—8.60

—10.30
—9.68

—15.69
—24.01
—25.19
—30.39
—41.81
—44.40
—59.88

(e, e'p)
Ref. [35]

—8 ~ 36
—10.4(2)
—10.8(2)
—17.0(5)
—2 1.8(4)
—23.8(5)b

E„& (Me V)
(d, 'He)

Ref. [36]

—8.36
—9.87

—10.11
—15.56

{n,d)
Ref. [37]

—8.36
—9.87

—10.11

('He, d)
Ref. [39]

—1.30
—0.34
—5.11

(d, n)
Ref. [38]

—1.09

—5.16

'E„I~ was found larger than zero.
Average value for the orbits noted by (nI), for example, the average value of the single-particle energy

for 1d3/2 and 1d5/, is —23.8(5) MeV.

tive energies underestimates the potential depths required
by the bound state energies. To increase the energy
dependence near E =0, a constant term was added, giv-
ing

V(F'(EF ) =39.8 MeV, and k=0. 606].
Unfortunately, this parametrization tends to overesti-

mate the values of VHF below the Fermi energy, so in this
region VH„ is parametrized with a linear function

VHF«) = VHF «F ) VH„(E)= VHF(EF )
—A.(E EF), E &—EF . (17)

+ VHF(EF ) exp
—

A, (E EF)—E)EF .

(16)

The sum of V'H'F(EF)+ Vg„'(EF) was fixed at 60.8 MeV
to match at the Fermi energy, and the individual
coefficients adjusted to reproduce the positive energy
values of VH„[producing VH'„'(EF ) =21.0 MeV,

The single-particle energies were recalculated, holding
VHF(E) at the values given by the smooth parametriza-
tion. The values calculated using only the VHF(r, E) term
of the potential are shown in the first column of Fig. 10,
while in the second column the values are shown, which
are calculated including the additional dispersive correc-
tion term, VHF(r, E)+b.V(r, E). These bound state ener-
gies are also tabulated in the first column of Table III. In

TABLE IV. Spectroscopic factors of the proton single-particle orbits in Zr. The numbers in
parentheses are the experimental uncertainties in S„».

nIj

2d 5/2

1g 9/2

2P l /2

2p
ifsn
if7n
2$

1d3/2
1d 5/2

1p 1/2

1$1/2

Present
work

0.682

0.666
0.680
0.660
0.665
0.670
0.959
0.896
0.876
0.833
0.870
1.114

(e, e'p)
Ref. [35]

0.36(4)
0.56(6)
0.60(8)
0.68(9)
0.64(8)
0.71(10)'

S„&, (MeV)
(d, 'He)

Ref. [36]

0.90
0.98
1.48
1.41

(n, d)
Ref. [37]

0.85(3)
0.45(13)
0.13(7)

('He, d)
Ref. [39]

0.83
0.38
1.0

(d, n)
Ref. [38]

0.435

0.97

'Average value for the orbits noted by (nl).
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FIG. 11. Radial dependence of the effective masses at
E =EF. The solid line is the total effective mass m*/m, and
the dashed line refers to the HF effective mass mHF/m. The
dot-dashed line is the E mass, m */rn HF.

—80
FIG. 10. Single-particle and hole state energies in Zr. The

experimental values are those obtained from (e,e'p) reactions.

the last column in Fig. 10 are the bound state energies
measured in the (e, e'p) reaction [35]. Compared with
our calculation, the nuclear dynamics compress the
single-particle levels around the Fermi energy. This
feature has been observed in previous studies [1—5]. The
calculated bound state energies compare well with avail-
able experimental data.

u„i (r)=C„& P„& (r)u„I (r), . (21)

where

P„(&(r)= [m H„(r,E„(~ )/m]' (22)

and the value C„I~ is the normalization factor, which
satisfies the relation

In order to take the effect of nonlocality into account,
Mahaux and Sartor suggested [3] that the wave function
u„I/(r) for E ~0 should be scaled by the Percy factor
P„IJ(r). Then the modified wave function noted as u„&J. is

B. Other bound-state properties I u„i (r)dr =1 . (23)

l. Effective masses

Effective masses are important quantities in later calcu-
lations for root-mean-square radii, occupation probabili-
ties, spectroscopic factors and spectral functions. The ra-
tio of the total effective mass, m*, of a proton in a nu-
clear real central potential to its free mass m, can be writ-
ten as [3]

m*(r, E)/m =1— V(r, E) .d
dE nlj

Present
work

R', ' (fm)
(e, e'p)

Ref. [35] Theory'

&m'/m)„„
Present

work

TABLE V. Root-mean-square radii, R„», of proton single-
particle orbits in Zr. The numbers in parentheses are the
available experimental uncertainties. Also listed are the expec-
tation values of the eff'ective mass ratio (m*/m )„&, for these
proton single-particle orbits.

The effective mass associated with the HF potential m H„
1S,

d
mHF(r E)/m =1

d
VHF(» E)

dE

and the ratio of m * to m H» which is called the E mass,
is defined as

m(r, E)/m =m*/mHF=1 —[m/mHF] D, V(r, E) .
dE

(20)

2d 5/2

189/2

2p &/2

2p 3/2

lf 5/2

lf7n
2S 1/2
1d 3/2
1d5/2

1p 1/2

1p3/2
1$ I /2

5.63
5.01
4.77
4.66
4.51
4.39
3.90
3.90
3.99
3.46
3.53
2.86

4.97(10)
4.57(9)
4.48(7)
4.54(7)
4.51(11)
3.87
3.99(10)

4.93
4.63
4.57
4.52
4.52
3.91
4.08
4.01

1.10
0.947
0.902
0.917
0.841
0.814
0.543
0.554
0.571
0.544
0.525
0.384

The radial dependence of the three effective masses at
E =EF are shown in Fig. 11.

'The theoretical calculations [41] given in Table 11 in Ref. [35].
Average value for the orbits noted by (nl).
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The modified wave functions u„& (r) are used in the later
calculations.

2. Root-mean-square radii

The calculated root-mean-square radii are listed in Table
V and compared with the experimental values obtained
from the (e, e'p) reaction [35], and theoretical calcula-
tions [41] given in Table 11 of Ref. [35].

The root-mean square radii are defined as
1/2

Rnlj Qnlj r 1 dr (24)

3. Occupation probability

Occupation probabilities for the single-particle orbits
in which, Enl EF are

W E'
N„& = f u„&z(r) 14[mHFlm(rE„&z)] 'm 'f ' zdE' dr,

0 EF (E E„» )— .
(25)

and for Enl )EF are

N„il = —f u„ij(r) [mHF Im (r, E„» )] ~ f ' dE' dr
0

nlj
fl J (EI E )2

(26)

The calculated Xnlj are listed in Table VI, and comPared
with the theoretical calculations in Ref. [42].

The occupation probabilities of each orbital (nlj ) are
also shown as circles in Fig. 12. By drawing continuous
curves through the Xnlj's separately at E & EF and
E )EF and extrapolating these curves to E =EF, the
magnitude of the discontinuity, Z, at E =EF is Z =0.53.

4. Spectroscopic factors

The spectroscopic factor is defined as [3]

S„»=f u„ii(r).[m Im(r, E„» )]dr, (27)
0

where the m Im (r, E„& ) is Eq. (20) evaluated at E„& .
Our Snl values calculated for bound single-particle and

hole states in Zr are listed in Table IV. These values
should be compared with experimental absolute spectro-

scopic factors which, in principle, can be obtained from
(e, e'p) measurements [35] or through nucleon transfer re-
actions, such as (d, He) [36], (n, d) [37], ( He, d) [39],
and (d, n ) [38] reactions. The experimental S„i for
single-particle states in Zr obtained from stripping reac-
tions and for single-hole states obtained from (e, e'p) mea-
surements and pick-up reactions are also listed in Table
IV. Comparing the measured Snl from these di6'erent ap-
proaches, one notes that there are large discrepancies
which may arise from uncertainties in the extraction of
this information from experiments. The calculated Snl in
our analysis for single-hole states agree better with the re-
sults of the (e, e'p) measurements.

I

(

I I I I

I

I I I I

I

'
I I 4 I

I

I I

TABLE VI ~ Occupation probabilities for proton single-
particle orbits in Zr.

1.00

0.75

nlj

2d 5/2

1g 9/2

2p &/2

2p3/z
lfsn
1f7i2
2s
1d3/2
1d5/2
1p l /2

1p3/2
1S1/2

N„I, (fm)
Present

work

0.131

0.210
0.790
0.813
0.804
0.845
0.880
0.880
0.891
0.910
0.913
0.928

Theory
Ref. [42]

0.054
0.04
0.08
0.86
0.88
0.90
0.93
0.96
0.95
0.96
0.97
0.97
0.98

0.50

0.85

Q QQ
I I I I 1 I I

—60
I

—40
E„„. (MeV)

—80

FIG. 12. Values for the occupation probability N„» vs

single-particle energies. The circles are the N„I, shown in Table
VI. The dashed lines are guides to the eye. Z =0.53 measures
the gap between the two dashed lines at the Fermi energy,
EF= —6.8 MeV.
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5. Spectral functions

The spectral function for a single-particle state nlj is
defined as

S„,. & W„, (E) &/& m„; /m &

(E E„—, )'+[& W„,(E)&/& „",, / &]'
'

(28)

where S„l~. represents the absolute spectroscopic factor
and &m„&./m & is the expectation value of the effective
mass m */I averaged over the bound state wave function

&m„*I /m &= f [m'(r, E„, )/m]u„& dr . (29)
0

The quantities, & rn '/m &„IJ, have been listed in Table V.
The symbol & W„IJ(E)& denotes the expectation value of
the imaginary part of the mean field,

& W„(&(E)&= f W(r, E)u„( dr . . (30)
0

Spectral functions calculated for If,~„»,~, , ld3/p,
and 1d5/2 proton hole states in Zr are shown in Fig. 13.
The individual spectral functions in Fig. 13 are multiplied
by 2j+1, and the spectral function for 1d3/2+5/2 is the
sum of the ld3&2 and 1d5&2 states weighted by (2j+1).
These calculated spectral functions are compared with
the results from the (e, e'p) experiment [35], which are

shown as histograms in Fig. 13. Spectral functions calcu-
lated for the 1f5&2 state and less bound states in Zr are
6 functions and are not shown. There is no data available
from (e, e'p) experiments or nuclear transfer reaction
measurements for excitation energies above 21 MeV. The
calculated spectral function for the If7&2 proton hole
state is in good agreement with the experimental results
from (e, e'p) [35]. Predicted strengths for proton hole
states, such as the 1d3/2+5/2 and 2s»2 states are located
in part at higher excitation energies than the experimen-
tal observations, and additional data are needed to give a
more meaningful comparison.

C. Comparison among Zr, Ca, and Pb

It is interesting to compare some of the proton bound
state properties obtained from dispersion analysis for

Ca [5], Zr (present work), and Pb [3]. These three
spherical nuclei are widely considered as good test cases
for nuclear structure studies. The most striking feature,
which comes from the comparison is that the surface of
the Fermi sea becomes less sharp with increasing mass.
The occupation probabilities X„l- for the states just above
and below the Fermi sea are 0.14 ( 1f7&2 ) and 0.85 ( ld 3&@ )

in Ca [5];0.210 ( Ig9&2) and 0.79 (2p&&2) in Zr (present
work); and 0.26 ( Ih9&z), and 0.77 (3s&&2) in Pb [3].

V. DISCUSSIQN

2—

I I I I
(

I I I ~

90z
A. Mean 6eld for proton- Zr

The volume integral or zeroth moment,

0
0.6

0.4

0.2

I I l I
f

~ ~ I I

Jv/3 = f r V(r, E)dr,

and the rms radius R, , =&rv&'~ or the normalized
second moment of the radial distribution:

f r V(r, E)dr

Jr V(r, E)dr

0.0
I I I I

(
I I ~ ~

i
~ I ~ I

0.1

0.0
10 20

E„(MeV)

FIG. 13. Spectral functions g„,,(E„). The histogram is the
experimental data from the (e, e'p) reaction [35]. In the top
part, the solid line is the calculation for the 1f7/2 state. In the
middle part, the solid line represents the sum of the spectral
functions for 1d3/2 and 1d5/2 states. The dashed and dot-
dashed lines refer to the spectral functions for the 1d3/p and

1d5/2 states, respectively. The solid line in the bottom part is
for the 2sl/2 state.

of the real part of the mean field are shown as solid lines
in Fig. 14. These two real moments of the mean field
could be identified with the moments of an equivalent
%'oods-Saxon potential, with geometrical parameters rz
and a z. By making the assumption that the
a~=a&=0. 76 fm (av is the diffuseness of the HF poten-
tial), rr is calculated and shown as a solid line in the
lower part of Fig. 14 as a function of energy. In the same
figure, the dashed lines are the values of the HF potential.
The circles are from the best fit of the dispersive OMP to
the scattering data at positive energies and to the single-
particle energies E„I at negative energies; the crosses are
from the best-fit from the conventional OMP to the
scattering data at positive energies. As one can see, the
general trend of the best-fit results over all energies can
be described by the mean-field potential represented by
the solid lines. This level of agreement may result in part
from the fact that the same mean-field geometrical pa-
rameters are used at all negative energies and that the
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I 0 ~ ~

I
~ I ~ I
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I ~ I ~

/
I I ~ I

I
~ I TABLE VII. Geometrical parameters for HF potentials. All

values are in fm. A Woods-Saxon radial form has been as-
sumed.
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I
~

I I ~

I

~ I

Ca
"Zr
208Pb

'Reference [5].
Reference [1].

'Reference [4].
Reference [3].

'Reference [2].

~HF

1.20'
1.217
1.225

Proton
aHF

0.73'
0.76
0.71

rHF

1.18b

1.21'
1.24'

Neutron
aHF

0.70
0.65'
0.68'

1 I. . . ~ I ~. . . I, . . ~ I . ~ . , I

—50 0 50 100 150

E (MeV)

FIG. 14. The energy dependence of the volume integral of
the real central dispersive OMP is in the top part of this figure.
The circles are the best-fit of the dispersive OMP to the scatter-
ing data at positive energies, and to the single-particle energies
E„I~ at negative energies. The crosses are the best fit from con-
ventional OMP to the scattering data at positive energies. The
solid line represents the calculation by the dispersive OMP with
a smooth energy dependence. The middle part shows the root-
mean-square radii and the bottom part the effective radius. The
dashed lines are the values from the HF potential.

number appears to be present. We made an attempt to
study the isovector part of the HF potential by compar-
ing the HF potentials obtained from the dispersive OMP
analyses for neutron and proton mean fields (Refs. [l —5]
and present work), but no conclusive result was obtained.
It should be pointed out that the HF potentials for
proton- Ca [5] and proton- Zr (present work) are ob-
tained from the fits to experimental data up to about 200
MeV and the proton- Pb [3] is deduced from the fits to
experimental data below 60 MeV.

VI. CONCLUSION

only deviation in the mean field is that of the HF. It
should be noted that, in the positive energy region, r~
and a& were allowed to vary to give the best-fit to scatter-
ing data.

B. Comparison between empirical mean Selds

In this section we briefIy compare our results for the
proton- Zr mean field with the proton- Ca [5], and
proton- Pb [3] empirical mean fields obtained from a
dispersive OMP analysis. A comparison of the neutron
mean fields for these three nuclei has been made in Ref.
I:4].

The mean field deduced in these analyses consists of a
dispersive contribution due to the coupling of the proton
to the excited states of the core added to a smoothly vary-
ing energy dependent term VHF(r, E). By definition the
latter component is not much influenced by the coupling
of the proton to core excitations and, thus, should depend
smoothly on mass number A and neutron excess.
Woods-Saxon geometrical parameters for these HF po-
tentials are listed in Table VII. HF geometrical parame-
ters for the neutron mean field are listed for comparison.
A small increase in the radius parameters rH„with mass

In summary, two main topics are discussed in this pa-
per. First, the proton elastic scattering cross sections and
analyzing powers from Zr were investigated using a
dispersive OMP, and the best-fit parameters were ob-
tained at each energy. In this analysis, the geometrical
parameters of the imaginary potential were allowed to
vary; however, the volume integral of the imaginary po-
tential at given energy was fixed to the value calculated
from the analytical form of the imaginary potential ener-
gy dependence in the energy range from 9.8 to 135 MeV.
The volume integral of the dispersive correction to the
real central potential was calculated, based on the disper-
sion relation and a parametrization of the volume in-
tegral of the imaginary potential, and was fixed in the
best-fit parameter search. The results of our analysis
show that a similar reproduction of the data can be ob-
tained in both conventional and dispersive OMP analy-
ses.

The second study we present here obtained the mean
field from the dispersion analysis, which is represented by
a set of dispersive OMP parameters with smooth energy
dependences. These mean-field parameters give good
predictions for elastic cross section and analyzing power
data in the energy range from 9.8 to 185 MeV. Predic-
tions for single-particle and hole energies (as low as —60
MeV), rms radii, occupancies, spectroscopic factors, ex-
pectation values of the effective mass and spectral func-
tions of the particle and hole states are presented.
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